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1. Introduction  

In the past years, studies have contributed more to software fault prediction issues like static code metrics, used 
support vector machine (SVM)(Gray et al., 2009), defect classification (Laradji et al., 2015)., and quality of software 
prediction (Prasad et al., 2015). This is understandable according to CIO magazine ‘Faulty software costs businesses over 
$78 billion per year’ as stated in CIO Magazine (2001) (CIO is a magazine related to technology and IT. The magazine was 
founded in 1987 and is now entirely digital. The name refers to the job title of chief information officer. CIO is part of 
Boston-based International Data Group's enterprise publications business.). Furthermore, National Institute of Standards 
and Technology (NIST) report (NIST, 2002) states that lacking testing methods and tools costs the US economy between 
$22.2 billion and $59.5 billion every year, with generally 50% of these expenses borne by software engineers, as additional 
testing, and half by software clients, as disappointment aversion and alleviation endeavors. The above reports show that 
25% to 90% of software improvement financial plans are frequently spent on testing. Several researchers used Machine 
Learning ML to automate SDP. ML is the subset of artificial intelligence which allows machines to analyze data. Hence, 
hundreds of software fault detection researches have been done using ML models (Tóth et al., 2016). As a result, Durelli et 
al. (2019) combined ML models to achieve good defects. Ensemble learning algorithms combine the predictions of two or 
more ML models. The idea of combined learning is closely related to the idea of the 'wisdom of crowds'. This is where many 
different independent decisions, choices, or estimates are combined into a final outcome that is often more accurate than 
any single contribution. The study presently plans to recognize the hybrid of ML classifiers to improve the performance of 
defect prediction models. One of the features of software quality datasets is that there is no definite agreement about 
which metric is superior for defect prediction. Most defect prediction studies tend to use a combination of available 
metrics(Wang et al., 2011), (Song et al., 2019). Therefore, the study hybrids four ML classifiers: Gaussian Naive Bayes, 
Bernoulli Naive Bayes, Random Forest, and support vector machine, and benchmarks the obtained results with the work of 
(Kaur, 2021). 
 
2. Methodology   
 The proposed approach deployed a Hybrid of Gaussian Naive Bayes, Bernoulli Naive Bayes, Random Forest, and 
support vector machine. The study carefully combined the ML classifiers using Sci-Kit library in python, as the CM1 dataset 
goes well in python. The selected machine learning models with efficient feature selection address these issues and 
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mitigate their effects on the defect classification performance. The details of each Hybrid member are clarified underneath 
in the summary as obtained from (Shitole & Priyadarshini, 2022). 

Naïve Bayes (NB). 
The formula for Bayes' theorem is given as: 

 

𝑝(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
                                 (1.0) 

 
𝑤ℎ𝑒𝑟𝑒,  
𝑝(𝐴|𝐵) is Posterior probability: Probability of hypothesis A on the observed event B. 
𝑃(𝐵|𝐴) is Likelihood probability: Probability of the evidence given that the probability of a hypothesis is true. 
𝑃(𝐴) is Prior Probability: Probability of hypothesis before observing the evidence. 
𝑃(𝐵) is Marginal Probability: Probability of Evidence.  

Bernoulli Naive Bayes: The choice rule for Bernoulli Naive Bayes relies upon: 
 

𝑝(𝑥𝑖|𝑦) = 𝑝(𝑖|𝑦)𝑥𝑖 + (1 − 𝑝(𝑖|𝑦))(1 − 𝑥𝑖)    (1.1) 

 
2.1. Gaussian Naive Bayes 

One run-of-the-mill way for taking care of the ceaseless elements in the NB classification is that Gaussian 
appropriations are used for the meaning of the probabilities of the highlights adapted to the classes. In this manner, each 
characteristic is portrayed through a Gaussian density function (PDF) as: 

 
𝑥𝑖~ 𝑁(𝜇, 𝜎2)                                                    (1.2) 

 
The Gaussian PDF has the shape of a bell and is defined using the following equation: 
 

𝑁(𝜇, 𝜎2)(𝑥) =
1

√2𝜋𝜎2
𝑒 −

(𝑥 − 𝜇)2

2𝜎2
         (1.3) 

 
In which 𝜇 is the mean and 𝝈𝟐 is the variance. In Naïve Bayes, the parameters required are in the order of 𝑂(𝑛, 𝑘) 

in, which is the number of attributes and 𝑘 represents the number of classes. In particular, there is a requirement of 
defining a normal distribution 𝑝(𝑥𝑖\𝑐 ~ 𝑵(𝝁, 𝝈𝟐) for every continuous attribute. The parameters of such normal 
distributions are acquired with: 

 

𝜇𝑥𝑖|𝑐=𝑐 =
1

𝑁𝑐
∑ 𝑥𝑖

𝑁𝑐
𝑖=1                                         (1.4) 𝟐𝑥𝑖|𝑐=𝑐 =

1

𝑁𝑐
∑ 𝑥𝑖

2 − 𝜇2                          (1.5)
𝑁𝑐
𝑖=1  

σ 
 

In this, 𝑁𝑐 is the number of instances in which 𝐶 = 𝑐, and 𝑁𝑐 is the number of total instances utilized while 
training. The calculation of 𝑃(𝐶 = 𝑐) for all the classes is easy with the help of relative frequencies such that: 

 

𝑃(𝐶 = 𝑐) =
𝑁𝑐

𝑁
                                            (1.6) 

 
2.2. Random Forest 
 Mathematically, a Random Forest is a predictor where the collection of randomized base regression trees is 
comprised as {𝑟𝑛(𝑥, ⦵𝑚 , 𝐷𝑛), 𝑚 ≥ 1}, 𝑤ℎ𝑒𝑟𝑒 ⦵1, ⦵2 … … ….  are independent and identically distributed outputs of a 
randomized variable ⦵. This integration of random forests is done to develop the aggregated regression estimate.  
 

𝑟𝑛(𝑥, 𝐷𝑛) = 𝐸⦵[𝑟𝑛(𝑥, ⦵, 𝐷𝑛)],          (2.0) 

 
 In which 𝐸⦵represents the expectation in terms of the random parameter, conditionally on 𝑥 and the data set 𝐷𝑛 . 

In the following, to lessen a notation a little, the dependency of the estimates would be excluded in the sample and written 
to illustrate 𝑟𝑛(𝑋) rather than 𝑟𝑛(𝑥, 𝐷𝑛). In practice, Monte Carlo computed the above expectation when the 𝑀 RTs are 
produced, and the average of the individual outcomes is taken. The randomizing variable ⦵ is carried out to determine 
the performance of the successive cuts while developing the individual trees in which the selection of the coordinate to 
split and position of the split are comprised. The variable ⦵ is deduced as independent of 𝑋 and the training sample 𝐷𝑛. 
 
2.3. Support Vector Machine  

A support vector machine is a supervised machine learning algorithm mainly used to classify data. SVM can be 
used for face recognition, colon cancer classification, etc. SVM uses a hyperplane, also called a decision boundary, to divide 
data into various segments. The Support Vector Regressor (SVR) is used for regression-related problems. SVM can be 
performed on a non-linear dataset by using the kernel function.  
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2.4. Design 
 

 
Figure 1:  Hybrid Model for SDP Design Process 

 
 The design process in figure 1 shows an internal understanding of how the process plays out diagrammatically, 
while, Appendix I shows simple programming steps of the process. 
 
3. Implementation  

In this section, the outcomes of the developed system are discussed with the comparison of existing models for 
software defect prediction. The detail about the dataset and the parameters used for the performance analysis is discussed 
in detail.  

The result of the Hybrid model implemented is featured in terms of accuracy, precision, recall, and F1-Score in 
tables. 
 
3.1. Data Set  

CM1 is a National Aeronautics and Space Administration (NASA) spacecraft instrument (data collection and 
processing) written in 'C'. At various times, researchers have negotiated access to the CM source code. Hence, it is 
somewhat more studied, thus, some of the other NASA data sets. CM1 publicly available data sets from PROMISE are used 
for this research, the repository commonly used by researchers in software defect prediction. CM1 contains 498 records, 
and 22 ascribes (5 unique lines of code measure, 3 McCabe metrics, 4 base Halstead measures, 8 determined Halstead 
measures, a branch count, furthermore 1 objective field). This dataset is picked in the work since it comes from a genuine 
source and is uninhabited. 
 
4. Testing  

Binary classification is a two-class prediction problem in which the outcomes are labeled as either positive or 
negative. For defect prediction, binary classification involves mapping all instances of a dataset containing defective and 
non-defective modules to defective and non-defective classes. There are four outcomes possible from this binary 
classification. Therefore, one must use a confusion matrix. Confusion matrices are used to visualize important predictive 
analytics like recall, specificity, accuracy, and precision. Confusion matrices are useful because they directly compare 
values like True Positives, False Positives, True Negatives, and False Negatives. If a module is defective and classified as 
defective, then it is called true positive (TP), but if it is non-defective but classified as defective, it is called false positive 
(FP). Similarly, if a module is non-defective and classified as non-defective, it is called true negative (TN). However, if a 
defective module is classified as non-defective, it is called false negative (FN). 
 

Predicted Result 

Actual Result 

 0 1 
0 TN FP 
1 FN TP 

Table 1:  Confusion Matrix of a Defect 
Prediction Classification 

 
Accuracy: Accuracy is defined as the percentage of correct predictions out of all the observations. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑐𝑎𝑠𝑒𝑠
𝑋 100%   =>  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
𝑋 100%          (3.0)          

Precision: Precision is defined as the percentage of true positive cases versus all the cases where the prediction is true. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐴𝑙𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝑋 100%    => 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃+𝐹𝑃
 𝑋 100%                      (3.1) 

Recall: It is defined as the fraction of positive cases that are correctly identified. 
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𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
𝑋 100% => 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
 𝑋 100%                         (3.2) 

F1 Score: F1 score is defined as the measure of the balance between precision and recall. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 𝑋
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑋 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
          (3.3) 

                                                                                     
5. Results 

The outcome of the hybrid ML classifiers is given in the table below.  
 

Model Accuracy % Precision % Recall % F1-Score 
(Kaur, 2021) 96.67 93 97 94.96 

Hybrid 
ML 

90.00 94 96 94.99 

Table 2:  Hybrid Classifier and (Kaur, 2021) Results 
 
6. Discussion 

The results presented confirm that SVM performs better than Decision Tree (C4.5) classifier in the Hybrid on F1-
Score as it is required in confirming the good results of SVM for binary classification. It is possible to use CM1 dataset 
better for the hybrid. The Hybrid built also presents a superior performance to the base classifiers. This methodology 
presents an advantage that differentiates it from single ML classifier methods by combining more classifiers.     

The proposed Model shows improvement in F1 Score compared to the existing ensemble software defect 
prediction.  
 
7. Conclusion 

Software defect, alongside an inherent component of a software item, is additionally a significant part of software 
quality. Software defects are an unavoidable co-item of the created software. What is more, the assurance of software 
quality affirmation is not that simple and requires much time. There are various approaches to characterize defects, for 
example, quality. Nonetheless, the defects are by and large characterized as deviations from determinations or 
assumptions, which might be the reason for disappointment in working. In this study, different ML classifiers like Gaussian 
Naive Bayes, Bernoulli Naive Bayes, Random Forest, and SVM are implemented in python for software defect prediction. 
The Hybrid classifier is created for the SDP, which is the blend of Gaussian Naïve Bayes, Bernoulli Naive Bayes, Random 
Forest, and SVM as Hybrid ML. As a result, it compares the work of Kaur (2021) and the proposed study considering F1-
Score, and then, the proposed study is improved by 0.03, which shows an encouraging result. 
 
8. Recommendation 

This study revealed the effectiveness of ML hybrids in software fault detections. Thus, the following 
recommendations are hereby presented: 

 Since defect detection has been proven, software developers should incorporate it in Software development Life 
cycle (SDLC) to maintain quality software for users and help them build a relational understanding of software 
testing/control. 

 Implementation of software testing in python be encouraged by administrators and embraced by software 
developers to continually improve software quality. 
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