
 www.ijird.com                                                                                                                      July, 2022                                                                                               Vol 11 Issue 7 

   

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT                  DOI No. : 10.24940/ijird/2022/v11/i7/JUL22007                     Page 21 
 

 

 
 
 

Anti-Sway Control on a Harbor Crane System Using a 
Command Smoothing Iterative Method 

 

 

 

 

 

 

 

 

 

 
 
1. Introduction 

Cranes can be subdivided into two most important groups: gantry cranes and boom cranes. Boom cranes are 
industrial structures used in building construction, factories, harbors, and shipyards. Besides, they are used mainly to 
transport heavy loads in shipyards, factories, and high building construction. These cranes are usually controlled manually 
because the operators use a joystick and an accelerator pedal to control the movements and direction of the cranes.  

Many studies have focused on developing efficient controllers for gantry cranes. In this case, an anti-sway method is 
easier to develop due to the decoupling among the equations of the movement. In fact, industrial cranes (gantry or 
overhead cranes) exhibit a one-degree-of-freedom sway in the solution equations. On the contrary, only a limited number 
of studies have been conducted to design control approaches to reduce the payload sway of boom cranes. This is due to the 
complexity of the calculations for the motion control. 

The recent work of Ramli et al. [1] allows an exhaustive literature review of the strategies relative to crane control 
and the relative published works. Concerning the studies relating to Anti-sway for Overhead and gantry cranes, we can 
mention, among many others, the recent works [2] and [3]. Many researchers proposed solutions by developing several 
control schemes for a crane system. The developed control schemes can be categorized into the open-loop and closed-loop 
techniques. Numerous researchers have widely utilized open-loop control schemes to control the payload's sway. Open-
loop schemes are easy to implement because there is no requirement for additional sensors to measure the sway angles, 
which certainly saves in terms of cost. 

Nevertheless, they are sensitive to external disturbances. External disturbances that always affect a crane's 
performance are the wind or the sea waves for a crane used on ships. The three main open-loop techniques are input 
shaping, filtering, and command smoothing. The recent works of the author [4] and [5] are examples of an open-loop 
technique for sway attenuation on boom (tower) cranes.  

With the recent trend toward containerization, it is increasingly essential for local small and medium-sized harbors 
to use mobile harbor cranes capable of handling containers and other general cargoes in different ways. Therefore, 
demands for large-sized mobile harbor cranes, which are self-traveling and versatile but do not require any additional civil 
works to increase the foundation soil, are increasing. In this work, we developed a method for harbor crane systems with 
an anti-sway function using a Command smoothing method in an open loop.  

In the last years, a few papers have been done to investigate the sway of the payload for a Harbor (boom) crane. 
Some works concern the study of harbor cranes in the open sea. We can see, for example, the recent works of D. Kim et al. 
[6] and Y.G. Sun et al. [7]. This kind of work is highly complex because it is necessary to consider disturbances such as 
waves and wind. In this case, the Mobile Harbor has 6 degrees of freedom motion because of external disturbances such as 
waves and wind.  
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Abstract: 
The requests for relatively large-sized mobile harbor cranes are increasing. Typically, harbor cranes are self-traveling 
but do not require any additional civil works to improve the bearing strength of foundation soil. This work describes a 
novel method able to reduce the sway of a suspended load during the slewing motion of a Harbor Crane. The proposed 
method is based on an iterative calculation of the sway angle, and the corresponding applied velocity profiles as input 
to the crane motors. The 'command smoothing' method is used to reduce the sway: additional damping is introduced 
into the system to control the sway. The multiple-input and multiple-output (MIMO) mechanical system is modeled by 
a set of non-linear differential equations in which the mathematical model is divided into two subsystems: the first for 
actuated outputs and the second for underactuated outputs. After defining the stability of the proposed solution and 
the kinematics of the hydraulic actuators on the boom, a detailed mathematical model is developed, taking into 
account the non-linear components of the forces, such as centrifugal and Coriolis forces, on the system. Simulation 
results show that the proposed anti-sway method can dampen the suspended load's oscillations during the harbor 
crane's slewing movement. 
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We will limit ourselves to studying Harbor cranes on the fixed surface, on land, not on the sea. Therefore, we are 
simplifying the problem in this case. In particular, we want to highlight four recent and essential works regarding Harbor 
cranes on the land. The works of E. Arnold et al. [8], J. Neupert et al. [9], T. Toyohara et al. [10], D. Kim et al. [11], and J. 
Huang et al. [12] define the problem of studying an optimal control approach or an alternative feedback control system 
(closed-loop control).  

As part of the study relative to the anti-sway control of harbor crane systems, we investigated the stability of the 
solution we defined. In fact, only when the solution defined is obtained as a stable solution can we discuss its performance 
and operating characteristics. In a recent paper [13], the author demonstrated the stability of his solution, obtained under 
particular conditions. 

In general, our solution for controlling a harbor crane is in the context of underactuated systems. In practice, many 
control problems involve the underactuated behavior of mechanical systems. In underactuated systems, the number of 
equipped actuators is less than that of the controlled variables. That is, actuators do not directly control some degrees of 
freedom. Within the scope of the Harbor crane system we studied, the underactuated variables turn out to be the 'sway' 
variables, that is, the sway angles in the tangential and normal direction to the slewing rotation of the boom.  

In the analysis of the stability of the anti-sway system related to Harbor cranes, we will refer to the following 
fundamental works. The works we cite are those of L.A. Tuan et al. [14], L.A. Tuan et al. [15], and M.W. Spong [16]. In 
addition, E. Lefeber et al. [17] investigated tracking control for underactuated ships in which three state variables, a surge, 
sway, and yaw, were controlled by only two inputs: surge force and yaw torque.  

This paper is organized as follows.  
In Section 2, the dynamical model of the Harbor crane is described. The harbor crane is modeled, defining a multi-

body system including base, mast (fixed vertical column), boom, and payload. 
Section 3 gives a mathematical description of a generic Underactuated system and the Stability Analysis for the 

same system.  
In Section 4, a mathematical description of a Harbor crane is defined. From Lagrange equations, the five dynamical 

equations relative to the two sway angles (underactuated system) and the other lagrangian variables (actuated system) 
are obtained, including the dissipation function. Also, Stability Analysis for a harbor crane and Hydraulic cylinder 
cinematics are given. 

In Section 5, the Equations solution is obtained, describing the used iterative method. 
An implementation of the theory defined in Section 6 is given, and the most relevant results of the model 

simulation are presented, with particular emphasis on the fact that total damping is obtained by changing many times the 
velocity set, also during the previous ramps. 

In Section 7, concluding remarks and possible developments are defined in the end. 
 
2. Dynamical Model of a Harbour Crane  

A Harbor (boom) crane is a multi-body system including base, mast (fixed vertical column), jib, trolley, and payload. 
The boom crane system considered in this work is shown in Figure 1, and it is schematized in Figure 2, where x and z 
represent the base coordinates. 

 

 
Figure  1: General View of a Harbour Crane. Side and Top View 
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Figure  2: Geometric Description of the Harbour Crane System 

 
 The crane system consists of a fixed vertical column, a rigid boom link, a hoisting line, and a payload  , 
l representing the slew angle, luff angle, and the length of the hoisting line, respectively. The slew angle is the rotary angle 
of the hub of the boom crane or slewing pedestal controlled by the operator's slew command, whereas the luff angle is the 
elevation or luffing angle of the boom link. Sway angles are excited as the system operates, namely the tangential t and 

radial sway r . In this study, the payload is regarded as a point mass, and the system exhibits the behavior of a pendulum. 
In the described system with at least one first and one-second strand of cables, both strands of cables extend from the tip 
of the boom to a suspension element such as a hook. The length of the cable can be adjusted by a corresponding drive to 
move the load in the vertical direction.  
 Concerning Figure 2, the dynamics of the generalized Harbor crane are represented as a multi-body system with 
five independent degrees of freedom, described by five Lagrangian coordinates iq :  

rq =1 The radial position of the boom extremity on the axis x;  

=2q Slewing angle (rotation around the axis z);  

lq =3 Hoisting length of the cable (along the axis z);  

rq =4 Sway angle in the radial direction;  

tq =5 Sway angle tangential to the trajectory of the slewing direction;  
 
3. Mathematical Description of an under Actuated System and Stability Analysis 
 We refer to the paper of L.A. Tuan et al. [14] and the paper of the author [13]. In general, the physical behavior of a 
MIMO mechanical system is governed by a set of differential equations of motion. For example, consider an underactuated 
system with n degrees of freedom driven by m actuators ( nm < ). The mathematical model, which is composed of n 
ordinary differential equations, is simplified in matrix form as follows:  

 QqGqqqCqqM =)(),()(     (1) 

where q  = nT
n Rqqq ],...,[ 21  is the vector of the generalized coordinates and Q nR  denotes the vector of the control 

inputs. )(qM  = TqM )( = nxn
nxnji Rm   

  , ][   is the symmetric mass matrix, ),( qqC   = nxm
nxmji Rc   
  , ][   is the Coriolis and 

centrifugal matrix, )(qG  = nT
n Rggg ],...,[ 21  is the gravity vector. Given that the system has more control signals than 

actuators, Q it has only m non-zero components as U  = mT
m Ruuu ],...,[ 21  being a vector of non-zero input forces. As an 

underactuated system, its n  output signals are driven by m actuators. Its mathematical model is divided into two auxiliary 
dynamics: actuated and unactuated systems. Correspondingly, we define the generalized coordinates aq  = 

mT
m Rqqq ],...,[ 21  for actuated states and uq  = mnT

nmm Rqqq 
 ],...,[ 21  for unactuated states. The matrix differential 

equation (1) can be divided into two equations as follows: 
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 UqGqqqCqqqCqqMqqM uaua =)(),(),()()( 112111211     (2) 

                             0=)(),(),()()( 222212221 qGqqqCqqqCqqMqqM uaua     (3) 
Matrices )(qM ),( qqC  and )(qG  have the following form: 
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)(qM  is symmetric positive definite. The actuated equation 2 shows a direct relationship between the actuated states 

aq and the actuatorsU . By contrast, the unactuated equation 3 does not display the constraint between the unactuated 

states uq and the inputsU . Physically, input signals U indirectly drive the actuated states aq  directly and the unactuated 

states uq . The system's dynamics, characterized by equations 2 and 3, allow defining a simpler model with an equivalent 

linear form based on the non-linear feedback method [16], being )(22 qM  a positive definite matrix. The unactuated states 

uq  can be determined, from Equation 3, in the following way: 

 )}(),(),()(){(= 2222121
1

22 qGqqqCqqqCqqMqMq uaau      (5) 

In underactuated mechanical systems, we can take advantage of the fact that the unactuated state uq has a geometric 

relationship with the actuated state aq . Therefore, control inputU  indirectly acts on uq through aq . Considering the 

actuated states aq  as the system outputs, the actuated equation 2 can be linearized by defining: 

 aa Vq =   (6) 

 with aV mR as the equivalent control inputs. Control inputsU  are designed to drive the actuated states aq to the target 

values taq . In order to define the profiles of the state trajectories, the following equivalent control inputs are selected:  
 )()(= taapataadataa qqKqqKqV         

(7) 
 Given that taq  = const , Equation 7 can be reduced into  

 )(= taapaadaa qqKqKV         
(8) 
 with daK paK and positive diagonal matrices in mxmR    . Considering Equation 7 and the definition eq. 6, the differential 
equation of the control error is obtained by  

 0=apaadaa qKqKq          
(9) 
where taaa qqq =  is the control error vector of the actuated states. 
The dynamics of the control error (eq. 9) are exponentially stable for every 0>daK 0>paK . In other words, the control 

errors of the actuated states aq  tend to zero as the time t becomes infinite. 
 

4. Mathematical Description of a Harbour Crane System 
The crane configuration is characterized by three controlled motions for a harbour crane: a boom displacement, a 

rotation of the crane about his vertical axis z (slewing motion), and a vertical motion along the axis z with a variation of 
the length l. Therefore, for describing the motion of the harbour crane, an equivalent kinematics scheme with concentrated 
masses is represented in Figure 2. Dynamics of the generalized harbour crane are represented as a multi-body system. If 
we refer to the energy, the following balance can be defined. 
 
4.1. Potential Energy 
The Potential energy of the load with mass m is: 

CpzVm                                                                                            
(10)  
Considering the position z along the vertical (with reference to FIGURE2), we have: 

cos cosr tz l                                                                                 (11)                                              
and, therefore, it is obtained: 

  cos cos cos cosm r t r tV l p L mgl                             
(12) 
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4.2 Kinetics Energy 
The Kinetics energy of the harbour crane is the sum of the corresponding terms for the tower TT, the boom TB, and 

the load TL.  
T B LT T T T                                                                                 (13) 

2

2
1

TT JT                                                                                                 (14) 

2 2 21 ( )
2B BT m r r                                                                                (15) 

2

2
1

LLL vmT                                                                                               (16) 

In order to simplify the final system of Lagrange equations, we take into account only small sway angles. That means the 
following assumptions: 
sin ,sin ,cos 1,cos 1r r t t r t                                          (17)                   
With this assumption, the payload's velocity Lv can be obtained by defining his expression in terms of the Lagrangian 
coordinates. In this way, it is possible to obtain, for the term TL, the following expression: 
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                                                 (18)     

 
4.3. Lagrange Equations 
 We now pass to the system given by the equations relating to the dynamics of the harbor crane. Considering the five 
Lagrangian coordinates iq  described in Section 2, we derive the Lagrange function: 

 
 =L T V             (19) 

where T is the Kinetic Energy of the crane system and V the Potential Energy. As a consequence, we apply the generalized 
Lagrange equations  

 = i
i i

d L L Q
dt q q
  

   
  (20) 

and so we can obtain the system of equations in the generalized coordinates iq . In the Lagrange equations (20), the 

generalized non-conservative Forces iQ  are introduced relative to the dissipative forces. Particularly they can represent 
the components, on the axes x and y, of air resistance forces acting on both the payload and boom system, the components 
of the wind force, and the components of the forces due to the damping of the rotation movement. We focus our interest 
relative to the Lagrangian coordinates r ,  , l  r , t , since , r  and l  are directly controlled by the generated profiles 
that the Plc sent to the axes drives. Assuming the small angles approximation from Lagrange equations (20), we obtain the 
system of the following five equations, with three actuators used to stabilize five outputs: 

 
 rklmlmlmrmmF rrLrLtLLBr   )(=  

 rLtLrLB lmlmlrmrm   22])([ 22    (21) 
 

 = L t T L t L tF m l r J m r l m lr k             

 tLrLBrL lrmlrmrrmrlm   2222    (22) 
 
 lklmrmrmF lLtLrLl

  =  

 gmrmrm LtLrL    22   (23) 
 

 2)(=0   rLrrrLtLL lrmklmlmrm    

 gmlmlmllmlm rLtLrLrLtL    22)/(2 2   (24) 
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    rmlmklmlrm LtLtttLrL 2)(=0 2   

 gmlmlmllmlm tLrLtLtLrL    22)/(2 2   (25) 
where:  

Lm and Bm  represent the payload and the Boom mass, respectively;  

rk , k , lk , 
r

k  and 
t

k  represent the damping parameters relative to the Lagrangian coordinates, respectively;  

TJ  represent the inertia momentum of the mast around the z-axis.  

rF F And lF  represent respectively the generalized forces generated by the three actuators;  
g is the gravity acceleration.  

So, the multiple degrees of freedom boom crane system results are defined by the five differential equations 
where the terms relative to the Centrifugal and Coriolis forces logically appear.  

Harbor crane dynamics can be represented by matrix eq.1, in which the component matrices are determined in 
the following way: 
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    .00=)(;00=)( 543 gggqGFFFqF lr    (27) 

The elements of the )(qM  matrix are the following:  
;=;=;=;= 14131211 lmmmmlmmmmm LrLtLLB   

;=;=;=;= 25232221 rlmmrmmJmlmm LtLHtL   ;=;=;= 333231 LtLrL mmrmmmm    

;=;=;= 444241 lmmlmmmm LtLL   .=);(= 5552 lmmlrmm LrL    
The elements of the ),( qqC   matrix are the following:  

;2=;2=;])([= 1413
2

12 lmcmclrmrmc LtlrLB
    

;2=;2=;))((2= 252421 lrmclrmcrlmmmc LLBlL
  ;=;2= 3231   rLtL rmcmc   

;2=;2=);/(2=;)(= 45444342   lmcklmcllmclrmc LrLrtLrL   

.2=;2=);/=);2(=;2= 5554535251 tLLtLrtLL klmclmcllmcllmcmc      

At the end, the elements of the )(qG  vector are defined as:  
.=;=;= 543 gmggmggmg tLrLL   

 
4.4. Stability Analysis for a Harbour Crane 
 Applying the theory proposed in Section 3, we analyze our harbor system's local stability of the internal dynamics 
eq. 5. In the definition and study of the zero dynamic, we refer to [18] and to [19]. We define the control of the system 
starting by equations 5 and 9, where: daK  ),,(= 321 dadada KKKdiag , paK  ),,(= 321 papapa KKKdiag , duK  

),(= 21 dudu KKdiag ,                                   puK  ),(= 21 pupu KKdiag  are the positive matrices of the control gains and 
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  is a weighting matrix. Therefore, applying matrix equation 5 to the equations of a harbour crane described 

by the equations from 21 to 25 and developing the above-defined matrices, the zero dynamics of the system are obtained 
as: 

 2
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 2 2 2 2
10 = (2 ) 2 ( ) ( )t

t r r du t r t pu t
L

kl l r l K r l K g
l m

        
                          

          (29) 

The stability of the zero dynamics is analyzed using the linearization theorem of Lyapunov. As a consequence of eq. 
(27) and (28), in the paper [13], we establish the constraint conditions for the controller parameters, which result 
necessary to define the stability of the system. 
 
4.5. Hydraulic Cylinder Cinematics 

Typically, the works relative to harbour cranes do not consider the actuator dynamics and kinematics. 
Nevertheless, being a harbour crane driven by hydraulic actuators, the kinematics of the actuators is not negligible. 
Specifically, the kinematics of the same actuators must be considered for the boom actuator.  

Following, the actuator's kinematics for the boom's radial direction are described. Here, we will assume that the 
hydraulic cylinder has first-order behaviour. Therefore the differential equation of motion of the hydraulic cylinder is: 

F
cylF

VF
cyl

F
cyl v

T
K

T 



  1                                                             (30) 

Where cyl  and cyl  are the cylinder acceleration and velocity, FT the time constant relative to the flow rate, cyl  the 

cross-sectional area of the cylinder, Fv the input voltage of the servo-valve, and VFK  the constant of proportionality 

between the flow rate and the input voltage Fv . 
 

 
Figure 3: Geometric Description of the Hydraulic Cylinder Cinematics 

 
Observing Figure2 and Figure3, it is possible to obtain the relation between the radial position of the end of the 

boom r  and the cylinder coordinate cyl : 

   cos Lr cyl                                                                                (31) 

Being: 
2

1 2
2 1

1 2

arccos
2 2

cyld d
d d

  
  

      
 

                            (32) 

Differentiating, we obtain: 
  cylKLr    1sin                                                                        (33) 

    2
21sin cylcyl KKLr                                               (34) 

Where K1 and K2 define the relation between the geometric constants 1d , 2d , 1 , 2  and the luffing angle . L is the 
length of the boom. Therefore, we obtain the input voltage of the servo-valve Fv  as a function of r  and r . 
Defining: 

VF

cylF

K
T

A


                                                                                         (35) 

  1sin KlB                                                                               (36) 
We obtain: 
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

















B
r

TB
rK

B
rAv

F
F

 1
2

2

2
                                                    (37) 

Eq.37 allows obtaining the input voltage of the servo-valve Fv  as a function of r  and r . 
 
5. Equation Solution 

Since our goal is to obtain a strategy to reduce the oscillatory motion of the rotary crane payload, we will 
concentrate on equations 24 and 25 involving the two variables r  and t  corresponding to the two oscillatory degrees of 
freedom. In fact, we want to point out that a rotation movement generates two components of sway in contrast to linear 
movements. This sway angle exhibits non-zero components r  and t  corresponding to the two oscillatory degrees of 

freedom in the two perpendicular directions, r, and t. The second component t , along the tangential direction to the 
slewing movement, is generated by the variation of the velocity of the suspension point and can be eliminated by acting 
only on the control of the rotation movement. Instead of this, the other component r  along the radial direction is 
generated by the centrifugal force. This force causes a load movement that is directed along a perpendicular plane XZ. 
Therefore, the component r cannot be eliminated by acting on the control of the rotation movement. Disregarding the 
terms of superior order in equations 24 and 25 and considering all the trigonometric terms, we obtain: 

   2

2

2
1

2

t r t t

r r r
r r

L

r l r l l l

kl l l g
m l

     

 
 

     
                 

     

  


 

              (38) 

 2

2

( ) 2
1

2

r t r r

t t t
t t

L

r l l r l l

kl l l g
m l

     

 
 

     
                 

     

  


 

                 (39)   

                  
Where kt and kr are the friction coefficients with a fixed value, depending on the considered axis. l is the derivative of the 
length l  (that is the velocity of the vertical movement along the axis Z). r is the acceleration of the boom movement along 
the axis X.  is the angular acceleration of the slewing movement along the tangential direction to the slewing. r is the 
acceleration of the boom movement along the radial direction.  is the angular velocity of the slewing movement along the 

tangential direction. g is the gravity acceleration and Lm is the mass of the payload. 

The control device calculates the angles r t of the load's oscillation and angular velocities r  and t  of the same 
sway angles. Practically, the control method calculates the described data through an iterative process using the velocity 
and acceleration of the sway angles. The calculation uses Equations 38 and 39 to define the successive steps. The 
subsequent steps are obtained with an iterative method that can be represented, at any time t, in the following way. 
Starting from equation 39 t , t  and t represent the internal variable. They are obtained with an iterative method that 
can be represented, at any time t, in the following way:    

 1t t t t                                                                                    (40) 

  tlll ttt  1
                                                                                    (41)       

 2
, , , ,

, , 2
, ,

( ) 2
1

2

t t r t t t t t t t t r t t r t t

t t t ttt
t t t t t t

L t

r l l r l l

kl l l g
m l

      

 
 

     
         
        

      

  


 

                      (42)        

, , 1 ,t t t t t t t                                                                                             (43)                                                                                                

, , 1 , 1t t t t t t t                                                                             (44)       

In these equations ,t t and , 1t t  represent the velocity of the sway angle along the tangential direction, 

respectively, at the time t and at the previous time t-1. ,t t , 1t t  represent the acceleration of the sway angle along the 

tangential direction respectively at the time t and at the previous time t-1. In equation 42, t  represent the angular 

acceleration of the movement of the slewing axis at the time t. In equation 40, t  and 1t represent the angular velocity of 
the movement of the slewing axis respectively at the time t and at the previous time t-1. tl  Represent the velocity of the 
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movement of the hoisting relative to the Z vertical direction at the time t. tl  and 1tl  represent the length of the cable 
respectively at the time t and at the previous time t-1. t Represent the time difference between the instant t and the 
instant t-1. 

The iterative process starts with the hypothesis that at the initial instant, the values of the sway angle t , the 

velocity of the sway angle, t and the acceleration of the sway angle t are equal to zero; that is, the pendulum is initially 
in quiet conditions. 
Therefore, for  t=0, we have: 

,0 ,0 ,0 0t t t                                                                            (45)  
The considerations defined for Equation 39 can be repeated similarly for equation 38 relative to the radial sway 

angle r . 
The control device can control, at the same time, the movements along the axis X, Y, and Z, being the axis Z, the 

vertical axis relative to the hoisting movement. To synchronize this model with the real crane, an observer must be 
designed to verify that the system is observable. We can determine the eigenvectors and corresponding eigenvalues using 
the Observer method applied to Equations 38 and 39. As a consequence, the observer gain matrix is obtained. Specifically, 
we obtain the correction   of the angular velocity of the movement along the tangential direction according to the 
following equation: 

0, 1,t tK K                                                                       (46) 

wherein ,0K  and ,1K  are the observer gains applied respectively to the sway angle t  and to the velocity t  of the sway 

angle   is the correction signal that is added to the velocity set-point set . Therefore, the reference of velocity applied as 

input to the inverter driving the motor relative to the slewing movement is the angular velocity set ref that is obtained in 
the following way: 

   setref                                                                                (47) 

The .0K and ,1K  observer gains are function of the cable length to optimize the velocity corrections according 
to the pendulum's length. 

In the same way, we obtain the correction r  of the velocity of the movement along the radial direction. 
 
6. Implementation and Results 

As a consequence of his simplicity, the control device can be integrated into a Plc. The correction method uses the 
calculated values of the sway angles and the sway angles velocities to compute the correction at the boom and slewing 
velocity to add to the set-point velocities (arriving from the operator or defined automatically), obtaining in this way the 
speed profiles. A drive controller generates the speed profiles of the movements relative to the boom (Boom movement) 
and the slewing (Slewing movement) and supplies the speed profile information to the drive able to control the 
corresponding motor. The cyclic task, where the Function Block of the used Plc was realised, had a time of updating equal 
to 30 ms.  

The Function Blocks (FBs) used were two. The first FB computes the speed profiles necessary to obtain the anti-
sway functionality and the corresponding actual sway angles. The second FB is used to compute the actual length l of the 
cable and the corresponding vertical speed using the data coming from external units (i.e., encoders) connected to the 
motor of the corresponding movement. 

The Speed reference is the target value to which the speed must arrive, defined by the crane operator or from the 
automatic control. Usually, it is defined in Hz as a consequence of how the electric motors are built. At speed in Hz on the 
fast shaft (that is on the motor), a velocity corresponds on the slow shaft (that is on the boom moved by the hydraulic 
system or on the shaft controlling the slewing motion of the jib), depending on the reduction gearing from the motor to the 
cinematic actuators. Typically, the max speed of the boom can be from 0.2 m/s to also more than 2 m/s. The max speed of 
a slewing motion (measured in rad/s) can arrive at 0.5 rad/s. The Ramp Set is the time value necessary for a linear motor 
ramp to reach the speed reference.  

Based on the speed reference, the estimator module computes the real speed profile to have the anti-sway effect. 
The speed profile is longer than the linear Ramp Set. The cable length has a very important influence on the speed profile 
because the greater the height (and so the cable length), the greater the time of the speed profile. In a general way, it is 
very important to reduce the time of the speed profile to obtain a fast answer to the commands of the boom crane 
movement. 

In Figure 4, we can see the profiles of the angular velocity profile for the slewing movement and the 
corresponding profile of the tangential sway angle.  

Some subsequent commands (4) are shown to go to different velocities (but not zero velocity) for the slewing 
movement in Figure 5. We can see that the corresponding sway angles go to zero at the end of the movement. Therefore, 
we see that, with this method, it is possible to obtain the total damping of the sway changing many times the velocity set, 
also if the previous damping control of the oscillations is again in progress (see Figure 5). That is fundamental because the 
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usual control of the boom crane is typically manual by a human operator: typically, he will often change the target velocity 
with his command.  

Many of the previous works, under open-loop control, typically use the 'model predictive control,' which is an 
optimized method for automatic control, where there is a pre-defined position target. However, the method defined in this 
work is preferable when the control is manual. 

An important characteristic is highlighted in Figure 6. Varying some basic parameters for the profiles, the same 
profiles for the velocity can be fast, mainly corresponding to a very fast stop with an anti-sway. This is a relevant result to 
control the crane with high performance related to the answer at the command.  
 

 
Figure 4: It Shows a Graph Relative to the Angular Velocity Profile ref of the Slewing Movement and the Tangential Sway 

Angle Corresponding Profile t . That Is in Correspondence to a Command Relative to the Only Slewing Movement.  
The Specific Values Are: Speed Reference = 25 Hz, Ramp Set=1.5s, Cable Length=10.5 M, Cycle Time of the Plc=30ms. 

 
7. Conclusion 

In this paper, we investigate the sway control of a harbor crane. An open-loop solution for the effective non-linear 
equations of motion is obtained by defining an iterative method for the solution of the movement equation. The present 
work considers the continuous variation of the hoisting height for the suspension point of the payload and the 
corresponding velocity and acceleration variation. 

After having defined the stability of the proposed solution, and the kinematics of the hydraulic actuators on the 
boom, a detailed mathematical model is developed, considering the non-linear components of the forces, such as 
centrifugal and Coriolis forces on the system. The multiple-input and multiple-output (MIMO) mechanical system is 
modeled by a set of non-linear differential equations in which the mathematical model is divided into two subsystems: the 
first for actuated outputs and the second for underactuated outputs.  

An implementation of the method and the most relevant results are described. 
Possible future developments of this work may concern the study of the effect relative to external disturbances 

such as wind or sea waves. These effects involve the use of a closed-loop solution.  
 

 
Figure 5: It Shows a Graph Relative to the Angular Velocity Profile ref of the Slewing Movement and the Tangential 

Sway Angle Corresponding Profile t . That Is in Correspondence to Some Subsequent Commands of the Slewing Movement by 
the Operator. The Specific Values Are: Initial Slewing Speed Reference = 30 Hz, Final Slewing Speed Reference = 10 Hz Ramp 

Set=1.5s, Cable Length=10.5 M, Cycle Time of the Plc=30ms.  
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Figure 6: It shows a Graph Relative to the Angular Velocity Profile ref of the Slewing Movement and the Tangential Sway 

Angle y  Corresponding Profile. That Is in Correspondence to a Command Relative to the Only Slewing Movement. The 
Specific Values Are: Speed Reference = 30 Hz, Ramp Set=3.0s, Cable Length=10.5 M, Cycle Time of the Plc=30ms. 

 
8. References 

i. Ramli, L. & Mohamed, Z. & Abdullahi, A. & Jaafar, H.I. & Lazim, I.M. (2017). Control strategies for crane systems: A 
comprehensive review. Mechanical Systems and Signal Processing, 95, 1–23. DOI: 10.1016/j.ymssp.2017.03.015. 

ii. Caporali, R.P.L. (2018). Iterative Method for controlling with a command profile the Sway of a Payload for Gantry 
and Overhead Travelling Cranes. International Journal of Innovative Computing, Information, and Control, 14 (3), 
1095-1112. DOI: 10.24507/ijicic.15.04.1223. 

iii. Caporali, R.P.L. (2019). Overhead Crane: an adaptive Particle Filter for anti-Sway closed-loop and collision 
detection using Computer Vision. International Journal of Innovative Computing, Information, and Control, 15 (4), 
1223-1241. DOI: 10.24507/ijicic.15.04.1223. 

iv. Caporali, R.P.L. (2018). Iterative Method for controlling the sway of a payload on tower (slewing) cranes using a 
command profile approach. International Journal of Innovative Computing, Information and Control, 14 (4), 1169-
1187. DOI: 10.24507/ijicic.14.04.1169. 

v. Caporali, R.P.L. (2021). Anti-sway method for reducing vibrations on a tower crane structure. International 
Journal of Nonlinear Sciences and Numerical Simulation. https://doi.org/10.1515/ijnsns-2021-0046. 

vi. Kim, D. & Park, Y. & Kwon, S.& Kim, E. (2011). Dual stage trolley control system for anti-swing control of mobile 
harbor crane. 11th Int. Conf. Control. Autom. Syst., South Korea, 420-423. 

vii. Sun, Y.G. & Quiang, H.Y. & Xu, J. & Dong, D.S. (2017). The non-linear dynamics and anti-sway tracking control for 
offshore container crane on a mobile harbor. Journal of Marine Science and Technology, 656-665. DOI: 
10.6119/JMST-017-1226-05. 

viii. Arnold, E. & Sawodny, O. & Neupert, J. & Schneider, K. (2005). Anti-sway system for boom cranes based on a model 
predictive control approach. IEEE Int. Conf. Mechatronics Autom., Ontario, Canada. 1533-1538. 

ix. Neupert, J. & Arnold, E. & Schneider, K. & Sawodny, O. (2010). Tracking and anti-sway control for boom cranes. 
Control Eng. Pract., 18, 31-44. 

x. Toyohara, T. & Shimotsu, T. & Iwamoto, N. & Yoshioka, N. (2003). Anti-Sway Control for Jib Cranes. The 
Proceedings of the Transportation and Logistics Conference, 12, 149-150. DOI:10.1299/jsmetld.2003.12.149. 

xi. Kim, D. & Park, Y. (2015). 3-Dimensional position control scheme for mobile harbor crane. 15th Int. Conf. Control. 
Autom. Syst. Proc., Busan, South Korea, 202-216. 

xii. Huang, J. & Maleki, E. & Singhose, W. (2013). Dynamics and swing control of mobile boom cranes subject to wind 
disturbances. IET Control Theory and Applications, 7 (9), 1187–1195. DOI: 10.1049/iet-cta.2012.0957. 

xiii. Caporali, R.P.L. (2022). Analysis of the System Stability for an anti-Sway method relative to Harbor Cranes. 
International Journal of Recent Engineering Research and Development, 7 (6), 35-45. 

xiv. Tuan, L.A. & Lee, S.G. (2016). Nonlinear Feedback Control of Underactuated Mechanical Systems. IntechOpen, 10. 
DOI: http://dx.doi.org/10.5772/64739. 

xv. Tuan, L.A. & Lee, S.G. & Dang, V.H. & Moon, S. & Kim, B.S. (2013). Partial Feedback Linearization Control of a Three 
Dimensional Overhead Crane. International Journal of Control, Automation, and Systems, 11 (4), 718-727. 

xvi. Spong, M.W. (1994). Partial feedback linearization of under-actuated mechanical systems. Proceedings of the 
International Conference on Intelligent Robots and Systems, Munich. 

xvii. Lefeber, E. & Pettersen, K.Y. & Nijmeijer, H. (2003). Tracking Control of an Under-actuated hip. IEEE Transactions 
on Control Systems Technology, 11 (1), 52-61. 

xviii. Slotinne, J.E. & Li, W. (1991). Applied Nonlinear Control, New Jersey: Prentice Hall. 
xix. Ogata, K. (2010). Modern Control Engineering. New Jersey: Prentice Hall.  

http://www.ijird.com
https://doi.org/10.1515/ijnsns-2021-0046.
http://dx.doi.org/10.5772/64739.

