

ISSN 2278 – 0211 (Online)

Glomerular Filtration Rate Decline and increased Serum Creatinine Concentration in Abia State University Teaching Hospital Aba

Dr. John Austin Chikezie

Consultant Physician, Department of Internal Medicine, Abia State University Teaching Hospital Aba, Nigeria

Dr. Chikezie Obinna Chikezie

Medical Officer, Department of Medical Services, Abia State Ministry of Health, Nigeria

Dr. Nkpozi MO

Consultant Physician, Department of Internal Medicine, Abia State University Teaching Hospital Aba, Nigeria **Dr. Uzor E I**

Consultant Physician, Department of Internal Medicine, Abia State University Teaching Hospital, Nigeria

Abstract:

Glomerular filtration Rate (GFR) is essentially the most reliable index of kidney function in health. A decrease in GFR is a pointer to decline in Kidney function and persistent or progressive GFR decline is a specific diagnostic criterion for chronic kidney disease (CKD). In defining CKD, we consider GFR of less than 60ml/min/1.73m² for three months or more. Markers of Kidney function test assess the normal function of kidneys. These markers may be biochemical or even radioactive. They assist in measuring GFR, as well as the concentrating and diluting property (tubular function) of kidneys. One of such biochemical markers is Serum Creatinine.

An increase or decrease in the serum level of these biomarkers can be of help in determining the efficiency of kidney function. Endogenously produced creatinine is an accepted biomarker of kidney function. It is produced from the metabolism of skeletal muscle creatine. It is released into the plasma in a stable rate in normal subjects, and freely filtered at the glomerulus. However, creatinine is secreted into the urine in the proximal tubule which can occasionally overestimate GFR by 10- 20 %. A number of GFR estimating equations have been developed to overcome some of the limitations of estimating GFR from serum creatinine. The CG equation (Cockcroft Gault) was developed in 1973 and is used widely. A new equation Modification of diet in renal disease (MDRD) study equation was developed in 1999 and has since been validated in a number of populations. The MDRD equation was used in estimating GFR in this study.

Keywords: Glomerular filtration Rate (GFR), Serum Creatinine, Chronic Kidney disease (CKD), Cockcroft- Gault (CG) equation, Modification of Diet in Renal disease, (MDRD) equation

1. Materials and Methods

This is a 5-year retrospective study carried out in Abia State University Teaching Hospital Aba, in South East Nigeria within 2015 and 2020.

A total of 199 patients were seen, comprising of 132 males and 67 females giving a male female ratio of 2:1. Blood chemistry test was carried out for creatinine, urea and electrolytes. The weight of each patient was measured by simple weighing scale. The GFR was determined using the MDRD formula with the available parameters of weight, sex, race and serum creatinine level.

The data was analyzed using SPSS package (SPSS, version 17).

2. Aims and Objectives

- To validate the association between Glomerular filtration Rate declineand increased serum creatinine concentration.
- To validate serum creatinine as a biomarker for determining GFR in patients with Kidney failure.

3. Results

This study was carried out in Abia State University Teaching Hospital Aba, South East Nigeria. The aim was to validate the correlation between Glomerular Filtration Rate (GFR) decline and increased serum creatinine between 2015

to 2020.Records were accessed for the period of this study from the hospital medical records department. Therewas a totalof 199patients selected, 132males and67females with a male to female ratio of 2:1. The serum creatinine values were weighed against the glomerular filtration rate of each patient with the Hemoglobin level of each patient also determined. These patients ranged from 18 to 93 years of age, with the mean age 52 years. The glomerular filtration rate was calculated using MDRD and staging of CKD was done from stage according to K/DOQI (2002) and modified by NICE 2008 (table 6).

The mean serum creatinine level for Stage 1 CKD was0.9mg/dl and GFR was 114.1 ml/min/1.73m².58 people had mean creatinine level of 0.9mg/dl. Pearsoncorrelation was used, and there was association between rise in serumcreatinine and GFR decline (2-tailed sig=.000).Thus, correlation wasstatistically significant at the 0.001 level (2-tailed).

The mean creatinine value for stage 2 CKD was1.2mg/dl and GFR was75ml/min/1.73m². 69 people had mean creatinine level of 1.2mg/dl. Pearson correlation was used, and there was association between rise in serumcreatinine and GFR decline (2-tailed sig=.000). Thus, correlation was statistically significant at the 0.01 level (2-tailed).

Stage 3 CKD had mean creatinine value at 1.8mg/dl and GFR 47.45 ml/min/1.73m².26 people had mean creatinine level of 1.2mg/dl.Pearsoncorrelation was used, and there was association between rise in serum creatinine and GFR decline (2-tailed sig=.000). Thus, correlation was statistically significant at the 0.01 level (2-tailed).

Stage 4 CKD had a mean creatinine value was 47.5 mg/dl and GFR at 23.2ml/min/1.73m².25 people had an average creatinine of 47.5mg/dl. Pearson Correlation was used and there was association between rise in serum creatinine and GFR decline (2-tailed sig=.000). Thus, correlation was statistically significant at the 0.01 level (2-tailed).

In Stage 5CKD, 27 had a mean GFR of 7.8 ml/min/1.73m^{2,} with 25 having amean creatinine level of 10mg/dl. PearsonCorrelation was used and there was association between rise in serum creatinine and GFR decline (2-tailed sig=.018). Thus, correlation was statistically significant at the 0.05 level (2-tailed).

varia	bles		mean	Std Deviation	Frequency
Stage1	Creatinine Mg/dl		0.85	0.122	58
	GFR in MDRD		114.08	20.611	58
		Inf	ferential stat	istics	
vai	riables		Creatinin	ie in mg/dl	GFR in MDRD
Creatinine in	Pearson correla	tion		1	683
mg/dl	Sig.(2-tailed)				.000
	Sum of squares and cross products		.847		-97.818
	Covariance		.015		-1.716
	Number(freque	ıcy)	58		58
GFR in MDRD	Pearson correla	tion	.683		1
	Sig.(2-tailed)		.000		
	Sum of squares and cross products		-97.818		242214.396
	Covariance		-1	.716	424.814
	Number(freque	ıcy)		58	58
	Correlatio	n is st	tatistically si	gnificant at the	0.001 level (2-tailed)

4. Result of the Correlation Analysis

Table 1: Stage One CKD (Age, Sex, Serum Creatinine, Hb, GFR in View) Stage 1: Descriptive Statistics

Variables	5	mean	l	Std Deviation	frequency
Stage 2	Creatinine	1.18		0.205	69
	in mg/dl				
	GFR in	75.02		8.961	69
	MDRD				
		Infere	ential	statistics	
varia	ables		Cr	eatinine in mg/dl	GFR in MDRD
Creatinine in mg/dl	Pearson con	relation		1	732
	Sig.(2ta	iled)			.000
	Sum of squa	ares and	2.861		-91.532
	cross pro	ducts			
	covaria	nce	.042		-1.346
	Number(fre	equency)		69	69
GFR in MDRD	Pearson con	relation		.732	1
	Sig.(2ta	iled)		.000	
	Sum of squa	ares and			5460.852
	cross pro	ducts			
	covaria	nce	-1.346		80.307
	Number(fr	equency		69	69

Table: 2: Descriptive Statistics

Correlation is Statistically Significant at the 0.01 level (2-tailed)

Varia	m	ean	Std Deviation	Frequency	
Stage 3	Creatinine in	1.	.75	0.385	26
	mg/dl				
	GFR in MDRD	47	.47	8.275	26
		Infei	rential sta	tistics	
V	variables		Creati	nine in mg/dl	GFR in MRD
Creatinine in	Pearson correlat	ion		1	676
mg/dl	Sig.(2-tailed)				.000
	Sum of squares and	cross	3.714		-53.869
	covariance		.149		-2.155
	Number(frequen	icy)	26		26
GFR in MRD	Pearson correlat	ion		.676	1
	Sig.(2-tailed)			.000	
	Sum of squares and	cross	-53.869		1711.73
	covariance			-2.155	68.469
	Number(frequer	ncy		26	26

Table 3: Descriptive Statistics Correlation Is Statistically Significant at the 0.01 Level (2-Tailed)

Varia	ables	Mean	Sto	l Deviation	Frequency
Stage 4	GFR in MDRD	23.29		4.420	25
	Creatinine in mg/dl	47.47		0.787	25
	Inf	erential statistics			
varia	ibles	Creatinine in mg	/dl	GF	R in MDRD
Creatinine in mg/dl	Pearson correlation	1			
	Sig.(2-tailed)			.000	
	Sum of squares and	468.958		-67.236	
	cross products				
	Covariance	19.540			
	Number(Frequency)	25		25	
GFR in MDRD	Pearson correlation	.806			1
	Sig.(2-tailed)	.000			
	Sum of squares and -67.236				14.847
	cross products				
	Covariance	-2.808			0.619
	Number(Frequency)	25		25	

Table 4: Descriptive Statistics

Correlation Is Statistically Significant at the 0.01 Level (2-Tailed)

Variables			Mean	Std Dev	viation	Frequency		
Stage	5	GFR	in MDRD	7.81	3.7	90	27	
Creat		ntinine in ng/dl	nine in 9.98 6.1		147 25			
				Inferential stat	istics			
vari	ables			GFR in MDRD		С	reatinine in mg/dl	
GFR in MDRD	Pears correla	on tion		1			469	
	Sig .(2-tail	led)					.018	
	Sum of squares and cross		373.559			-259.151		
	covaria	ance	14.368				-10.798	
	Numb (Freque	oer ency)	27			25		
Creatinine in mg/dl	Pears correla	on tion		.468		1		
	Sig .(2-tai	led		.018				
	Sum of squares and cross products			-259.151			91.881	
	covaria	ince	-10.798			38.120		
	Numb (Freque	oer ency)		25			25	

 Table 5: Descriptive Statistics

 Correlation Is Statistically Significant at the 0.05 Level (2-Tailed)

Va	ariable	es	mean	Sto	Std Deviation Frequency		
Stage5D		Creatinine	9.98	9.98		25	
		in mg/dl					
		GFR in	7.77		3.607	25	
		MDRD					
			Inferential statistics	S			
	variab	les	Creatinine in mg/	dl	GFI	R in MDRD	
Creatinine	Pea	rson correlatior	1 1		523		
in mg/dl	5	Sig. (2-tailed)				.007	
	Sun	n of squares and	914.881	914.881		279.606	
	C	ross products					
		covariance	38.120		-11.650		
	Nun	nber(frequency) 25		25		
GFR in	Pea	rson correlatior	ı .523			1	
MDRD	5	Sig. (2-tailed)	.007				
	Sun	n of squares and	-279.606		3	312.214	
	C	ross products					
		covariance	-11.650		13.009		
	Nun	nber(frequency) 25		25		

Table 6: Descriptive Statistics

Correlation Is Statistically Significant at the 0.01 (2-Tailed)

		CREATININE	GFR	HB	
AGE	SEX	mg/dl	MDRD	g/dl	
67	М	0.6	128	11	
29	F	0.9	95	8.8	
29	F	0.9	95	8.8	
52	М	1.1	90	17.9	
70	М	0.9	107	7.2	
62	M	0.9	110	6	
65	M	0.8	125	13.4	
70	M	0.9	107	7.2	
62	M	0.9	110	6	
65	M	0.8	125	13.4	
85	M	0.91	102	14.5	
62	M	0.82	122	13.4	
4/	M E	0.9	110	10.4	
/0	Г	0.7	100	/.0	
45	M F	0.72	01	13.4	
74	M	0.9	142	14.5	
7 1	М	0.7	142	10	
63	M	0.8	125	16.4	
57	M	0.9	112	15	
39	M	1	107	14.8	
46	M	0.9	11/	11.6	
30	M	0.9	12/	14	
36	F	0.9	91	14.9	
30	F	0.9	95	13.1	
29	F	0.9	95	7.5	
79	F	0.6	124	12.4	
40	F	0.8	102	11.2	
39	M	1	107	14.8	
42	F	0.7	118	8.9	
30	F	0.7	126	12.8	
33	М	1.2	90	14.9	
29	F	0.9	98	14.5	
66	М	0.9	109	13.7	
29	F	0.9	95	7.5	
61	М	1	98	14.5	
44	М	1	104	13.4	
42	М	0.9	119	0.9	
50	М	0.9	91	10	
69	М	0.9	91	10	
69	М	0.9	108	14.9	
60	М	0.9	111	13.4	
41	М	1	106	11.9	
50	М	0.8	132	11.9	
65	М	0.9	109	14.5	
65	М	0.8	125	11.6	
35	М	0.62	190	15.9	
50	F	0.8	98	11.3	
68	М	0.7	114	14.2	
60	М	0.9	111	13.4	
43	F	0.6	140	11.2	
12	М	0.8	137	10.9	
50	M	0.8	114.9	13.3	
72	М	0.9	107	13.4	
50	F	0.8	98	11.3	
40	М	0.9	120	14.2	
36	F	0.7	122	10.3	
38	М	0.6	194	15.7	

Table 7: Stage One

		CREATININE	GFR	HB
AGE	SEX	mg/dl	MDRD	g/dl
80	F	0.8	89	13
80	F	0.8	89	13
67	М	1.4	65	14.6
52	М	1.3	75	11.9
38	F	1.1	72	10.4
82	М	1.1	82	14.6
70	М	1.1	85.6	11.9
60	М	1.1	88	11.9
60	F	0.9	82	10.7
67	М	1.4	65	14.6
60	М	1.1	88	14.2
60	F	0.9	82	10.7
82	М	1.1	82	14.6
52	М	1.3	75	11.9
38	F	1.1	72	10.4
70	М	1.1	85	11.9
52	М	1.1	90	17.9
34	М	1.6	64	13.4
41	F	1.2	64	12.7
70	М	1.1	85	13.4
38	М	1.3	80	13.4
76	F	0.83	86	8.5
47	М	1.25	80	11.2
60	М	1.5	61.4	15.7
63	М	1.6	62	16.4
63	F	1.1	65	15.5
68	М	1.3	71	13.3
49	F	1.1	67.9	14.6
58	F	1	73	11.9
50	F	1	75.5	12.8
30	М	1.4	77	14.3
70	F	1.1	63	13.7
83	М	1.3	68	11.9
48	М	1.3	76	12.8
38	F	1	80	11.9
54	М	1.1	90	15.2
40	F	0.9	89	9.7
75	М	1.3	69	14.5
70	М	1.3	70	12.8
37	F	1.1	71	12.7
59	М	1.5	62	11.9
59	М	1.4	67	17.3
45	М	1.5	65	10.3
40	F	1.1	71	11.3
54	М	1.5	63	12.9
61	М	1.5	61	15.7

		CREATININE	GFR	HB	
55	М	1.4	68	16.4	
83	М	1.3	68	11.3	
38	F	1	80	11.9	
50	F	0.9	85	11.9	
27	М	0.9	85	15.7	
83	М	1.3	68	11.9	
63	М	1.5	61	13.9	
47	М	1.5	65	12.8	
55	М	1.4	68	14.8	
56	М	1.3	73	14.9	
68	М	1.2	77	14.6	
67	М	1.1	86	11.6	
43	М	1.2	85	10.7	
48	F	1.2	61.7	14.3	
74	F	0.9	79	13.9	
35	F	1.1	73	12.1	
56	М	1.2	81	14.9	
78	F	0.8	89	6.3	
80	М	1.2	75	12.8	
70	F	1	71	13.4	
60	М	1.2	79	14.9	
37	F	1	80	14.2	

Table 8: Stage 2

	SEX	creatinine	GFR	HB
AGE		mg/dl	MDRD	g/dl
47	М	1.7	56	9.2
29	М	3	30	10.3
46	F	1.9	37	7.5
56	М	1.7	56	9.2
65	F	1.5	45	7.5
65	F	1.5	45	7.5
63	М	2	44	6
29	М	1.87	55	18.6
65	М	1.7	37	11.5
34	М	1.7	59	16.4
70	М	1.9	45	8.9
38	М	1.8	55	14.2
38	F	1.3	59	13.4
35	М	2	49.1	7.8
29	F	1.6	49	12.7
63	М	2.4	35	11.9
68	М	2.2	39	8.5
65	F	1.2	58	13.3
63	F	1.4	49	12.2
63	F	1.4	49	12.2
45	F	1.3	57	10.1
35	F	1.9	38.7	10.9
73	F	1.7	38	10.4
58	М	1.8	50	11.9
70	F	1.3	52	10.4

Table 9: Stage 3

AGE	SEX	GFR MDR	RD CREAT	ININE	Hb
		_	mg/	/dl	
48	F	29	2.3		6.7
68	М	23	3.4		7
48	F	25	2.6		7.5
75	М	17	4.3		10.6
52	М	17	4.6		10.8
42	М	19	4.4		8.9
75	F	22	2.7		10.8
37	М	23	3.8		7.5
56	М	29	2.9		9.5
29	М	30	3		10.3
75	М	17	4.3		10.6
52	М	17	4.6		10.8
42	М	19	4.4		8.9
75	F	22	2.7		10.8
29	М	30	3		10.3
56	М	29	2.9		9.5
65	М	22	3.62		8.2
75	М	29	2.8		12.7
65	М	22	3.65		8.5
34	М	27	1.6		13.4
58	М	21	3.8		16.12
85	F	23	3.8		11.9
67	М	27	3		11
55	М	20	4		9.7

Table 10: Stage 4

		CREATININE	GFR
AGE	SEX	MG/DL	MDRD
20	F	11	6
35	М	19.5	3.5
56	F	9.9	5
65	М	11.1	6
45	М	7.2	11
43	М	9.5	8
57	М	7.7	9
18	М	8.6	4.3
61	F	8.2	8.6
32	F	14.6	5
53	М	6.9	10.8
63	М	5.3	14
65	М	11.4	6
56	F	5.6	10
54	М	22.1	10
55	F	4.6	13
46	F	4.6	13
46	F	4.6	13
73	F	6.1	9

		CREATININE	GFR
35	М	22	3.1
30	F	0.59	2.1
88	F	15.4	3
75	М	23	3
65	F	5.7	9.6
46	F	4.4	8.2

Table 11: Creatinine/ Gfr Ratio

		CREATININE	GFR
AGE	SEX	mg/dl	MDRD
20	F	11	6
35	М	19.5	3.5
56	F	9.9	5
65	М	11.1	6
45	М	7.2	11
43	М	9.5	8
57	М	7.7	9
18	М	8.6	4.3
61	F	8.2	8.6
32	F	14.6	5
53	М	6.9	10.8
63	М	5.3	14
65	М	11.4	6
56	F	5.6	10
54	М	22.1	10
55	F	4.6	13
46	F	4.6	13
46	F	4.6	13
73	F	6.1	9
35	М	22	3.1
30	F	0.59	2.1
88	F	15.4	3
75	М	23	3
65	F	5.7	9.6
46	F	4.4	8.2

Table 12: End Stage Renal Disease

1 (Stage1 creatinine/GFR)

2: stage 2 (creatinine/GFR)

3(stage 3: creatinine/GFR)

4(stage 4 creatinine/GFR ratio)

5.1(Creatinine/ GFR ratio (stages 1-5)

CKD STAGES	definition
1	Normal or increased GFR, evidence of kidney damage reflected by
	microalbuminuria, hematuria, radiological changes.
2	Mild decrease in GFR (89-60ml/min/1.73m ²
	With some evidence of kidney damage reflected by microalbuminuria,
	proteinuria, hematuria as well as radiologic changes
3	GFR 59-30 ml/min/1.73m ²
3a	GFR 59-45 ml/min/1.73m ²
3b	GFR 44-30ml/min/1.73m ²
4	GFR 29-15 ml/min/1.73m ²
5/ESRD	GFR < 15ml/min/1.73m ²

Table 13: Classification of Chronic Kidney Disease (Ckd) According to Kiddo 2002 and Modified by Nice 2008 Ckd =Chronic Kidney Diseases; K/Doqi= Kidney Disease Outcomes Quality Initiative; Nice= National Institute of Health and Clinical Excellence; Gfr= Glomerular Filtration Rate; Esrd= End Stage Renal Disease.

5. Discussion

The GFR is essentially considered the best overall index of kidney function in health ¹. Early detection of CKD requires identification of patients with a GFR level of < 60mls/min/1.73m²for 3 months or more².

Estimation of GFR has been done traditionally by 24hr urine sample of creatinine excretion and measurement of Serum Creatinine, then computation of creatinine clearance (Ccr). Since collection of urine for determination of Ccr is difficult in practice, clinicians rely on Serum Creatinine alone as an index of GFR. A further study showed that urea is reabsorbed by the renal tubule. The arithmetic mean of renal urea and renal creatinine clearance are a good approximation of kidney function in advanced state of kidney disease^{3.}

Several formulas have been developed to estimate GFR from serum creatinine concentration, age, gender and body size^{4, 5, 6}. There are limitations however from each formula. The Cockcroft-Gault formula was developed in 1973 using data from 249 men with creatinine clearance (Ccr) from approximately30-130 ml per minute. It is not adjusted for body surface area. The modification of diet for renal diseases (MDRD) study equation was developed in 1999 using data from 1628 patients with CKD and GFR from approximately 5-90 ml/min/1.73m². It estimates GFR adjusted for body surface area and is more accurate than measured creatinine clearance from 24hr urine collection or estimated by the Cockcroft-Gault formulae. The MDRD equation was used in our study.

Early detection of CKD and by implication GFR decline can prevent cardiovascular complications⁷⁻¹⁰. This is pertinent to developing countries where support for renal replacement therapy is lacking for most patients with advanced kidney failure¹¹.

Creatinine is produced none enzymatically, in skeletal muscles, hence the amount of creatinine production and 24 hr creatinine excretion are directly related to muscle mass¹². Also, dietary intake of meat has been shown to influence Serum Creatinine levels¹³. Creatinine is an important indicator of kidney health because it is an easily measured byproduct of muscle metabolism and excreted unchanged by the kidneys. It is produced through the biological system involving creatine, phosphocreatine and adenosine triphosphate (ATP). It is synthesized primarily in the liver from the methylation of glycocyamine (guanido acetate, synthesized in the kidney from amino acids argenine and glycine), by S-Adenosyl methionine. It is then transported through blood to the other organs, muscle and brain, where through phosphorylation becomes the high energy compound phosphocreatine¹⁴. Creatine conversion to phosphocreatine is catalyzed by creatine Kinase; spontaneous formation of creatinine occurs during the reaction ¹⁵.

Men tend to have higher concentrations of creatinine than women since men have greater skeletal muscle mass¹⁶. Each day 1% to 2% of muscle creatine is converted to creatinine. The limitations posed by creatinine clearance as a measure of GFR is found in the overestimation of GFR by Crcl in severe Kidney dysfunction occurring because of hypersecretion of creatinine by the proximal tubules, leading to increase in total creatinine clearance¹⁷. Drugs like ketoacids, cimetidine and trimethroprim reduce creatinine tubular secretion, and therefore, increase the accuracy of the GFR estimate particularly in advanced kidney disease. Thus, a rise in blood creatinine concentration is a late marker, observed only with severe damage to functioning nephrons. It is therefore unsuitable for detecting early-stage kidney disease.

Elevated levels of serum creatinine mark the presence of reduction in GFR. Serum creatinine levels>1.2mg/dl in women and 1.6mg/dl in men have been found to be approximately 90% sensitive for detecting GFR of < 60ml/min/1.73m^{2.18}

Diagnosis of CKD requires persistent reduction in GFR for at least 3 months¹⁹. The estimate of reduced GFR in our study is based on a simple measurement of Ccr. However, simple measurements of serum Creatinine are considered appropriate for epidemiologic and screening purposes²⁰.

6. Conclusion

Glomerular filtration rate (GFR) is the most reliable determinant of kidney function, and a decline in GFR remains a pointer to declining kidney function. Amongst biochemical markers used in assessing the excretory ability of the kidneys, creatinine is readily available. However, factors such as age and muscle bulk could over value results in reference to serum creatinine levels. Elevated serum creatinine level signifies impaired kidney function or kidney disease. As kidneys become impaired, the creatinine level in the blood rises due to poor creatinine clearance by the kidneys. It is for this reason that routine test for serum creatinine can serve as a screening test in kidney health. In the study GFR was determined by the MDRD formula. Increasing serum creatinine became evident with GFR decline especially GFR< 60 mls/min/1.73m², which pointed to chronic kidney disease. As much as the study revealed, there was evidence-based association between GFR decline and increased serum creatinine. It was more obvious from stage 3 to 5 CKD as shown in the tables.

7. What the Study Reveals

• The study showed evidence-based association between GFR decline and increased serum creatinine concentration especially from GFR < than $60 \text{mls}/\text{min}/1.73 \text{m}^2$.

• GFR decline is a pointer to progressive decline in kidney function.

8. What The Study Adds

• Serum creatinine is a valuable biomarker for determining GFR despite some known limitations.

9. Competing Interest

The authors declare no competing interest.

10. Authors' Contribution

JA, MO and OC were involved in the initial conception of this manuscript and patient care. JA collected the data while OC analyzed the data. JA and OC were involved in writing of the manuscript. UE read and eventually approved the final draft before submission.

11. Acknowledgements

We wish to sincerely acknowledge the immense assistance from the staff of renal and dialysis unit of Abia State University Teaching Hospital Aba for their unrelenting care for the patients, and efficient record keeping.

12. References

- i. Smith H: comparative physiology of the kidney. In: The Kidney: Structure and Function in Health and Disease, edited by Smith H, Oxford University Press, New York, 1951, pp 520-524.
- ii. Levey AS: Clinical Practice. Non-diabetic Kidney disease N Engl J Med 347: 1505-1511,2002
- iii. Lavender S. Hilton PJ: The measurement of glomerular filtration rate in renal disease. Lancet2: 1216-1219,1962
- iv. Levey AS, Bosch JP, Lewis JB, Green T, Rogers N, Roth D: A more accurate method to estimate glomerular filtration rate from serum creatinine. A new predictionequation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 130: 461-140, 1999
- v. Donahue A, McCune JS, Fauncette, Gillenwater HH, Kowalski RJ, Socinski MA, Lindeley C: measured versus estimated glomerular filtration rate in Calvert equation: influenceon caboplatin dosing. Cancer ChemtherPharmacol 47: 373-379, 2001.
- vi. Caravaca F, Arrobas M, et al:[Differences between glomerular filtration rate estimated by MDRD equation and the measurement of creatinine and urea clearance in unselected patients with terminal renal in sufficiency] Nefrologia 22: 432-437, 2002.
- vii. Locatelli F, Vecchio LD, Pozzoni P: The importance of early detection of chronic kidney disease. Nephrol Dial Transplant 17[Suppl 11]: 2-7, 2002.
- viii. Foley RN: Anemia: Cardiovascular adaptations and maladaptive responses in chronic kidney disease. Nephrol Dial Transplant 17[Suppl.11]: 32-34,2002
- ix. Drey N, Roderick P, Mullee, Rogerson M: A population-based study of the incidence and outcomes of diagnosed chronic kidney clearance. And kidney Disease. 42: 677-687, 2003.
- x. Jafar TH et al: Angiotensin converting enzymes inhibitors and progression of nondiabetic renal disease. A metaanalysis of patient level data. Ann intern Med.135: 73-87; 2001.
- xi. Sakhuja V, Sud K: End stage renal disease in India and Pakistan, Burden of disease and management issues. Kidney IntSuppl S115- S118, 2003.
- xii. Swaminathan R, Major P, Snieder H, Spector T: Serum Creatinine and fat –free mass (lean body mass) ClinChem 46: 1695-1696,2000
- xiii. Jacobsen Fk, Christensen CK, Magensen CE: Pronounced increase in serum creatinine concentration after eating cooked meat BMJI: 1049-1050 1979.
- xiv. Taylor, E. Howard (1989). Clinical Chemistry, New York: John Wiley and sons pp 4, 58-62.
- xv. Hosten, Adrian O (1990). Clinical methods. The history, physical, and laboratory examinations(http://www.ncbi.nim.nibgov/books/NBK 305/(3rded)
- xvi. Hanta N, Hayashi T, Sato kk-
- xvii. ShemeshO,Golbetz H, Kriss JP (November 1985)
- xviii. Cuchoud C, Pozet N, Labeeun M, Pouteil-Noble C: screening early renal failure: cut-off values for serum creatinine as an indicators of renal impairment. Kidney in tint 55: 1878-1884, 1999.
- xix. Levey AS: Clinical practice. Nondiabetic Kidney disease N Engl. J. Med. 347: 1505-1511, 2002.
- xx. Brown WW, Peters Rm, Ohnit SE Keane WF, Collins A: Early detection of Kidney disaster in community settings. The Kidney Early Evaluation Program [KEEP]. AMJ Kidney DIS 42: 22-35,2003.