
www.ijird.com July, 2016 Vol 5 Issue 8

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 27

An Efficient Algorithm for Solving

Nucleolus of Cooperative TU Games Using MATLAB

1. Introduction

Transferable utility n-person co-operative games have been studied extensively in the recent past (see References [ii], [v], [x], [xii]

etc). Core of the cooperative game was introduced by J. Von Neumann and Morgernstern, 1944 [xvii]. Other allocation (solution)

concepts like Nucleolus, Nucleon, F-Nucleolus etc have been introduced and considered as relaxations to the concept of core. To get a

unique allocation vector one should look into single point solution concepts. Nucleolus is one of the single point solution concepts.

In recent past several authors had applied cooperative TU games in various fields like solving power transmission loss allocation

problems, solving public transport problems; cost-saving allocation problems in three level supply chain (see [xviii], [iv] & [viii]

respectively) Nucleolus is the most commonly used concept in solving cooperative TU games.

To compute the nucleolus (due to Schmeidler [xii], we know that a sequence of linear programs is to be solved. Several authors have

developed algorithms for obtaining solution concept like Nucleolus (see references [v], [ii] & [x]). The central question in finding

nucleolus is how to detect all those coalitions at an iteration whose excess cannot be further improved without harming the position of

worse off coalitions. The answer to this question can be well explained if one uses MATLAB software. In the proposed algorithm for

obtaining nucleolus the concepts of linear algebra as well as dropping of constraints has been used. The idea of dropping constraints is

common in the terminology of relationship between game theory and mathematical programming duality

(see [ix]). Potters et al [x] have used the concept of dropping constraints in terms of elementary rows. Our algorithm is based on an

algorithmic scheme given in Faigle et al [v] and Dragan [ii]. In both algorithms it may uses more than (n-1) programs. However, in

algorithmic scheme of Potters et al [x], it uses maximum of (n-1) linear programs. This occurs mainly due to the dropping of linearly

dependent constraints at the end of every loop. In our algorithm we use one program less when compared to Potters et al [x].

The organization of the rest of the paper is as follows. Section 2 deals with the preliminaries and the statement of the problem.

Algorithm for the proposed method in obtaining Nucleolus which includes the comparison of MATLAB usage with other softwares is

presented in section 3. Section 4 consists of presenting numerical examples of 3, 4 & 5 player cooperative TU games with results

2. Preliminaries & Statement of the problem

Let (N, v) be the n-person transferable utility co-operative game in characteristic function form where N= {1, 2, ---, n} be a set of n

players. These players may form coalitions S⊆ N in an arbitrary way. Each coalition S can achieve a value v(S)∈R. The value v (N) of

the grand coalition N can thus be understood as the total profit arising from the co-operation of all players. An allocation is an n-

dimensional vector with component sum equal to v(N).

 The Nucleolus can be solved by a sequence of the following linear programs:

(LP1) Max ε

 Subject to

 ISSN 2278 – 0211 (Online)

M. V. Durga Prasad

Professor, Institute of Rural Management Anand, Anand, Gujarat, India

Abstract:

The approach to determine the nucleolus of the cooperative game is to apply a sequence of linear programs. In this paper a new

algorithm for solving Nucleolus for cooperative TU games is proposed. Some constraints are dropped at any iteration for

solving a linear program as those dropped constraints will not contribute in getting unique solution. Also dropping constraints

will not affect in the single point Nucleolus solution but the total number of linear programs to be solved will be less in the

proposed method. It can be claimed that Nucleolus can be obtained in solving maximum (n-1) linear programs for a n person

cooperative TU games. Numerical examples for different set of players are provided. Advantages of using MATLAB are

discussed. The results clearly prove the effectiveness of the proposed method with the usage of MATLAB.

Keywords: Cooperative transferable utility game, Linear programs, Nucleolus, Algorithm, Allocation

www.ijird.com July, 2016 Vol 5 Issue 8

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 28

)(Nvx
Ni

i =∑
∈

ε+≥∑
∈

)(Svx
Si

i },{ NS φ∉∀

The set of optimal solutions of (LP1) is usually called least core of the game. In [v], the same set has been called as prenucleolus of the

game. If (LP1) has a unique optimal solution (x
*
,ε1) then x

*
 is the nucleolus of the game (N, v). Otherwise we go to second step

program (LP2) where

(LP2) Max ε

 Subject to

)(Nvx
Ni

i =∑
∈

1)(ε+=∑
∈

Svx
Si

i 1τ∈∀S *

ε+≥∑
∈

)(Svx
Si

i },,{ 1τφ NS ∉∀

*The set of active coalitions which are common to all optimal solutions at ε = ε1. We have used common active coalitions instead of

active coalitions used in [v].

Continuing this way, we obtain a sequence ε1< ε2 <ε3 ------<εk until finally the optimal solution of (LPk) is unique with an allocation

vector x
*
, the nucleolus of the game.

It is observed that all the common active coalitions at any iteration may become redundant to the system of common active coalitions

in the previous iteration. In this case improvement towards unique solution has become void at the present iteration. The main aim in

this paper is to overcome such situations. This kind of situation is explained in the numerical example of four player problem. The

proposed algorithm presented in section 3 will help in overcoming such kind of situations. This algorithm is based on the following

results:

 Theorem1: Let 1Γ be an optimal solution set of (LP1) with
*ε as optimal value and jΓ be an optimal solution set of any (LPj) for j =

2 ,3, ---, k with optimal value jε̂ , then ∈)ˆ,ˆ(jx ε jΓ implies that (x̂ ,
*ε)∈ 1Γ .

Proof: We can write (LP1) is equivalent to the following program:

 Max)}({
),(

SvxMin
Si

i
NS

−∑
∈

∉ φ

 Subject to

)(Nvx
Ni

i =∑
∈

Since x̂ satisfies grand coalitional constraint and
*ε is the optimal value of the above program, it follows that

*)(ˆ ε≥−∑
∈

Svx
Si

i },{ NS φ∉∀

Hence it is proved.

Conjugate: Any coalition S
c
 is said to be a conjugate of a coalition S if S

c
 and S are disjoint and their union is a grand coalition.

Theorem1 will be helpful in establishing the following proposed algorithm

3. The Proposed Algorithm

In the linear program (LP2) the active coalitions },,{ 1τφ NS ∉ can be expressed as union of two or more disjoint coalitions 1τ∈S .

Such active coalitions will not contribute towards unique solution and we have to wait for the next iteration. For example, if S1 =

{1,2}and S2= {3,4} 1τ∈ then their coalitional constraints are x1 + x2 = v(S1) + ε1 & x3+x4=v(S2) + ε 1. If their union becomes active in

the next iteration, then its coalitional constraint will be x1+x2+x3+x4 = v (S1U S2) + ε2 which will be redundant and hence no

contribution towards obtaining unique solution. Such coalitional constraints can be dropped in the respective linear program. In LP2

the obvious dropped constraint is the grand coalitional constraint. The reasons of dropping can well be explained by the following

Theorem2:

Theorem2: If S1& S2 are any two active disjoint coalitions in the first linear program (LP1) then coalitional constraint corresponding

to the coalition S1 U S2 can be dropped in the next and subsequent linear programs.

Proof: Let)ˆ,ˆ(&),(**

jxx εε are optimal to (LP1) and (LPj) respectively, where j=2,3, ----k. It follows from Theorem1

that),ˆ(*εx satisfies the coalitional constraint corresponding to the coalition S1 U S2. i.e.

www.ijird.com July, 2016 Vol 5 Issue 8

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 29

*

21

)21(ˆ ε+≥∑
∈

SUSvx
USSi

i ⇒
*

21

)21(ˆ ε≥−∑
∈

SUSvx
USSi

i

As)21(ˆ
21

SUSvx
USSi

i −∑
∈

 is always greater than or equal to
*ε , it can be equal to either

*ε or
*ε +α where α >0. In any case it is an

equation with someε *ε≥ . This equation will be redundant and it is not helpful in getting unique allocation and hence it can be

dropped.

Theorem 3: If 1S is any active coalition in the current linear program and its conjugate
cS1 is not active then

cS1 can be dropped in

the next and subsequent linear programs.

Proof: By the definition of conjugate,
cS1 can be written as linear combination of grand coalition N and 1S . Therefore, the coalition

cS1 can be dropped in the next and subsequent linear programs.

Corollary: If S1 and S2 are disjoint active coalitions in the current linear program and if
cSS)(21 ∪ is not active then

cSS)(21 ∪

can be dropped in the next and subsequent linear programs.

Note: Theorem2 and Theorm3 can be extended to more than two coalitions.

 We now present the new algorithm for obtaining Nucleolus.

Algorithm

Step 1: Solve LP1 as mentioned in the section 2. Identify the common active coalitions** and fixations of any variables. If the solution

is unique then stop and claim the present solution as Nucleolus. Otherwise go to step 2

 **MATLAB provides solution which is interior to the set of optimal solutions. This will help in identifying active common coalitions

by just finding the binding constraints of the optimal solution provided by MATLAB. If we use other softwares like Microsoft solver

etc, then it will give the optimal solution in one of the extreme points of the optimal solution set. In this case the common active

coalitions can be identified by either searching a closer neighborhood interior point of the optimal solution set and find the active

coalitions or search for other extreme point and find common active coalitions for the two extreme points. In a large number of

players, it may be difficult to find the common active coalitions if we use softwares whose outputs are not similar to that of

MATLAB. An optimal solution in the first linear program through MATLAB will be very close to the nucleolus as it gives an interior

point of optimal solution set.

Step2: Solve

 (LP2) Max ε

 Subject to

)(Nvx
Ni

i =∑
∈

1)(ε+=∑
∈

Svx
Si

i 1τ∈∀S (The set of common active coalitions at ε = ε1)

ε+≥∑
∈

)(Svx
Si

i CNS ∪∪∉∀ 11},,{ ξτφ

where =1ξ }2&,...,2,1,.../{ 1

21 ≥=∀∈= pplSUSUUSSSS
l

i

p

iii τ

and })(,,/{ 111 ξττ ∪∈=∉= TTSSSC c

 Continuing this way, we obtain a sequence ε1< ε2 <ε3 ------<εh until finally the optimal solution of (LPh) is unique with an allocation

vector x
*
, the nucleolus of the game.

It is to be observed here that εh = εk where h ≤ k. i.e. The optimal value in the final linear programs of the proposed algorithm and the

existing algorithm are equal but the total number of linear programs used in the proposed algorithm is less than that in the existing

algorithm. This algorithm can be applied to both balanced and unbalanced cooperative TU games.

Note: Earlier Reijneirse et al [xi] have proved that for an n-player cooperative TU game there exist a collection of maximum 2(n-1)

coalitions that determine the nucleolus. Also sufficient conditions are established to have same maximal value even after dropping

coalitions. More relaxed conditions are considered in Theorem 2 & 3.

We now present with the examples of three, four & five player problems in section 4.

4. Numerical Examples

Example 4.1

Consider three player problem with v (1) =54, v (2) =78, v (3) =54, v (1,2) =150, v (1,3) =108, v (2,3) =132, v (1,2,3) =210. Results

are given in Table-1. We observe that the existing method and proposed method have same number of iterations. The active coalitions

in the first linear program LP1 are disjoint in this case.

www.ijird.com July, 2016 Vol 5 Issue 8

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 30

Method Player 1 Player 2 Player 3 Epsilon

LP I Iteration

Existing method

 64.7229

88.2771 57.0000 3.000

LP II Iteration

Existing method

64.5000

88.5000 57.0000 10.500

LP I Iteration

Proposed method

 64.7229

88.2771 57.0000 3.000

LP II Iteration

Proposed method

64.5000

88.5000 57.0000 10.500

Table 1

Example 4.2:

Consider a four-player problem with data given in the table-2 and results are given in the table-3.

Coalition {1} {2} {3} {4} {1,2} {1,3} {1,4} {2,3} {2,4}

Value 54 78 54 30 150 108 86 132 110

Method Player

1

Player

2

Player

3

Player

4

Epsilon

LP I Iteration

Existing method

66.4814

90.5186 61.000 37.000 7.000

LP II Iteration 66.4644 90.5356 61.000 37.000 8.000

LPIII Iteration 66.4451 90.5549 61.000 37.000 10.00

LPIV Iteration

Existing method

66.4207

90.5793

61.000

37.000

12.00

LPV Iteration

Existing method

66.5 90.5 61.000 37.000 12.5

LPI Iteration

Proposed method

66.4814

90.5186 61.000 37.000 7.000

LPII Iteration

Proposed method

66.5

90.5

61.000

37.000

12.5

Table 2:4-player problem results

As we observe from the table-3 final iteration results of both existing method and proposed method are same but in the proposed

method we used only two linear programs whereas five linear programs are used in the existing method. In the first linear program

result the active coalitions are {1,2}, {3}, {4}. So =1ξ ({1,2,3}, {1,2,4} and {3,4})

=C ({3,4}, {1,2,4} and {1,2,3}). In this case all active coalitions are disjoint and hence the set 1ξ coincides with C .

Example 4.3:

Let us consider a 4-player unbalanced problem with data given in table-4 and results are given in table-5.

Coalition {1} {2} {3} {4} {1,2} {1,3} {1,4} {2,3} {2,4}

Value 0 0 0 0 18 0 2 0 2

Table 3:4-player unbalanced problem

Coalition {3,4} {1,2,3} {1,2,4} {1,3,4} {2,3,4} {1,2,3,4}

Value 88 210 182 145 170 255

Coalition {3,4} {1,2,3} {1,2,4} {1,3,4} {2,3,4} {1,2,3,4}

Value 4 21 19.5 8 9 22

www.ijird.com July, 2016 Vol 5 Issue 8

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 31

Method Player 1 Player 2 Player 3 Player 4 Epsilon

LP I Iteration

Existing method

8.8769 9.2897 2.6667 1.1667 -0.1667

LP II Iteration 8.8919 9.2747 2.6667 1.1667 0.1667

LPIII Iteration 8.8835 9.2832 2.6667 1.1667 1.1667

LPIV Iteration

Existing method

8.8768 9.2898 2.6667 1.1667 2.6667

LPV Iteration

Existing method

8.5833 9.5833 2.6667 1.1667 4.4167

LPI Iteration

Proposed method

8.8769 9.2897 2.6667 1.1667 -0.1667

LPII Iteration

Proposed method

8.5833 9.5833 2.6667 1.1667 4.4167

Table 3: 4-player problem results

In the first iteration the active coalitions are ({3,4}, {1,2,3} and {1,2,4}. As these are not disjoint coalitions so =1ξ φ and

=C ({3,4}, {1,2,4} and {1,2,3}). Potters et al dropped the same constraints as in the set 1ξ but the termination of algorithm extends

it to one more loop (program) with total 7 pivot steps. It is observed that MATLAB results of first linear program are closely related to

nucleolus.

Example 4.4

Consider a 5-player problem with coalitional values is given in appendix Table-I and results of LP iteration existing method and

proposed method are given in appendix table-II. In the first linear program it is observed that coalitions {1,5}, {2,3}, {2,4} and {3,4}

are active. =1ξ ({1,2,3,5}, {1,2,4,5} and {1,3,4,5}) and C= ({2,3,4}, {1,4,5}, {1,3,5}, {1,2,5}, {2}, {3}, {4}). We can observe from

the set C that the players of 2,3 and 4 are fixed and no improvement later. More than dropping of constraints at later stage the

information about fixation of players will be known from the set C.

Note: Computational time in calculating Nucleolus by the proposed method is much lower than that of determining nucleolus by

existing sequence of linear programs used in [5] as the former method has to solve less number of linear programs than the latter one.

MATLAB 7.1 is used to carry out the simulations. MATLAB subroutine program for a five player problem is given in appendix. In

this program checking of uniqueness of solution as well as the linearly dependent coalitional constraints is done at the end of every

linear program in the form of rank. Dropped constraints set which was obtained from checking the linear dependent coalitional

constraints by MATLAB subroutine program is claimed to be equivalent to the set C∪1ξ . If we enter the coalitional values as inputs

for b and run the MATLAB subroutine program, then we get the end result.

5. Conclusions

To compute the Nucleolus the efficient algorithm has been introduced on the basis of linear algebraic equations with rank concept.

Usage of MATLAB software had helped in answering the central question in finding the nucleolus.

6. References

i. Bastian Fromen: Reducing the number of linear programs needed for solving the nucleolus problem of n-person game theory,

European Journal of Operational Research. 98,626-636 (1997)

ii. Dragon, I.: A procedure for finding the nucleolus of a cooperative n-person game, Zietschrift fur operations research 25, 119-

131(1981)

iii. Durga Prasad, M.V., Saloman Danaraj, R.M.: F-Nucleolus of Cooperative Games: An approach for affair allocation, Vision

2020: The strategic role of operational research, Proceedings of the annual Operations Research Society of India conference

held at IIM, Ahmedabad, India, 313-320 (2005)

iv. Durga Prasad, M.V.: Public transport and cooperative TU games: A case study of Asmara city, The ICFAI journal of Science

& Technology II(no.1),70-79 (2006)

v. Faigle, U. Kern, W., Fekete, S.P., Hochstattler, W.: The Nucleon of Co-operative Games and an algorithm for matching

games, Mathematical Programming 83,195-211 (1998)

vi. Faigle, U., Kern, W.: On some approximately balanced combinatorial cooperative Games. ZOR - Methods and Models of

Operations Research 38, 141-152 (1993)

vii. Granot, D, Granot, F, Zhu, W.R.: Characterization sets for the nucleolus, International Journal of Game theory 27,359-374

(1998)

viii. Mingming Leng, Mahmut Parlar: Allocation of cost savings in a three level supply chain with demand information sharing: A

cooperative game approach, Operations Research 57: 200-213(2009)

ix. Mond, B, Chandra, S., Durga Prasad, M.V.: Constrained games and Symmetric duality, OPSEARCH,3,1-10 (1987)

www.ijird.com July, 2016 Vol 5 Issue 8

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 32

x. Potters, J.A.M., Reijnierse, J.H, Ansing, M.: Computing the nucleolus by solving a prolonged simplex algorithm,

Mathematics of Operations Research 21,757-768 (1996)

xi. Reijnierse, J.H, Potters, J.A.M: The B- Nucleolus of TU-Games, Games and Economic Behaviour 24, 77-96 (1998)

xii. Schmeidler, D.: The nucleolus of a characteristic function game. SIAM Journal of Applied Mathematics 17, 1163-1170

(1969)

xiii. Shapley, L.S., Shubik, M.: Quasi-cores in a monetary economy with non-convex Preferences. Econometrica 34, 805-827

(1966)

xiv. Shubik, M.: Game theory models and methods in political economy. In: Handbook of Mathematical Economics, vol. 1 (K.J

Arrow et al. eds.), North-Holland, New York (1981)

xv. Shubik, M.: Cooperative Game solutions Australian, Indian, and U.S. opinions, Journal of Conflict Resolution 30, 63-

76(1986)

xvi. T. Solymosi, T., Raghavan, T.E.S.: An algorithm for finding the nucleolus of Assignment games. International Journal of

Game Theory 23, 119-143 (1994)

xvii. Neumann, J. Von, Morgenstern, D.: Theory of Games and Economic Behaviour, Princeton Univ. Press, Princeton, NJ (1944)

xviii. Zhu Han and Vincent Poor, H.: Coalition games with cooperative transmission: A cure for the curse of boundary nodes in

selfish packet-forwarding wireless Networks, IEEE transactions on communications 57, 203-213. (2009).

www.ijird.com July, 2016 Vol 5 Issue 8

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT Page 33

Appendix

Coalition Value Coalition Value

{1} 15 {1,2,3} 77

{2} 25 {1,2,4} 75

{3} 20 {1,2,5} 86

{4} 18 {1,3,4} 73

{5} 30 {1,3,5} 80

{1,2} 49 {1,4,5} 77

{1,3} 47 {2,3,4} 79

{1,4} 32 {2,3,5} 92

{1,5} 56 {2,4,5} 86

{2,3} 58 {3,4,5} 84

{2,4} 55 {1,2,3,4} 100

{2,5} 66 {1,2,3,5} 112

{3,4} 52 {1,2,4,5} 110

{3,5} 63 {1,3,4,5} 107

{4,5} 50 {2,3,4,5} 115

{1,2,3,4,5} 150

Table-I: 5-player problem

 LPI iteration

Exis.method

LPII iteration

Exis.method

LPIII iteration

Exis.Method

LPI iteration

Prop.method

LPII iteration

Prop.method

Player1 22.3066 22.3971 22.3 22.3066 22.3

Player2 32.8000 32.8000 32.8 32.8000 32.8

Player3 29.8000 29.8000 29.8 29.8000 29.8

Player4 26.8000 26.8000 26.8 26.8000 26.8

Player5 38.2934 38.2029 38.3 38.2934 38.3

Epsilon 4.6 4.8 5.1 4.6 5.1

Table-II: Results

MATLAB program for 5-player problem

clear;

clc;

tic;

global n m

n=5;

m=2^n-1;

A=coalition(n);

e1=-ones(m-1,1);

A=[A e1];

b=[15 25 20 18 30 49 47 32 56 58 55 66 52 63 50 77 75 86 73 80 77 79 92 86 84 100 112 110 107 115]';

A1=A;

beq=150;

Aeq=[ones(1,n) 0];

f=[zeros(1,n) -1];

 X =linprog(f,-A,-b,Aeq,beq);

 k=A*X-b;

 kk=1;

R=rank(Aeq);

mm=1

while R<n

XX(:,mm)=X;

D(:,mm)=k;

 [A,b,Aeq,beq,k,kk,R]=main(A,b,Aeq,beq,k,kk,m,n,X);

X =linprog(f,-A,-b,Aeq,beq);

k=A*X-b;

mm=mm+1;

end

toc;

XX

D

