

ISSN 2278 - 0211 (Online)

Measures of Directed Divergence

P. A. S. Naidu

Principal, Dhote Bandhu Science College, Gondia, Maharashtra, India

S. K. Chandbhanani

Ph.D. Scholar, R. T. M. Nagpur University, India

P. Jha

Professor, Gov. J.Y. Chhattisgarh College, Raipur (C.G.), India

Abstract:

The measures of directed divergence of parametric entropy have been obtained which are generalizations of Shannon's Kapur's, Bose Einstein, Fermi-Dirac, and Havrda-Charvat's measures of Entropy. We have also examined its concavity property and some special cases.

Keywords: Measure of Entropy Subject classification: - 94A

1. Measures of Directed Divergence Corresponding to the Measure of Entropy

$$H_{\frac{b}{a}}(P) = -\sum_{i=1}^{n} p_i ln p_i + \frac{a}{b} \sum_{i=1}^{n} \left(1 + \frac{b}{a} p_i \right) ln \left(1 + \frac{b}{a} p_i \right) - \frac{a}{b} \left(1 + \frac{b}{a} \right) ln (1 + \frac{b}{a}), \text{ b> -1 a>0}$$
 (1)

The proposed measure of directed divergence

D (P: Q) =
$$\sum_{i=1}^{n} p_i ln \frac{p_i}{q_i} - \frac{a}{b} \sum_{i=1}^{n} (1 + \frac{b}{a} p_i) ln \frac{(1 + \frac{b}{a} p_i)}{(1 + \frac{b}{a} p_i)}$$
 b> -1, a>0 (2)

This measure holds all the properties

This is permutationally symmetric, Continuous convex function of $p_1, p_2, p_3, \dots, p_n$ and vanishes iff $p_i = q_i \quad \forall i$

However, it is not in general a convex function of $q_1, q_2 \dots q_n$

Now to generalized equation (2)

To consider the measure

$$D(P; Q) = \sum_{i=1}^{n} p_i ln \frac{p_i}{q_i} + A \sum_{i=1}^{n} (i + \frac{b}{a} p_i) ln \frac{(1 + \frac{b}{a} p_i)}{1 + \frac{b}{a} q_i}$$
(3)

This is convex function of p_1, p_2, \dots, p_n

If, D'(P: Q) =
$$ln \frac{P_i}{q_i} + 1 + A \cdot \frac{b}{a} ln \frac{1 + \frac{b}{a} P_i}{1 + \frac{b}{a} q_i} + A \cdot \frac{b}{a}$$

D"(P: Q) =
$$\frac{1}{P_i} + A \frac{(\frac{b}{a})^2}{1 + \frac{b}{a}P_i}$$

$$\frac{1}{p_i} + \frac{A(\frac{b}{a})^2}{1 + \frac{b}{a}p_i} > 0$$

This will be always satisfied if A> 0, if A is negative, it will still be satisfied

A (b/a)
$$^{2} > -\left(\frac{1}{P_{i}} + \frac{b}{a}\right)$$

i.e.
$$-\frac{1}{P_i} < A\left(\frac{b}{a}\right)^2 + \frac{b}{a}$$
 (4)

Now, $\frac{1}{p_i}$ varies from 1 to ∞ , so that (4) will satisfied if

$$A\left(\frac{b}{a}\right)^2 + \frac{b}{a} > -1 \text{ or } A > -\left(\frac{a}{b}\right) - \left(\frac{a}{b}\right)^2 \tag{5}$$

The graph of A = $-\left(\frac{a}{b}\right) - \left(\frac{a}{b}\right)^2$

When b> -1 a>0, $a \neq b$

Where all points inside the shaded region give permissible values of A, b

Now,
$$\lim_{b \to 0} \sum_{i=1}^{n} (1 + \frac{b}{a} p_i) ln \frac{(1 + \frac{b}{a} p_i)}{(1 + \frac{b}{a} q_i)} = 0$$
 (6)

$$\lim_{b \to 0} \frac{a}{b} \sum_{i=1}^{n} (1 + \frac{b}{a} p_i) \ln \frac{(1 + \frac{b}{a}) p_i}{1 + \frac{b}{a} q_i}$$
(7)

$$\sum_{i=1}^{n} (P_i - q_i) = 0(8)$$

So that for all finite values of A, positive or negative which are independent of b (3) approaches K.L. measures [7] as $b\rightarrow 0$ Also we can use,

$$D(P; Q) = \sum_{i=1}^{n} P_i ln \frac{P_i}{q_i} - \left(\frac{ac}{b} + \frac{a^2 d}{b^2}\right) \sum_{i=1}^{n} (1 + \frac{b}{a} P_i) ln \frac{(1 + \frac{b}{a} P_i)}{(1 + \frac{b}{a} q_i)}$$

$$(9)$$

Where c and d are any positive number less than unity.

We consider some cases

When c=1 d=0

Or c=1 d=1

Or c=0 d=1

The measure (9) is again in general not a convex function of q_1, q_2, \dots, q_n

2. A measure which is a convex function of both P and Q is obtained from Csiszer's [1] measure.

$$\sum_{i=1}^{n} q_i \phi(\frac{P_i}{q_i}) \tag{10}$$

Where ϕ (.) is a twice differentiable convex function with ϕ (1) =0 by taking

$$\phi(x) = x \ln x - \frac{a}{b} \left(1 + \frac{b}{a} x \right) \ln \frac{\left(1 + \frac{b}{a} x \right)}{\left(1 + \frac{b}{a} \right)} \quad b > 0, a > 1$$
(11)

This gives

$$D(P; Q) = \sum_{i=1}^{n} P_i ln \frac{P_i}{q_i} - \frac{a}{b} \sum_{i=1}^{n} (q_i + \frac{b}{a} P_i) ln \frac{q_i + \frac{b}{a} p_i}{q_i (1 + \frac{b}{a})}$$
(12)

It can be generalized as

$$\phi(\mathbf{x}) = \mathbf{x} \ln x + A \left(1 + \frac{b}{a} x \right) \ln \frac{(1 + \frac{b}{a} x)}{1 + \frac{b}{a}}$$

$$\tag{13}$$

$$\phi'(x) = \ln x + A\left(1 + \frac{b}{a}x\right) \ln \frac{(1 + \frac{b}{a}x)}{1 + \frac{b}{a}} + A\left(\frac{b}{a}\right) + 1$$

$$\phi''(x) = \frac{1}{x} + \frac{A(\frac{b}{a})^2}{(1 + \frac{b}{a}x)}$$

It will be convex if

$$\frac{1}{x} + \frac{A\left(\frac{b}{a}\right)^{2}}{\left(1 + \frac{b}{a}x\right)} > 0$$

$$or A\left(\frac{b}{a}\right)^{2} + \left(\frac{b}{a}\right) > -1/x$$
(14)

Now x can vary from 0 to ∞ so that $-\frac{1}{x}$ can vary from $-\infty$ to 0 so that the condition becomes

$$A\left(\frac{b}{a}\right)^2 + \left(\frac{b}{a}\right) > 0 \text{ or } A > -a/b$$
 (15)

Thus, the generalized measure of directed divergence which is a convex function of both P and Q is,

$$D(P; Q) = \sum_{i=1}^{n} P_i \ln \frac{P_i}{q_i} - A \sum_{i=1}^{n} \left(q_i + \frac{b}{a} p_i \right) \ln \frac{q_i + \frac{b}{a} p_i}{q_i (1 + \frac{b}{a})}$$
(16)

Where A is any positive number or a negative number $\geq -b/a$

3. Now Consider

$$\phi(x) = \frac{x^{\alpha} - x}{1 - \alpha} + A \frac{(1 + \frac{b}{a}x)^{\alpha} - (1 + \frac{b}{a}x)}{\alpha - 1} - A \frac{(1 + \frac{b}{a})^{\alpha} - (1 + \frac{b}{a})}{\alpha - 1}$$
(17)

$$\phi$$
''(x) = $\propto x^{\alpha-2} + A \propto \left(1 - \frac{b}{a}x\right)^{\alpha-2} \left(\frac{b}{a}\right)^2$

This will be convex if

$$\propto x^{\alpha - 2} + A \propto \left(1 + \frac{b}{a}x\right)^{\alpha - 2} \ge 1 \tag{18}$$

If A is positive, this is always satisfied

$$\left[\frac{x}{1 + \frac{b}{a}x}\right]^{\alpha - 2} \ge -A$$

If A = -B this gives,

$$\left[\frac{x}{1+\frac{b}{a}x}\right]^{\alpha-2} \ge B$$

$$or \left[\frac{1+\frac{b}{a}x}{x}\right]^{2-\alpha} \ge B$$
(19)

As x goes from $0 \text{ to} \infty$,

$$\frac{x}{1+\frac{b}{a}x}$$
Goes from 0 to b/a

If $\propto > 2$, thus requires B ≤ 0 or B=0

If $\alpha = 2$, $B \le 1$ (20)

If $\alpha < 2$ $\left(\frac{1 + \frac{b}{a}x}{x}\right)$ can vary from b to ∞ a $\rightarrow 1$

Expression (19) gives

$$B \le (b)^{2-\alpha} \tag{21}$$

Also

$$D(P; Q) = \frac{1}{\alpha - 1} \left[\left(\sum_{i=1}^{n} p^{\alpha} q^{1-\alpha} - 1 + A \left[\left(q_i + \frac{b}{a} P_i \right)^{\alpha} q_i^{1-\alpha} - (q_i + a p_i) \right] - A (1+a)^{\alpha} + A (1+a) \right] (22)$$

Gives a valid measure of directed divergence for all non-negative values of A.

Also,

$$D(P; Q) = \frac{1}{\alpha - 1} \left[\sum_{i=1}^{n} p^{\alpha} q^{1-\alpha} - 1 - B[(q_i + ap_i)^{\alpha} (q_i)^{1-\alpha} - (q_i + ap_i)] + B(1+a)^{\alpha} - B(1+a) \right] (23)$$

Gives a valid measure of directed divergence if $B \le b^{2-\alpha}$ when $0 \le b \le 2$ and $a \to 1$

B=0 when $\propto > 2$.

4. References

- i. Csiszer I.(1972) "A class measures of informativity of observation channels", Periodica Math.hangrica.Vol.2.pp.47-66.
- ii. Havrda, J.H. and Charvat .F (1967), "Quantification method of classification processes: concept of structural α Entropy", Kybernatica, Vol.3, 30-35
- iii. Kapur, J.N. (1972), "Measures of uncertainty, mathematical programming and hysiscs", Journ, Ind. Soc. Agri. Stat. Vol. 24, 47-66
- iv. Kapur, J.N. (1986). "Four families of measure of entropy" Ind. Jour-pure and A. Math's; vol.17,No.4,pp.429-449.

- v. Kapur .J.N.(1987),"Monotonocity and concavity of some parametric measures of entropy.tamkang,journal of mathematics 18(3),25-40.
- vi. Kapur, J.N. (1994), "Measure of Information and their Application" Wiley Eastern limited.
- vii. KulbackS.andLeibler R.A.(1951), "On information and sufficiency", Ann. math.stat; vol.22, pp.79-86.
- viii. Shannon C.E. (1948):- "Mathematical theory of communication". Bell system tech. Jour Vol. 27 379-423, 628-69.