

ISSN 2278 – 0211 (Online)

Driving Oil and Gas Well Delivery Performance with Value Creation Events

Dagogo Sopriala Omubo Researcher, Well Engineering Shell Petroleum Development Company, Port Harcourt, Rivers State, Nigeria Adedotun Babatunde Ogunwale

Researcher, Well Engineering

Shell Petroleum Development Company, Port Harcourt, Rivers State, Nigeria

Abstract:

Oil and gas well delivery involves the execution of well projects, with attention to safety, design specification, desired well objectives, planned time, and agreed budget. These projects involve drilling, completion, work-over, and decommissioning/restoration (also known as abandonment) activities.

Performance, with respect to the oil and gas well delivery process, is the result of comparing the actual versus plan of the above-mentioned indicators. This means, to obtain an accurate performance report, there must be benchmarks, clearly agreed upon, prior to the commencement of well execution. Plan-beating performance is not achieved without a deliberate strategy. One of the major contributors to such is the value derived from discussions about the well project. These discussions occur in what could be termed value-creation events.

Value creation events are simply discussion sessions organized with the intent to derive value that has the potential to improve well-delivery performance. Attendees are largely the stakeholders in the project, including the facilitator of the event. These value-creation events are classified based on the timing of the event relative to the project execution as pre-execution or post-execution events.

This paper discusses various value creation events under these classifications and how they are used to drive well delivery performance, with a focus on the value obtained to aid time and cost reduction and delivery of stated well objectives at the minimum.

Keywords: Performance, oil and gas, well delivery, value-creation events

1. Introduction

The term 'oil and gas' is used to refer to activities relating to the exploration, appraisal, development, and production of natural resources - petroleum oil and gas.

Driving oil and gas well delivery performance is a strategic process, which begins before the commencement of well execution (Pre-execution phase), continues during the actual drilling, completion, work-over, or abandonment of a well (execution phase), and continues even after a well has been delivered (post-execution phase). There are different methods of ensuring excellent performance, but a vital one is the facilitation of value-creation events. These events could be categorized into pre-execution and post-execution events.

These events are termed 'value-creation' because they create value translated to meet KPIs of oil and gas projects. The value added towards the improvement of time and cost performance will be illustrated here.

2. Discussion

2.1. Pre-execution Value Creation Events

These are events facilitated by performance and planning well engineers, during the planning phase of a well. They are characterized by discussions involving the well's KPIs, which typically involve the technical specifications, well objectives, safety goals, time, and cost limits. These events could be further divided into two categories:

- Office-based pre-execution value creation events
- Field-based pre-execution value creation events

2.1.1. Office-Based Pre-Execution Value Creation Events

These events are organized in town, either in the base office or in some other suitable environment, easily accessible from the office of the oil and gas company. They are attended largely by office-based staff, with the inclusion of a few field staff. They are typically 'Well on Paper' (well execution strategy) events such as:

- Drilling The Well on Paper (DWOP) for drilling projects.
- Work-over The Well on Paper (WWOP) for work-over projects.
- Completing The Well on Paper (CWOP) for completing the projects.
- Abandon The Well on Paper (AWOP) for abandonment (decommissioning and restoration) projects.

The well program is discussed in detail in these events, and effective ways of achieving the activities/tasks are deliberated. Lessons learnt from previous similar oil and gas well projects are a valuable resource for such events. The well-project KPIs are usually agreed upon by all key stakeholders in such meetings and properly documented. One of the main outputs of these events is a time plan, which contains the project timeline broken down into mini-activity time frames. This serves as a very valuable tool for performance monitoring and improvement during execution.

2.1.2. Field-Based Pre-Execution Value Creation Events

These events are organized at the well site and attended largely by field staff, with the inclusion of one or two office staff, who are usually the facilitators. These events are typically:

- Pre-spud meeting for drilling and completion projects.
- Pre-reentry meeting for work-over and abandonment (decommissioning and restoration) projects. The KPIs agreed in Well on Paper events are cascaded to these meetings.

2.2. Post-Execution Value Creation Events

This is an event referred to as an After-Action Review (AAR). An AAR is a review of the whole well-delivery project after execution. It is typically facilitated by performance and planning well engineers. The purpose is to capture lessons learnt from the project and document them appropriately. The documented lessons learnt are valuable for the performance improvement of subsequent well-delivery projects.

In order to capture these learning points while they are still fresh, miniature AAR sessions are facilitated on the field by well site supervisors, just after sub-sections of the well project. These sessions are called hot-wash AAR. The hot-wash AAR document is used to kick-start the main AAR event, and at the end, a more robust AAR document is obtained.

2.3. Practical Application of Value Creation Events to Drive Well-Delivery Performance

Let us consider a simple drilling project for well number 10, in Alpha field, to be executed by a land rig Beta-007, with the following high-level summary of the program:

- Rig move and rig up.
- Drive 30-inch conductor to refusal depth of +/-350ftah.
- Spud well, clean out conductor, drill 17-1/2" hole to section TD of 5.000ftah and POOH.
- Run 13-3/8" casing to 4.995ftah and cement in place.
- Wellhead job, nipple up BOP, and pressure-test.
- Drill 12-1/4" hole to section TD of 9,000ftah and POOH.
- Run 9-5/8" casing to 8,990ftah and cement in place.
- Wellhead job, nipple up BOP, and pressure-test.
- Drill 8-1/2" hole to section TD of 10,000ftah and POOH.
- Run 7" liner to 9990ftah and cement in place.
- Drill 6" hole to final TD of 10,300ftah and POOH.
- Run lower completion.
- Run upper completion.
- Nipple Down BOP, nipple up Christmas tree, and pressure-test.

Kindly note that, for the purpose of this paper, the safety aspect and technical details of the well program have been left out, and the focus is on the delivery time (which ultimately affects cost) and well objectives.

During the DWOP, the program is discussed in detail, and time slots are allocated for every activity. A major deliverable of all DWOPs is a time plan.

2.3.1. Time Plan

A time plan is simply a representation of planned activities, the corresponding time allotted to each activity, and the total time planned for the project. An illustration is shown below, using the example well delivery project mentioned above.

TIME PLAN FOR ALPHA-010								
S/N	Activity	Planned Time (Days)						
1	Rig move	10.00						
2	Drive 30-inch conductor to refusal depth of +/-350ftah	2.00						
3	Spud well, clean out conductor, drill 17-1/2" hole to section TD of	6.00						
	5,000ftah and POOH							
4	Run 13-3/8" casing to 4,995ftah and cement in place	1.75						
5	Wellhead job, nipple up BOP and pressure-test	1.00						
6	Drill 12-1/4" hole to section TD of 9,000ftah and POOH.	4.50						
7	Run 9-5/8" casing to 8,990 ftah and cement in place	2.25						

TIME PLAN FOR ALPHA-010							
S/N	Activity	Planned Time (Days)					
8	Wellhead job, nipple up BOP and pressure-test	1.00					
9	Drill 8-1/2" hole to section TD of 10,000ftah and POOH	2.20					
10	Run 7" liner to 9,990ftah and cement in place	1.50					
11	Drill 6" hole to section TD of 10,300ftah and POOH	1.75					
12	RIH lower completion	2.75					
13	RIH Upper completion	3.25					
14	Nipple Down BOP, nipple up Christmas tree and pressure-test	1.00					
	Total	40.95					

Table 1: Example Time Plan from Well on Paper Event

It is important to note that the planned time, as agreed by stakeholders in the event, is usually more stringent than what is contained in the well program. This encourages plan-beating performance and improves the possibility of meeting the well program time (and, by extension, cost) target.

During the pre-spud meeting, in addition to discussing the well program objectives, technical details, and safety considerations, the above time plan is presented to the rig site team, and they make a commitment to deliver the well within this time frame. This becomes a benchmark for tracking performance during execution.

2.3.2. On-site Performance Tracking

On-site performance tracking is done by the well site supervisor for each of the activities, and at the end of the well execution, a record of actual time (for each activity and cumulative) is obtained, as shown in table 2 below:

	PLANNED VERSUS ACTUAL TIME FOR WELL ALPHA-010										
S/N	Activity	Planned Time (Days)	Cumulative Planned Time (Days)	Actual Time (Days)	Cumulative Actual Time (Days)	Days ahead (-) or behind (+) (Actual - Plan)	Cumulative Days ahead (-) or behind (+)	Planned Depth (feet)	Actual Depth (feet)		
1	Rig move and Rig up.	10.00	10.00	8.75	8.75	-1.25	-1.25	0	0		
2	Drive 30-inch conductor to refusal depth of +/-350ftah.	2.00	12.00	2.25	11.00	0.25	-1.00	350	340		
3	Spud well, clean out conductor, drill 17- 1/2" hole to section TD of 5000ftah and POOH.	6.00	18.00	4.8	15.80	-1.20	-2.20	5000	5000		
4	Run 13-3/8" casing to 4995ftah and cement in place.	1.75	19.75	1.4	17.20	-0.35	-2.55	5000	5000		
5	Wellhead job, nipple up BOP, and pressure-test.	1.00	20.75	1.2	18.40	0.20	-2.35	5000	5000		
6	Drill 12-1/4" hole to section TD of 9000ftah and POOH.	4.50	25.25	4.50	22.65	0	-2.35	9000	9000		
7	Run 9-5/8" casing to 8990 ftah and cement in place.	2.25	27.50	1.95	24.85	-0.30	-2.65	9000	9000		
8	Wellhead job, nipple up BOP, and pressure-test.	1.00	28.50	0.8	25.65	-0.20	-2.85	9000	9000		
9	Drill 8-1/2" hole to section TD of 10,000ftah and POOH.	2.20	30.70	2	27.65	-0.20	-3.05	10000	10000		
10	Run 7" liner to 9,990ftah and cement in place.	1.50	32.20	1.4	29.05	-0.10	-3.15	10000	10000		

PLANNED VERSUS ACTUAL TIME FOR WELL ALPHA-010										
S/N	Activity	Planned Time (Days)	Cumulative Planned Time (Days)	Actual Time (Days)	Cummu-lative Actual Time (Days)	Days ahead (-) or behind (+) (Actual - Plan)	Cumulative Days ahead (-) or behind (+)	Planned Depth (feet)	Actual Depth (feet)	
11	Drill 6" hole to section TD of 10,300ftah and POOH.	1.75	33.95	1.5	30.55	-0.25	-3.40	10300	10300	
12	Run lower completion.	2.75	36.70	2.5	33.05	-0.25	-3.65	10300	10300	
13	Run upper completion.	3.25	39.95	3.2	36.25	-0.05	-3.70	10300	10300	
14	Nipple down BOP, nipple up Christmas tree, and pressure- test.	1.00	40.95	0.75	37.00	-0.25	-3.95	10300	10300	
	Total	40.95		37.00		-3.95				

Table 2: Example Planned Versus Actual Time Data with Calculated Performance

Looking at the 'Actual Time' column, line items 2 and 5 (numbers coloured red) over-ran the target time, while all other activities (numbers coloured green) were completed within the specified planned time.

The figures in the 'days ahead' column are obtained by subtracting the planned time from the actual time. A positive number denotes more time was used than planned, as seen in rows 2 and 5. A negative number is desired, as it means that the activity was achieved in less time than the plan, and all other rows depict this.

The cumulative 'days ahead' column is ahead all the way, despite the two overruns, as this margin was maintained by the remaining activities (apart from those in rows 2 and 5) being ahead.

A visual representation is more explicit on a time-depth plot.

2.3.2.1. Time-depth Plot

A time-depth plot is a graph of time (on the x-axis) against depth (on the y-axis). It is a simple time-performance monitoring tool that is used to track planned versus actual well delivery time during execution at the well site. This plot is mainly used for drilling projects. An example plot is shown in figure 1 below (This was plotted from table 2 data above).

Figure 1: Example Time-Depth Plot

The overall project was executed 3.95 days ahead of the plan. This means cost savings of approximately four times the daily rig spread. Assuming Beta-007, a land rig, has a daily rate of \$30,000 and an additional average daily spread of \$10,000, which means the above performance amounts to savings of approximately \$160,000. This performance is driven largely by the value obtained from both post-execution value creation events of previous projects, pre-execution value creation events of this project, and on-site performance tracking to ensure proper implementation of a documented strategy. The learning points of this project will also be properly documented at the end, after an AAR session, and this will be ploughed back into subsequent projects for performance improvement. An example AAR for this scenario is illustrated in table 3 below. The AAR below, though fictitious, is a good representation of what an actual AAR report looks like.

	AFTER-ACTION REVIEW FOR ALPHA-010										
S/N	Operation	nal Phase	Highlights	Lowlights	Improvement Plan						
	Plan - Actual -		What went	What did not	Improvement	Action	Close-out				
	What did	What did	well?	go well or can	action items	Party	Date				
	we plan to	we do?		be improved							
	do?			upon?							
1	Rig move	Rig move	Robust	Late arrival of	Investigate	Lead Well	26 th March				
	and rig up	and rig up	inspection of all	food for crew	reason for late	Engineer	2023.				
	in 10.00	in 8.75	heavy-duty and	on day 1.	meal and how						
	days.	days.	lifting equipment		to prevent re-						
			and portacabins		occurrence.						
			prior to rig								
			move.								
2	Drive 30-	Drive 30-	Two welders	Piling hammer	Prepare	QA/QC	27 th March				
	inch	inch	were mobilized	broke down	standard for	engineer	2023.				
	conductor	conductor	to ensure	for about 12	detailed QA/QC	and					
	to refusal	to refusal	seamless	hours.	on piling	conductor					
	depth of	depth of	operation		hammer to be	piling					
	+/-350ftah	+/-350ftah	without over-		done on future	contractor					
	in 2.00	in 2.25	working		Jobs prior to						
	days.	days.	personnel.		conductor						
					plling						
2	Courd weall	Courd wall		Unarrailahilitre	Europeration.	Wall	20th Marrah				
3	spud well,	spud well,	BHA POUH was	Unavailability	Functional	vvell	28 th March				
	clean out	clean out	mostly slick	or wasn gun on	wash gun and	Engineer	2023.				
	drill 17	drill 17	because of	site made it	spare to be						
	1/2" holo	1/2" holo	allequate noie	to mitigato the	supplied to fig						
	1/2 lible	1/2 little	rogular numping	blinding of the	woll is spud						
			of sweeps while	shaker	wen is spuu.						
	5000ftah	5000ftah	drilling	screens							
	and POOH	and POOH	ur ming.	50100115.							
	in 6.00	in 4 .80									
	davs.	davs.									
4	Run 13-	Run 13-	Casing RIH was	Poor	Ensure proper	Well site	Prior to				
	3/8" casing	3/8" casing	slick because of	alignment of	alignment is	supervisor	spud.				
	to	to	adequate	TDS to the	done for	and rig					
	4,995ftah	4,995ftah	circulation done	rotary table	subsequent	manager					
	and	and	prior to POOH	caused the	wells	_					
	cement in	cement in	17-1/2" BHA.	initial RIH to							
	place in	place in		be quite slow.							
	1.75 days.	1.40 days.									
5	Wellhead	Wellhead	Test pump was	Spent some	Comprehensive	Rig manager	Prior to				
	job, nipple	job, nipple	made prepared	time to change	maintenance is		spud.				
	up BOP,	up BOP,	for the job in	a leaking	to be done for						
	and	and	advance.	stand-pipe	all valves						
	pressure-	pressure-		valve.	during rig						
	test in 1.00	test in 1.20			move.						
	day.	days.		Taka a line a	Mala	TA7 - 11 - 11					
6	Drill 12- 1/A'' have	Drill 12 -	BIT was checked	intermittent	wiua pump is to	vvell site	During				
	1/4 noie	1/4 noie	dragge d with	foilure		supervisor	operations.				
	to section	to section	aressed with	ranuted in 12	regularly,	and					
	1 D 01 0 000ftab	1 D 0I 0 00000-b	appropriate	hours of	aunering to rig	i ig manager					
	and POOU	and POOU	nozzies.	nours or	r 1/13.						
	in 4.50	in 4 50		NPT							
	davs	davs		111 1.							
L	uuys.	uuys.									

	AFTER-ACTION REVIEW FOR ALPHA-010									
S/N	Operation	nal Phase	Highlights	Lowlights	Improvement Plan					
	Plan - What did	Actual - What did	What went well?	What did not go well or can	Improvement action items	Action Party	Close-out Date			
	we plan to do?	we do?		be improved upon?						
7	Run 9-5/8"	Run 9-5/8"	Casing threads	Casing string	Additional	Lead Well	4 th April			
	casing to	casing to	are properly	landing had	crane and	Engineer	2023.			
	8,990 ftah	8,990 ftah	cleaned and	slight delays	forklift are to					
	and	and coment in	inspected before	because the	be made					
	place in	place in	recorded case of	forklift were	especially					
	2.25 days.	1.95 days.	cross-threading	busy in the	during critical					
		_	while RIH.	mud chemical	phases of the					
	*** 111 1	X4X 111 1	D	area.	operation.	XAX 11				
8	Wellhead	wellhead	Pneumatic wrench used		Ensure	Well site	5 th April 2023			
	up BOP.	un BOP.	instead of		wrench is used	and rig	2023.			
	and	and	manual one.	N/A	for subsequent	manager				
	pressure-	pressure-			wells. Get a	C				
	test in 1.00	test in 0.80			back-up					
0	day.	day.	Connection time	TDC	wrench	Wall site	During			
9	1/2" hole	1/2" hole	was monitored	breakdown	checked	supervisor	operations			
	to section	to section	and reduced to	resulted in an	regularly,	and rig	operations			
	TD of	TD of	the barest	NPT of 4.5	adhering to rig	manager				
	1,000ftah	1,000ftah	minimum to	hours.	PMS.					
	and POOH	and POOH	prevent							
	In 2.20	In 2.00	sticking							
10	Run 7"	Run 7"	An efficiency test		Perform	Well site	When 7"			
	liner to	liner to	was performed		efficiency test	supervisor	liner has			
	9,990 ftah	9,990 ftah	on the mud		for all the mud	and rig	been run to			
	and	and	pump prior to	N/A	pumps, in	manager	bottom and			
	cement in	cement in	the job.		subsequent		circulation is			
	1.50 days.	1.40 days.			report value.		in progress.			
11	Drill 6"	Drill 6"	Mud weight and		Record mud	Well site	While			
	hole to	hole to	viscosity in/out		weight and	supervisor	drilling 6"			
	section TD	section TD	were measured	NT / A	viscosity	and mud	hole.			
	0f 10 200ftab	0I 10.200ftab	and recorded	N/A	in/out on rig	engineer				
	and POOH	and POOH	minutes		Announce					
	in 1.75	in 1.50			values via PA					
	days.	days.			system					
12	Run lower	Run lower	Completion sub-	Only one well-	Mobilize two	Well	Two days			
	in 2 75	in 2 50	assemblies were	Site	completion	completions	before			
	davs.	davs.	tally prepared	supervisor	cover the day	and well site	completions			
			ahead of time.	performed the	and night	supervisor	operations			
				operation and	shifts.	_	_			
				was over-						
12	Run unner	Rununner	Personnel and	worked.	Mobilize	Wall	Two dave			
15	completion	completion	equipment were		contractors	engineer /	before			
	in 3.25	in 3.20	mobilized ahead	N/A	and personnel	Well site	completions.			
	days.	days.	of time.		on time	supervisor				
14	Nipple	Nipple	The		Check	Well site	Three weeks			
	aown BOP, ninnle un	aown BOP,	compatibility of	N / A	compatibility	supervisor	before this			
	Christmas	Christmas	hanger and X-	11/A	hanger and X-	head service	commences.			
	tree, and	tree, and	mas tree was		mas tree ahead	contractor				
	pressure-	pressure-	checked ahead of		of operation	field				
	test in 1.00	test in 0.75	the operation.			supervisor				
	day.	day.	1	1	1					

Table 3: Example After-Action Review Report

3. Recommendations

- Well on paper events should be organized way ahead of execution time for all oil and gas well delivery projects.
- Pre-spud or pre-reentry meetings should be organized at the well-site, just before the commencement of execution for all well-delivery projects.
- Minutes of Well on paper events should be effectively captured and duly shared on-site during pre-spud or prereentry meetings.
- AARs for well delivery projects should be broken into sub-sections, and hot-wash AARs organized at the well site after each section.
- An AAR should be organized after the execution of all oil and gas wells, and this should capture and properly document all learning points for the project.
- Learning points from AAR documents for previous well projects should be discussed in detail during well on paper events.

4. Conclusion

Value creation events are great tools for driving well-delivery performance. These include pre-execution (Well on paper and pre-spud) events and post-execution (AAR) events. In addition to safety, technical design, and well-objective controls, these events focus on improving well delivery time, which has a direct impact on cost. Besides value from a technical review of the well project, huge cost savings can be achieved from the proceeds of these events, and this is directly proportional to the amount of project time reduction.

5. Abbreviations

AAR – After-Action Review AWOP – Abandon the Well on Paper CWOP – Completing the Well on Paper DWOP – Drilling the Well on Paper WWOP – Workover the Well on Paper KPI – Key Performance Indicators NPT – Non-productive Time POOH – Pull Out of Hole PMS – Preventive Maintenance System TD – Target Depth TDS – Top Drive System

6. References

- i. Shell Wells Distance Learning Package V 2.0.0 The well delivery process.
- ii. Omubo, D.S. (2023). Tripping Optimization to Promote Flat Time Reduction in Oil and Gas Well Drilling Operations, International Journal of Innovative Research and Development, 12(1), 53–57.