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1. Introduction 

Numerical methods over the years have developed to become versatile tools applicable in solving and analyzing 

structural problems such as the FEM, finite strip method and constrained finite strip approach [i, ii]. Lately, the Finite 

Element Method (FEM) dominated in this field of engineering because of how simple and powerful it is in modelling, 

which is frequently a labour-intensive process [iii-v]. Notwithstanding, the Finite Strip Method (FSM) is applicable to some 

structural problems as an alternative method that requires fewer degrees of freedom and consequently less time through 

the introduction of strips which breaks up the domain into a number of longitudinal elements. The finite strip method 

uses strip-shaped elements that extend along the structure. This method can be used for many structures that do not have 

complex geometry and can be solved with a relatively low degree of freedom [vi]. The finite strip method (FSM) is a 

powerful and effective contemporary technique of structural analysis used mainly for general linear static, dynamic and 

stability analysis of structures with a constant geometry and stiffnesses in one direction and simple boundary conditions 

at the cross ends [vii].  

The Finite Strip Method, pioneered in 1968 by Cheung Y.K., is an efficient tool for analyzing structures with 

regular geometric platforms and simple boundary conditions. According to Cheung [viii], the main benefit of the 

traditional Finite Element Method lies in the significantly smaller size and bandwidth of the matrix that needs to be solved, 

making it ideal for programming on small and medium-sized computers. The finite strip method was originally designed 

for rectangular plate problems similar to Levy's solution by Timoshenko and Woinowsky-Krieger in 1971 [ix]. The plates 

are bi-dimensional structural elements that have dimensions from the mid-plane larger than the thickness. Unlike in a 

shell that makes use of thickness to the radius of curvature ratios [x], depending on the ratio between the minimum 

dimension from the plane and the thickness of plates can be classified for the calculation into two classes [xi]. Namely: 

• Thin plates, at which lmin > 5h, 

• Thick plates, at which lmin < 5h. 
The minimum dimension of the plate (lmin) is significantly larger than the plate thickness (h) for thin plate while in thick 

plate it is a reverse. 
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Thin plates accept the hypothesis of Kirchhoff that despises the deformation due to shear strains. Governing 

equation of the thin plates can be obtained using vector mechanics or variational and energetic principles. This research 

work proposes models for the analysis of stiffened slabs using Finite Strip Method. 

 

2. Numerical Formulation and Modelling Procedures  

 

2.1. Degree of Freedom and Shape Functions  

In the finite strip method, the structure is only discretized in the cross-section represented using a 

trigonometrical shape function.  

 

 
Figure 1: Finite Strip Degrees of Freedom Definition (Left) and Strip Stress Distribution (Right)[viii] 

 

In figure 1, the local coordinates are named with small letters (x-y-z) and will always be associated with the strip 

element. Displacements are represented with the translation U-V-W and the rotation θ for global displacements and u-v-w 

and ϕ for local displacements. The subscript p refers to the half-wave number (number of longitudinal terms). The shape 

functions for the transverse direction are assumed to be the same polynomial function for every boundary condition.  

In polynomial form, the x-displacement component of a plate problem in bending [xii] in eqn (1):  w�x� � C� � C	x � C
x	 � C�x
         (1) 

Where: C1-C4 represent generalized displacements.  

Using the condition: φ = dw/dx, after writing the polynomial for the nodal lines 1 and 2 with the coordinates x = 0 

and x = b, respectively, we obtain Eq. 2: 

 

w�φ�w�φ�
� � � 1 0 00 1 0 001 b b	0 1 2b b
3b	� �C�C	C
C�

�         (2) 

 

That is�δ� � �A��C�, and the polynomial coefficients as: 

 

�C�C	C
C�
� �

⎣⎢⎢
⎢⎡1    0   00    1   0 00 
�!  	� 
�!	�" ��!  	�"

 ����! ⎦⎥⎥
⎥⎤ w�φ�w�φ�

�         (3) 

The general form of y-displacement function, as given in Timoshenko and Woinowsky-krieger [xi], can be written 

as: Y' � A sin +,- � B cos +,- � C sinh +,- � D cosh +,-         (4a) K is a parameter Case: Simply supported, boundary conditions are expressed as �w�0� � w44�0� � 0, w�a� � w44�a� � 0� Y' � sin '7,-            (4b) 

Therefore, the expressions for general displacements are as follows: u � ∑ :;1 < =�> =�? @uA'u	'BC'D� ∗  Y'         (5a) v � ∑ :;1 < =�> =�? @vA'v	'BC'D� ∗  Y' ∗  -GH         (5b) 

w � ∑ :1 < 
=!�! � 	="�" x ;1 < 	=� � =!�!>  
=!�! < 	="�" x ;=!�! < =�>? IwA'φA'wJ'φJ'
KC'D� ∗  Y'   (5c) 



 www.ijird.com                                                                                                                May, 2023                                                                                                   Vol 12 Issue 5 

   

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT                  DOI No. : 10.24940/ijird/2023/v12/i5/MAY23011                Page 127 

 

Where μM � m ∗ π and m is the half-wave number and Y' is the function for the longitudinal direction. It refers to 

the shape of the sinus function, which varies depending on the boundary conditions. 

We can put the displacement equations in the form of a general vector such that: 

@uvB = ∑ �NQR�C'D� ∗ IuA'vA'uJ'vJ'
K = ∑ �NQR� ∗ dQR'C'D�          (6) 

w = ∑ �NT�C'D� ∗ IwA'φA'wJ'φJ'
K = ∑ �NT� ∗ dT'C'D�        (7) 

 

2.2. Bending Matrix 

The bending strains follow the Kirchhoff plate theory hypothesis [xi, xiii]. The hypothesis which Kirchhoff's 

theory is based on four conditions stated below: 

• Points in the middle plain only move vertically (u=v=0) 

• All the points contained in a normal to the middle plain have the same vertical displacement 

• σV is not considered 

• Points on the normal lines to the plain stay in the same orthogonal lines to the middle plain after the deformation 

From the previous hypothesis, we can write our displacements as: u�x, y, z� =  −z θ= �x, y� 

            (8) 

                    v�x, y, z� =  −z θ, �x, y�          (9) 

    w�x, y, z� =  w�x, y�          (10)                                

     

Where:  w is the vertical displacement, θ= and θ, are the angles that define the turn of the normal line to the middle plain. 

Taking figure 1 into consideration, we obtain the following: 

From xz plain:  θ= = ZTZ=           (11) 

From yz plain:  θ, = ZTZ,           (12) 

Using Eqns. 8 to 12, we can conclude:  u�x, y, z� =  −z ZT�=,,�Z=            (13)  v�x, y, z� =  −z ZT�=,,�Z,           (14) w�x, y, z� =  w�x, y�          (15) 

Taking the last expression in Equations 13 to 15, we can define the deformation as: 

[ε]^ =
⎩⎪⎨
⎪⎧−z c!Tc=!−z c!Tc,!2z c!Tc=c,⎭⎪⎬

⎪⎫ = ∑ z �NT�C'D� gw�'θ�'w	'θ	'
h = ∑ z �B]'�C'D� dT'      (16) 

As in the case of the membrane stress, we can write the bending term of the internal strain energy during 

buckling as: U] = �	 j[ε]^k[σ]^dA                         (17) 

 

Where; UB is the internal strain energy, εB is the strain tensor, σB is the stress tensor, ∫ denotes the integral over the area (A) of 

the plate. The superscript "T" represents the transpose operation, which is applied to the strain tensor (εB) to ensure 

compatibility with the stress tensor (σB) 

 

From Eqn 17, we can substitute:  [σ]^ = �D]�[ε]^                           (18) 

 

�D]� =  D= v=D, 0v,D= D, 00 0 D=,�         (19) 

D= =   D, = D = lmn"�	o� RpRmq    D = vD   D=, = ln"	���rR�        (20) 

We can then write the expression for the strain energy as: U] = �	 j j [ε]^k�D]���-� [ε]^dxdy         (21) 

1st and 4th hypothesis 

2nd hypothesis 
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The elastic stiffness matrix for membrane stress can be extracted from the statement for internal energy, such as: U] � ∑ ∑ �	CsD�C'D� �dT'�k ;j j [B]^k�D]���-� [B]^dxdy> dTs       (22) 

Where our stiffness matrix is:  K]'s = j j �B]�k�D]�B]dxdy��-�          (23) 

The potential energy in terms of external surface loads is: UT � < j j �dT'�k�C�kq�x, y�sink'y dxdy��-�        (24) �P� = j j [C^kq�x, y�sink'y dxdy��-�         (25) 

Hence, total potential energy is the sum of the elastic strain energy and the work potential of each strip; thus: W = U] � UT            (26) 

By minimizing the total potential energy, we set:     @ ZxZ[y^B = [0^            (27) 

 

Thus: @ ZxZ[y^B = j j [B^k�D���-� [B^ d dxdy < j j [C^kq�x, y, t�sink'y dxdy��-� � [0^    (28) 

 

And   

                                     �K�[δ^ − �P� = [0^          (29) 

 

Furthermore: 

 

[B^' �  <C'�44 sink'y <C'	44 sink'y <C'
44 sink'yk'	 C'�sink'y k'	 C'	sink'y k'	 C'
sink'y2k'C'�4 cosk'y 2k'C'	4 cosk'y 2k'C'
4 cosk'y    <C'�44 sink'yk'	 C'�sink'y2k'C'�4 cosk'y�   (30) 

 

2.3. Stiffness Matrix Formulation 

The explicit form of the stiffness matrix for a single strip in the m and n-th harmonic function is given as: 

�K�' = �K�� K�	K�	 K		    K�
 K��K	
 K	�K�
 K	
K�� K	�    K

 K
�K
� K��
�        

            (31)  

Where, K�� = 13ab70 k'� D � 12a5b k'	 D=, � 6a5b k'	 D� � 6ab
 k'	 D 

K�	 = 3a5 k'	 D� � a5 k'	 D=, � 3ab	 D � 11ab	420 k'	 D 

K		 = ab
210 k'� D � 4ab15 k'	 D=, � 2ab15 k'	 D� � 2ab D 

K�
 = 9ab140 k'� D < 12a5b k'	 D=, < 6a5b k'	 D� < 6ab	 D 

K	
 = 13ab	840 k'� D < a5 k'	 D=, < a10 k'	 D� < 3ab	 D 

K

 = 13ab70 k'� D � 12a5b k'	 D=, � 6a5b k'	 D� � 6ab	 D 

K�� = − 13ab	840 k'� D � a5 k'	 D=, < a10 k'	 D� � 3ab	 D 

K	� = − 3ab
840 k'� D < ab15 k'	 D=, < ab30 k'	 D� � ab D 

K
� = − 11ab	420 k'� D < a5 k'	 D=, < 3a5 k'	 D� < 3ab	 D 

 K�� � ab
210 k'� D � 4ab15 k'	 D=, � 2ab15 k'	 D� � 2ab D                                                                                  (32)                                                 
These expressions above correspond to the value after the integration. The finite strip which has two degrees of 

freedom per nodal line in bending, under uniform external loading as: �P�' = j j [N^kq(x, y)sink'y dxdy��-�         (33) 

Also, to dispense with the integration: 

 



 www.ijird.com                                                                                                                May, 2023                                                                                                   Vol 12 Issue 5 

   

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH & DEVELOPMENT                  DOI No. : 10.24940/ijird/2023/v12/i5/MAY23011                Page 129 

 

�P�' = q�x, y)
⎩⎪⎪
⎨
⎪⎪⎧

�
	�!

�	�
	 �!

�	

 
⎭⎪⎪
⎬⎪
⎪⎫ �+H �1 < cosk'a�        (34) 

 

The bending and twisting moments for a strip are:  

g M=M,M=, h � �D� ∑ �B�'C'D� [δ^'        (35) 

 

  2.4. Beam Stiffness Matrix  

The stiffness matrix of a beam is formulated in the same way as that for a slab strip, and for compatibility, both 

plate strip and beam should have the same variation of deflection at the connecting nodal line [6]. A beam is treated as a 

one-dimensional member, the stiffness of which is assumed to be concentrated along its centre line. For compatibility, the 

variation of the beam vertical deflection and rotation should be the same as the slab strips, which have common nodal 

lines. For this reason, we express the beam displacements by the same used for the slab strip.  @w� ∗
θ�∗  B � YC @w�θ�  B           (36) 

The internal virtual work is given as: 

U� � j y!T� ∗
y,!-� ;EI y!T∗

y,! > dy � j y!��∗
y,!-� ;GJ y!�∗

y, > d       (37) 

and the corresponding external virtual work as: Ul � j w� ∗-� q∗�� � j θ�∗-� m∗��          (38) 

Therefore: w∗ � ∑ Y' w' and  θ∗ � ∑ Y' θ'         (39) 

Where w' and θ' are the nodal displacement parameter, and the external applied nodal line forces of intensity 

q* and m* are expressed in the form of infinite series. q∗ � ∑ Y' q' and  m∗ � ∑ Y' m'         (40) 

Where Y'  is the basic function, and q' and m' are the nodal force parameter. 

By equating the internal and external virtual work from Eqns. 37 and 38, we obtain:  

w� C � w' � EI d	YCdy	
-

�
d	Y'dy	 dy �

'D�,	,..
θ�C � θ' � GJ d	YCdy	

-

�
d	Y'dy	 dy

'D�,	,..
� w� C � q' � YC

-

�
Y'dy �

'D�,	,..
θ�C � m' � YC

-

�
Y'dy

'D�,	,..
 

(41) 

Similarly, we define a generalized beam force vector as: �P�' = q�x, y) ∑ @ qm B ;j Y'-� � �+H �1 < cosk'a�>'D�,	,..       (42) 

Putting each of the virtual displacement parameters w� C and θ�C equal to zero separately, Eqn (42) gives �P�' = ∑ �KC'� 00 KC'n  � @wθ B'D�,	,..          (43) 

Or �P�' = ∑ �K �C'[d ^''D�,	,..          (44) �K �C' is a diagonal submatrix of the stiffness matrix of the beam, which is of order 2s x 2s, where s is the number of series 

terms considered. The elements KC'�  and KC'n  are flexural and torsional stiffness coefficients given by: KC'� = j EI y!��y,!-� y!�Hy,! dy             

            (45) KC'n = j GJ y!��y,!-� y!�Hy,! dy          (46) 

If r is taken equal to 1, 2,.., n, in Eqns (32) through (42). For a simply-supported beam, we use the same basic 

function as for a slab strip. With this equation, we assume that the twisting is prevented at the two ends of the beams. 

Because of the orthogonality of the function Y'  YC, the stiffness coefficients KC' in Eqns (41) and (42) vanish when � �� and when E1 and GJ are constant, we have: KC'� = K'� = �s7��	 ���"          (47) 

and KC'n � K'n � �s7�!	 ���           (48) 

Further, the beam force vector and the displacements parameters term of the series can be related where: �K �C' � �K �'' 

Where: b
 and β can be obtained from the Torsion constant table. J=βa 
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3. Problem Formulation 

It is common knowledge that the flexural motion of stiffened slab is governed by the following differential 

equation: D∇�w = q�x, y�                                        (49) 

Where:   

w is the flexural deflection of the plate,  

D is the bending rigidity of the plate in both directions,  x and � are the spatial coordinates,  

q is the intensity of loading.  

The plate is simply supported on two parallel edges; the other two edges are arbitrary or on elastic support. 

The displacement field of the finite strip with slab and beam behaviour, as illustrated in figure 2 below, is 

described by the following equation: w�x, y� = ∑ w�x�sin '7,-C'D�           (50) k' = '7- , m = 1,2, … , r          (51) 

The approximate displacement function for the points on a single strip combines the sine harmonic series in the 

longitudinal direction, y (analytical aspect) and the polynomial function F'�x� in the transverse direction, x (numerical 

aspect).  

The deflection of the strip may be written in the transform of two uncoupled function: w�x, y� = ∑ F'�x�sin '7,-C'D�          (52) 

F'�x� = C�x�δ'�x� = :1 < 
=!�! � 	="�" x ;1 < 	=� � =!�!>  
=!�! < 	="�" x ;=!�! < =�>? IwA'φA'wJ'φJ'
K                 (53)                              

Since opposite ends of the finite strip are simply supported, the basic function and its first and second 

derivatives are involved in the evaluation of the stiffness matrix. By considering the mid-span displacement for a strip, 

we substitute x as equal to 0.5.  

 

3.1. Timoshenko’s Approach 

The theory established by the set of ribs can only give a rough idea of the actual state of stress and strain of the 

slab [6]. Figure 2 shows the Timoshenko ribbed slab. This averaging of bending rigidity is used in validating the new 

model. 

 

 
Figure 2: Stiffened Slab [xi] 

 

We define the following terms as:  D= = lp-£¤"�	�-£ nr¥"n� , α = ¤§          (54) D, = lm�-£ , D� = 0,          (55) I = �
 �ty
 � a��H − y�
 < �a� − t��H − y < h�
�        (56) y = H < §!nr¤!�-£ n�	�-£¤r�§ ¤�n�          (57) D=, = D=,4 � ©	-£ , and  D=,
4 � � R

	

lp�¤/	�"

�	o� «p«mq
  C � � R

	

lp�§ ¤/	�"

�	o� «p«mq
      (58) 

Where D=,4  is the torsional rigidity of the slab without the ribs, C is the torsional rigidity of the rib, E, ϑ, and I is the 

moment of inertia of a T section of width a�, taken with respect to the middle axis of the cross-section of the plate. 

From the differential equation, we solve for the deflection surface of stiffened slab by applying Levy's solution 

satisfying a simply-supported boundary condition under uniform loading as: 
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w�x, y� = ±-��.²7³o´pr´mq ∑ ;µ'cosh 	¥H,� � ¶' 	¥H,� sinh 	¥H,� � ·'> sin '7=-'̧D�,
,²..       (59) 

Where, 

 A' = < 	�¥Hn-s¤¥Hr	�7³¹³º»¼¤¥H   and  ¶' = 	7³¹³º»¼¤¥H        (60) ·' = �7³¹³  and, α' � '7�

	-
 and M= =  qπ	a	 ∑ �	 ;��ϑ − 1�µ' � 2ϑ¶'�cosh 	¥H,� � �ϑ < 1�¶' 	¥H,� sinh 	¥H,� �'̧D�,
,²..·'> sin '7=-  ,             M, = −qπ	a	 ∑ �	 ½o�1 − ϑ�µ' � 2¶'qcosh 	¥H,� � �1 < ϑ�¶' 	¥H,� sinh 	¥H,� < ϑ·'¾ sin '7=-'̧D�,
,²..   (61) 

 

4. Results and Discussion 

Consider figure 3, a simply supported ribbed slab used for numerical illustrations. In the experimental program, 

the following input was used for the FSM stiffened slab model and compared to Timoshenko model: 

• E=35.83*10^6kN/m^2 

• G=21.0*10^6kN/m^2 

• UDL=25kN/m2; % Uniformly distributed load 

• a=4.5m; % Length of stiffened plate 

• b=12.75m; % Total width of stiffened plate under s-s 

• m=1; % We analyze the first half-wave mode, v=0.3 

• h_1=0.15m; % Height of slab strips 

• b_1=3m; % Width of slab strips 

• h_2=0.5m; % Height of beam strips 

• b_2=0.25m; % Width of beam strips 

 

 
Figure 3:  Simply Supported Ribbed Slab 

 

Strip x-axis y-axis FSM Timoshenko [xi] 

w(x,y)m Mx(kNm) My(kNm) w(x,y)m Mx(kNm) My(kNm) 

1 1.50 3 -2.98E-04 1.74E-01 -1.44E+00 1.61E-05 2.79E-02 -2.88E-02 

2 3.13 3 -0.0015 -2.78E+01 -1.51E+01 8.79E-05 1.52E-01 -1.57E-01 

3 4.75 3 2.54E-05 1.13E-01 1.80E-01 2.10E-04 3.63E-01 -3.76E-01 

4 6.38 3 2.24E-04 -6.87E+00 -9.13E-01 3.83E-04 6.62E-01 -6.84E-01 

5 8.00 3 2.54E-05 1.13E-01 1.80E-01 2.10E-04 3.63E-01 -3.76E-01 

6 9.63 3 -0.0015 -2.75E+01 -1.51E+01 8.79E-05 1.52E-01 -1.57E-01 

7 11.25 3 -2.98E-04 -1.72E-02 -1.44E+00 1.61E-05 2.79E-02 -2.88E-02 

Table 1: Comparison for FSM and Timoshenko 

 

Table 1 shows that the results obtained from the current FSM are compared with those of the analytical solution. 

Considering the structural geometry, FSM results show details for w, Mx and My. In figures 4a and 4b, diagrammatical 

representations are presented. The curves follow a similar pattern as a result of the strips. 
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Figure 4 (a & b): Comparison between FSM and Timoshenko Model 

 

The results obtained from the current FSM are compared with those of the analytical solution. The numerical result 

relevant to the discretization by means of strips of simple shape functions shows that finite strips of different thicknesses 

preserve the bending rigidities via finite element considerations than the uniformly smeared bending rigidity of 

Timoshenko. 

 

5. Conclusion  

This paper presents the development of a program capable of implementing the FSM theory to solve slab 

problems. The new formulation of the FSM with the theories of Kirchhoff for the analysis of rectangular structures is 

implemented in the program. The validity of the combined strips is demonstrated in the illustrative problem, and the 

results obtained are compared with approximate solutions. Therefore, we can extract some conclusions: 

• Although the Finite Strip Method is a semi-analytical theory that utilizes trigonometric Fourier series in the 

longitudinal direction and FEM in the transversal direction, it can be correctly utilized to solve a rectangular 

problem with various sections. 

• The dimension of the problem is greatly reduced with FSM. It is reduced to a system of two middle nodes with 

four displacements each. Using the Fourier series, we can define the boundary conditions with trigonometric 

functions that satisfy them in the loaded edges. 

• The boundary conditions are extremely important to determine the stiffness matrices in the FSM; the effect of 

changing them will result in some coefficients inside the matrix varying. 

• The behaviour of our program is acceptable in many cases and much quicker than the FEM solution to the same 

problem.  
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