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1. Introduction 

Transferable utility n-person co-operative games have been studied extensively in the recent past (see References [ii], [v], [x], [xii] 

etc). Core of the cooperative game was introduced by J. Von Neumann and Morgernstern, 1944 [xvii]. Other allocation (solution) 

concepts like Nucleolus, Nucleon, F-Nucleolus etc have been introduced and considered as relaxations to the concept of core. To get a 

unique allocation vector one should look into single point solution concepts. Nucleolus is one of the single point solution concepts.  

In recent past several authors had applied cooperative TU games in various fields like solving power transmission loss allocation 

problems, solving public transport problems; cost-saving allocation problems in three level supply chain (see [xviii], [iv] & [viii] 

respectively) Nucleolus is the most commonly used concept in solving cooperative TU games. 

To compute the nucleolus (due to Schmeidler [xii], we know that a sequence of linear programs is to be solved. Several authors have 

developed algorithms for obtaining solution concept like Nucleolus (see references [v], [ii] & [x]). The central question in finding 

nucleolus is how to detect all those coalitions at an iteration whose excess cannot be further improved without harming the position of 

worse off coalitions. The answer to this question can be well explained if one uses MATLAB software.  In the proposed algorithm for 

obtaining nucleolus the concepts of linear algebra as well as dropping of constraints has been used. The idea of dropping constraints is 

common in the terminology of relationship between game theory and mathematical programming duality 

(see [ ix]). Potters et al [x] have used the concept of dropping constraints in terms of elementary rows. Our algorithm is based on an 

algorithmic scheme given in Faigle et al [v] and Dragan [ ii]. In both algorithms it may uses more than (n-1) programs. However, in 

algorithmic scheme of Potters et al [x], it uses maximum of (n-1) linear programs. This occurs mainly due to the dropping of linearly 

dependent constraints at the end of every loop. In our algorithm we use one program less when compared to Potters et al [x].  

The organization of the rest of the paper is as follows. Section 2 deals with the preliminaries and the statement of the problem. 

Algorithm for the proposed method in obtaining Nucleolus which includes the comparison of MATLAB usage with other softwares is 

presented in section 3. Section 4 consists of presenting numerical examples of 3, 4 & 5 player cooperative TU games with results  

 

2. Preliminaries & Statement of the problem 

Let (N, v) be the n-person transferable utility co-operative game in characteristic function form where N= {1, 2, ---, n} be a set of n 

players. These players may form coalitions S⊆ N in an arbitrary way. Each coalition S can achieve a value v(S)∈R. The value v (N) of 

the grand coalition N can thus be understood as the total profit arising from the co-operation of all players. An allocation is an n-

dimensional vector with component sum equal to v(N). 

 The Nucleolus can be solved by a sequence of the following linear programs: 

(LP1)      Max  ε 

               Subject to 
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The set of optimal solutions of (LP1) is usually called least core of the game. In [v], the same set has been called as prenucleolus of the 

game. If (LP1) has a unique optimal solution (x
*
,ε1) then x

*
 is the nucleolus of the game (N, v). Otherwise we go to second step 

program (LP2) where  
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*The set of active coalitions which are common to all optimal solutions at ε = ε1. We have used common active coalitions instead of 

active coalitions used in [v]. 

Continuing this way, we obtain a sequence ε1< ε2 <ε3 ------<εk until finally the optimal solution of (LPk) is unique with an allocation 

vector x
*
, the nucleolus of the game.  

It is observed that all the common active coalitions at any iteration may become redundant to the system of common active coalitions 

in the previous iteration. In this case improvement towards unique solution has become void at the present iteration. The main aim in 

this paper is to overcome such situations. This kind of situation is explained in the numerical example of four player problem. The 

proposed algorithm presented in section 3 will help in overcoming such kind of situations. This algorithm is based on the following 

results: 

 Theorem1: Let 1Γ be an optimal solution set of (LP1) with 
*ε as optimal value and jΓ  be an optimal solution set of any (LPj) for j = 

2 ,3, ---, k with optimal value jε̂ , then ∈)ˆ,ˆ( jx ε  jΓ  implies that ( x̂ ,
*ε )∈ 1Γ . 

Proof:   We can write (LP1) is equivalent to the following program: 

                        Max  )}({
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Since x̂   satisfies grand coalitional constraint and 
*ε  is the optimal value of the above program, it follows that    

*)(ˆ ε≥−∑
∈

Svx
Si

i  },{ NS φ∉∀  

Hence it is proved. 

Conjugate: Any coalition S
c
 is said to be a conjugate of a coalition S if S

c
 and S are disjoint and their union is a grand coalition. 

Theorem1 will be helpful in establishing the following proposed algorithm 

                                        

3. The Proposed Algorithm 

In the linear program (LP2) the active coalitions },,{ 1τφ NS ∉  can be expressed as union of two or more disjoint coalitions 1τ∈S . 

Such active coalitions will not contribute towards unique solution and we have to wait for the next iteration. For example, if S1 = 

{1,2}and S2= {3,4} 1τ∈  then their coalitional constraints are x1 + x2 = v(S1) + ε1 & x3+x4=v(S2) + ε 1. If their union becomes active in 

the next iteration, then its coalitional constraint will be x1+x2+x3+x4 = v (S1U S2) + ε2 which will be redundant and hence no 

contribution towards obtaining unique solution. Such coalitional constraints can be dropped in the respective linear program. In LP2 

the obvious dropped constraint is the grand coalitional constraint. The reasons of dropping can well be explained by the following 

Theorem2: 

Theorem2: If S1& S2 are any two active disjoint coalitions in the first linear program (LP1) then coalitional constraint corresponding 

to the coalition S1 U S2 can be dropped in the next and subsequent linear programs. 

Proof: Let )ˆ,ˆ(&),( **

jxx εε  are optimal to (LP1) and (LPj) respectively, where j=2,3, ----k. It follows from Theorem1 

that ),ˆ( *εx satisfies the coalitional constraint corresponding to the coalition S1 U S2. i.e. 
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 is always greater than or equal to
*ε , it can be equal to either 

*ε  or 
*ε +α where α >0. In any case it is an 

equation with someε *ε≥ . This equation will be redundant and it is not helpful in getting unique allocation and hence it can be 

dropped. 

Theorem 3: If 1S  is any active coalition in the current linear program and its conjugate 
cS1  is not active then 

cS1 can be dropped in 

the next and subsequent linear programs. 

Proof: By the definition of conjugate, 
cS1  can be written as linear combination of grand coalition N and 1S . Therefore, the coalition 

cS1 can be dropped in the next and subsequent linear programs. 

Corollary: If S1 and S2 are disjoint active coalitions in the current linear program and if 
cSS )( 21 ∪  is not active then 

cSS )( 21 ∪  

can be dropped in the next and subsequent linear programs. 

Note: Theorem2 and Theorm3 can be extended to more than two coalitions. 

  We now present the new algorithm for obtaining Nucleolus. 

 

Algorithm 

Step 1: Solve LP1 as mentioned in the section 2. Identify the common active coalitions** and fixations of any variables. If the solution 

is unique then stop and claim the present solution as Nucleolus. Otherwise go to step 2 

 **MATLAB provides solution which is interior to the set of optimal solutions. This will help in identifying active common coalitions 

by just finding the binding constraints of the optimal solution provided by MATLAB. If we use other softwares like Microsoft solver 

etc, then it will give the optimal solution in one of the extreme points of the optimal solution set. In this case the common active 

coalitions can be identified by either searching a closer neighborhood interior point of the optimal solution set and find the active 

coalitions or search for other extreme point and find common active coalitions for the two extreme points. In a large number of 

players, it may be difficult to find the common active coalitions if we use softwares whose outputs are not similar to that of 

MATLAB.  An optimal solution in the first linear program through MATLAB will be very close to the nucleolus as it gives an interior 

point of optimal solution set.   

Step2:   Solve  

 (LP2)         Max ε 

                   Subject to 
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 Continuing this way, we obtain a sequence ε1< ε2 <ε3 ------<εh until finally the optimal solution of (LPh) is unique with an allocation 

vector x
*
, the nucleolus of the game. 

It is to be observed here that εh = εk where h ≤ k. i.e. The optimal value in the final linear programs of the proposed algorithm and the 

existing algorithm are equal but the total number of linear programs used in the proposed algorithm is less than that in the existing 

algorithm. This algorithm can be applied to both balanced and unbalanced cooperative TU games. 

Note: Earlier Reijneirse et al [xi] have proved that for an n-player cooperative TU game there exist a collection of maximum 2(n-1) 

coalitions that determine the nucleolus. Also sufficient conditions are established to have same maximal value even after dropping 

coalitions. More relaxed conditions are considered in Theorem 2 & 3. 

We now present with the examples of three, four & five player problems in section 4. 

 

4. Numerical Examples 

Example 4.1 

Consider three player problem with v (1) =54, v (2) =78, v (3) =54, v (1,2) =150, v (1,3) =108, v (2,3) =132, v (1,2,3) =210. Results 

are given in Table-1. We observe that the existing method and proposed method have same number of iterations. The active coalitions 

in the first linear program LP1 are disjoint in this case. 
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Method Player 1 Player 2 Player 3 Epsilon 

LP I Iteration 

Existing method 

 64.7229 

    

88.2771  57.0000 3.000 

LP II Iteration 

Existing method 

64.5000 

 

88.5000 57.0000 10.500 

LP I Iteration 

Proposed method 

 64.7229 

    

88.2771  57.0000 3.000 

LP II Iteration 

Proposed method 

64.5000 

 

88.5000 57.0000 10.500 

Table 1 

 

Example 4.2: 

Consider a four-player problem with data given in the table-2 and results are given in the table-3. 

 

Coalition {1} {2} {3} {4} {1,2} {1,3} {1,4} {2,3} {2,4} 

Value 54 78 54 30 150 108 86 132 110 

 

 

 

Method Player 

1 

Player 

2 

Player 

3 

Player 

4 

Epsilon 

LP I Iteration 

Existing method 

66.4814 

 

90.5186 61.000 37.000 7.000 

LP II Iteration 66.4644 90.5356 61.000 37.000 8.000 

LPIII Iteration 66.4451 90.5549 61.000 37.000 10.00 

LPIV Iteration 

Existing method 

66.4207 

 

90.5793 

 

61.000 

 

37.000 

 

12.00 

LPV Iteration 

Existing method 

66.5 90.5 61.000 37.000 12.5 

LPI Iteration 

Proposed method 

66.4814 

 

90.5186 61.000 37.000 7.000 

LPII Iteration 

Proposed method 

66.5 

 

90.5 

 

61.000 

 

37.000 

 

12.5 

Table 2:4-player problem results 

 

As we observe from the table-3 final iteration results of both existing method and proposed method are same but in the proposed 

method we used only two linear programs whereas five linear programs are used in the existing method. In the first linear program 

result the active coalitions are {1,2}, {3}, {4}. So =1ξ ({1,2,3}, {1,2,4} and {3,4})  

=C ({3,4}, {1,2,4} and {1,2,3}). In this case all active coalitions are disjoint and hence the set 1ξ  coincides with C .  

Example 4.3: 

Let us consider a 4-player unbalanced problem with data given in table-4 and results are given in table-5. 

 

Coalition {1} {2} {3} {4} {1,2} {1,3} {1,4} {2,3} {2,4} 

Value 0 0 0 0 18 0 2 0 2 

 

 

 

Table 3:4-player unbalanced problem 

 

 

 

 

 

 

 

 

 

 

Coalition {3,4} {1,2,3} {1,2,4} {1,3,4} {2,3,4} {1,2,3,4} 

Value 88 210 182 145 170 255 

Coalition {3,4} {1,2,3} {1,2,4} {1,3,4} {2,3,4} {1,2,3,4} 

Value 4 21 19.5 8 9 22 
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Method Player 1 Player 2 Player 3 Player 4 Epsilon 

LP I Iteration 

Existing method 

8.8769 9.2897 2.6667 1.1667 -0.1667 

LP II Iteration 8.8919 9.2747 2.6667 1.1667 0.1667 

LPIII Iteration 8.8835 9.2832 2.6667 1.1667 1.1667 

LPIV Iteration 

Existing method 

8.8768 9.2898 2.6667 1.1667 2.6667 

LPV Iteration 

Existing method 

8.5833 9.5833 2.6667 1.1667 4.4167 

LPI Iteration 

Proposed method 

8.8769 9.2897 2.6667 1.1667 -0.1667 

LPII Iteration 

Proposed method 

8.5833 9.5833 2.6667 1.1667 4.4167 

Table 3: 4-player problem results 

 

In the first iteration the active coalitions are ({3,4}, {1,2,3} and {1,2,4}. As these are not disjoint coalitions so =1ξ φ and 

=C ({3,4}, {1,2,4} and {1,2,3}). Potters et al dropped the same constraints as in the set 1ξ  but the termination of algorithm extends 

it to one more loop (program) with total 7 pivot steps. It is observed that MATLAB results of first linear program are closely related to 

nucleolus. 

 

Example 4.4 

Consider a 5-player problem with coalitional values is given in appendix Table-I and results of LP iteration existing method and 

proposed method are given in appendix table-II. In the first linear program it is observed that coalitions {1,5}, {2,3}, {2,4} and {3,4} 

are active.  =1ξ ({1,2,3,5}, {1,2,4,5} and {1,3,4,5}) and C= ({2,3,4}, {1,4,5}, {1,3,5}, {1,2,5}, {2}, {3}, {4}). We can observe from 

the set C that the players of 2,3 and 4 are fixed and no improvement later. More than dropping of constraints at later stage the 

information about fixation of players will be known from the set C.  

Note: Computational time in calculating Nucleolus by the proposed method is much lower than that of determining nucleolus by 

existing sequence of linear programs used in [5] as the former method has to solve less number of linear programs than the latter one. 

MATLAB 7.1 is used to carry out the simulations.  MATLAB subroutine program for a five player problem is given in appendix. In 

this program checking of uniqueness of solution as well as the linearly dependent coalitional constraints is done at the end of every 

linear program in the form of rank. Dropped constraints set which was obtained from checking the linear dependent coalitional 

constraints by MATLAB subroutine program is claimed to be equivalent to the set C∪1ξ . If we enter the coalitional values as inputs 

for b and run the MATLAB subroutine program, then we get the end result. 

 

5. Conclusions 

To compute the Nucleolus the efficient algorithm has been introduced on the basis of linear algebraic equations with rank concept. 

Usage of MATLAB software had helped in answering the central question in finding the nucleolus. 
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Appendix 
 

Coalition Value Coalition Value 

{1} 15 {1,2,3} 77 

{2} 25 {1,2,4} 75 

{3} 20 {1,2,5} 86 

{4} 18 {1,3,4} 73 

{5} 30 {1,3,5} 80 

{1,2} 49 {1,4,5} 77 

{1,3} 47 {2,3,4} 79 

{1,4} 32 {2,3,5} 92 

{1,5} 56 {2,4,5} 86 

{2,3} 58 {3,4,5} 84 

{2,4} 55 {1,2,3,4} 100 

{2,5} 66 {1,2,3,5} 112 

{3,4} 52 {1,2,4,5} 110 

{3,5} 63 {1,3,4,5} 107 

{4,5} 50 {2,3,4,5} 115 

{1,2,3,4,5}             150 

Table-I: 5-player problem 
 

 LPI iteration 

Exis.method 

LPII iteration 

Exis.method 

LPIII iteration 

Exis.Method 

LPI iteration 

Prop.method 

LPII iteration 

Prop.method 

Player1 22.3066 22.3971 22.3 22.3066 22.3 

Player2 32.8000 32.8000 32.8 32.8000 32.8 

Player3 29.8000 29.8000 29.8 29.8000 29.8 

Player4 26.8000 26.8000 26.8 26.8000 26.8 

Player5 38.2934 38.2029 38.3 38.2934 38.3 

Epsilon 4.6 4.8  5.1 4.6  5.1 

Table-II: Results 
 

MATLAB program for 5-player problem 

clear; 

clc; 

tic; 

global n m 

n=5; 

m=2^n-1; 

A=coalition(n); 

e1=-ones(m-1,1); 

A=[A e1]; 

b=[15 25 20 18 30 49 47 32 56 58 55 66 52 63 50 77 75 86 73 80  77 79  92  86 84 100 112 110 107 115 ]'; 

A1=A; 

beq=150; 

Aeq=[ones(1,n) 0]; 

f=[zeros(1,n) -1]; 

 X =linprog(f,-A,-b,Aeq,beq); 

 k=A*X-b; 

 kk=1; 

R=rank(Aeq); 

mm=1 

while R<n 

XX(:,mm)=X; 

D(:,mm)=k; 

 [A,b,Aeq,beq,k,kk,R]=main(A,b,Aeq,beq,k,kk,m,n,X); 

X =linprog(f,-A,-b,Aeq,beq); 

k=A*X-b; 

mm=mm+1; 

end 

toc; 

XX 

D 


