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1. Introduction 

Extraction of aerosol optical properties and characteristic patterns of variability from a large data set is vital to correctly monitor 

atmospheric processes in relation to climate change (Liu and Weisberg, 2005). Therefore, techniques for pattern detection i.e. 

clustering, classifying and feature extraction in multispectral imaging datasets are becoming increasingly important. The self-

organizing map (SOM), an artificial neural network technique based on unsupervised learning, is an effective tool of feature extraction 

(Kohonen 1982; 2001) that preserves thetopological relationships of the input data. In the current study, SOM has been utilized for 

aerosol optical depth (AOD) and precipitation rate (PR) projections based on the Community Climate System Model version 4 

(CCSM4) and worst case scenarios of aerosol emissions (Lamarque et al., 2010, 2011) over the region. 

Atmospheric aerosol projections form the basis on decision making particularly on climate change and their influence on air quality, 

health and agriculture. For example, over East Africa i.e. Nairobi (1°S, 36°E), Mbita (0°S, 34°E), Mau Forest (0.0-0.6ºS; 35.1-35.7ºE), 

Malindi (2°S, 40°E), Mount Kilimanjaro (3°S, 37°E) and Kampala (0ºN, 32.1ºE), aerosol source regions are greatly influenced either 

anthropogenically or naturally (Mabasi, 2009; Fairman et al., 2011; Makokha and Angeyo, 2013; NEMA, 2013; Mutugi and Kiiru, 

2015). In the previous case, fine mode aerosols over urban, industrialized and densely populated regions (Nairobi and Kampala) are 

mainly due to gas-to particle conversion mechanism of aerosols (fossil fuel, industrial-vehicular emissions, biomass and refuse 

burning) (Vliet and Kinney, 2007). Biomass burning and deforestation activities have impacted highly on the regional aerosol loading 

that modulate climate e.g. the disappearance of Mount Kilimanjaro glaciers (Fairman et al., 2011) and the Mau Forest Complex. 

Moreover, the latter case constitutes mainly coarse mode aerosols from dust loading, farming and maritime conditions i.e. sea salt and 

spray aerosols (Malindi), Lake-land air mass exchange (Mbita) and long distance transport of aerosols from the Arabian Peninsula 

desert via Monsoon winds over Malindi (Makokha and Angeyo, 2013). The most recent trend analyses over East Africa indicate an 

increase in both AOD and absorption aerosol index (AAI) while a decline was noted in the Angstrom exponent (AE) during the same 

study period (Boiyo et al., 2016). There is a need therefore to understand the future evolution of aerosol characteristics and their 

impacts on future regional climate.  
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Abstract:  
Assessment of future aerosols impacts on both regional and global climate change requires a comprehensive projection tool 

that reliably provides information on aerosol evolution characteristics with high fidelity. In the current study, we propose an 

algorithm based on Self-Organizing Map (SOM) and Community Atmosphere Model 4 (CAM4) for long term Aerosol 

Optical Depth (AOD) and Precipitation Rate (PR) projections over East Africa. To start with, AOD and PR retrievals from 

Moderate Resolution Imaging Spectroradiometer (MODIS) and Tropical Rainfall Measurement Mission (TRMM) 

respectively were cross validated with simulation from CAM4 so as to assess the uncertainty between the measured and 

simulated retrievals from 2000 to 2014.The error analysis between CAM4 simulations and MODIS measurements (from 

2000 to 2014)shows a close match where �� varies from 0.58 to 0.83 with a corresponding RMSE of between 0.014 and 

0.065 (for AOD). Likewise, the uncertainty between simulate and measured PR from CAM4 and TRMM showed an estimated �� to range between 0.40 and 0.78 while the RMSE varied from 0.021 to 0.091 in the same period and study sites. Based on 

proposed SOM algorithm and simulated CAM4 retrievals over each study site, an increase of between 1.34-2.43 % for AOD 

and a decrease of between 1.03-1.98 % in PR are projected over the region by 2030.  
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A number of methods have been used in climate and precipitation projections over East Africa. To start with, Souverijns et al. (2016) 

utilized a classification of circulation patterns in an ensemble of Regional Climate Model (RCM) to project a 23 % future change over 

East Africa. This RCM studies projected an increase in annual precipitation over areas located near the equator (Otieno and Anyah, 

2013; Buontempo et al., 2015) which contrasts the current drying trend. Other studies by Cook and Vizy (2013) projected a decline in 

precipitation based on a RCM with 90-km horizontal resolution on a large domain that is attributable to increasing greenhouse gases 

over the region. 

As a tool for pattern recognition and classification, the SOM analysis is in widespread use across a number of disciplines among them 

climate research (Liu et al., 2006; Liu and Weisberg, 2011).SOM has been utilized in quantifying various changes in meteorological 

variables and further reveal the underlying mechanisms driving the change (Cassano et al., 2007; Natasa and Jennifer, 2012). 

Additionally, SOM can also be utilized to extract obscure climate diagnostic information from large multidimensional datasets as 

demonstrated by Natasa and Jennifer (2012). A study by Lamarque et al.(2010)indicates a reasonable agreement between total 

AERONET AOD observations with that of the Community Atmosphere Model 4 (CAM4) simulations at λ = 550 nm, hence, their 

utility in projection studies. Shindell et al. (2013)used the CAM4 atmospheric aerosol concentration dataset and demonstrated that it 

captures total AOD trends of 1980–2000 well over the areas of high aerosol emissions (e.g., Europe, eastern North America and 

southern and eastern Asia). 

In the current study, CAM4 was utilized in simulating both AOD and PR over East Africa (Gent et al., 2011; Neale et al., 2011). The 

first case of simulations started from 2000 to 2014 while the second case was from 2015 to 2030. In the first instance, an initial 

validation was implemented between MODIS and CAM4 simulates for AOD and TRMM and CAM4 simulates for PR as a future 

proof of quality check. Subsequently, the second scenario allows for the utilization of CAM4 AOD and PR simulates together with the 

SOM algorithm in projecting their future evolution characteristics from 2015 to 2030based on worst case scenarios of aerosol 

emissions (Lamarque et al., 2010; 2011).  

 

2. Methodology 

Level-3 MODIS gridded atmosphere monthly global product ‘MOD08_M3’ AOD (at 550 nm) at spatial resolution of 1º×1º (Ichoku, 

et al., 2004) and TRMM Microwave Imager Precipitation Profile L3 1 month data at the spatial resolution of 0.5º×0.5º V7 

(TRMM_3A12), wereretrieved from 2000 to 2014 over each of the study sites. The details of how the two monthly products are 

organized and utilized in the proposed SOM algorithm are shown in section 2.1. 

 

2.1. Self-Organizing Map (SOM) 

SOM comprise of a two layered network that organizes the input patterns to a topological structure represented by its neurons while 

preserving the relations between different patterns. To achieve this, the following topology and training rules of Kohonen mapping 

were applied for clustering, classification, and feature extraction in MODIS spectral images from 2000 to 2014.  

1. The training of the network is implemented by presenting data vectors � to the input layer of the network whose connection 

weight vectors �� of all competitive neurons � are chosen random values. If � is the dimension of the satellite spectral data, 

we chose � input neurons and define the Euclidean distance (��) between � and �� as:  

�� = ‖� − ��‖ = �∑ (�� −���)�����   . . . . (1) 

and determine the activated neuron � with �� = ���� ����.  
2. Updating of the weights ��� that are associated to the neurons is only performed within the proximity (� ∈ ��(�)) of � that 

reduces with the training time � and ��(�) is the winning neuron. The process of updating is implemented via the equation 2b 

where �(�) represents a time dependent learning rate: 

������ = ���� + ∆���(�) . . . . . . . (2a) 

∆���(�) =  �(�)!�� −���(�)", �$	�&'()�	� ∈ ��(�)	0, …… 	)�ℎ&(-�.& / . . .  (2b) 

 

�(�) = �0 11 − �
34 , � ∈ 50, …… . . 78 . . . . . (2c) 

The time dependent neighborhood is updated according to: 

�(�) = �0 11 − �
34 , � ∈ 50, …… . . 78 . . . . . (2d) 

It is therefore important to note that the network performs two features during the training, which are strongly related to both 

clustering and classification of the MODIS and TRMM spectral data over the region. These are: 

1. A separation, i.e. cluster analysis of the presented data by mean vectors �� that are associated as weights to the neurons. 

2. A topological ordering of the competitive neurons in such a way that neighboring neurons in the layer represent similar 

clusters in multidimensional space and thus dimensionality reduction. 

Based on Cassano et al. (2007), we have formulated a method that separates factors contributing to temporal change in both AOD and 

PR into: 

a) Portion caused by a change in the frequency of occurrence (FO) of monthly AOD and PR maps in a node. 

b) Portion due to a change in the node mean value in both AOD and PR. 
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c) Portion as a result of the combination of the two effects. 

The stated factors that contribute to the temporal changes in both AOD and PR, we can define the following sets of equations: ∆9 = ∑ �(9� + ∆9�)($� + ∆$�) − 9�$������  . . . . (3a) ∆: = ∑ �(:� + ∆:�)($� + ∆$�) − :�$������  . . . . (3b) 

where ∆9 and ∆: are the total change in AOD and PR between two different time periods, 9� and :� are the node average variables in 

both AOD and PR respectively in the initial period. $�is the FO of monthly maps in node � during the initial period while ∆$� is the 

change in FO for node � between the two periods of interest. Additionally, ∆9�  and ∆:� are the changes in both AOD and PR node 

average variables between the two periods while � is the total number of nodes in each SOM map over each site of study. Expanding 

Equations 3a and b, we have: ∆9 = ∑ (9�∆$� + $�∆9� + ∆9�∆$�)��  . . . . (4a) ∆: = ∑ (:�∆$� + $�∆:� + ∆:�∆$�)��  . . . . (4b) 

The first terms in Equations 4a and b i.e. 9�∆$� and :�∆$� relate changes in monthly AOD and PR fields respectively to changes in the 

FO of aerosol optical patterns over each study site. These patterns show a portion of the total change owing to the shifts in the 

frequencies with which monthly AOD and PR fields reside in the patterns depicted in the SOM. A change in AOD and PR distribution 

represents a change in aerosol characteristics which directly and indirectly alter regional climate (Charlson et al., 1992; IPCC, 2013) 

and further affect the air quality, hence, referred to as a dynamic factor. The second term in Equations 4a and b i.e. $�∆9� and $�∆:�relates the temporal evolution in AOD and PR fields respectively averaged over all months belonging to a give node. In the case 

of aerosol optical properties, such changes are caused by thermodynamic effects such as local air circulation, urban heat islands 

effects, among others. The third term in Equation 1 represents the contribution from the interaction of both changing pattern frequency 

and the node averaged variable for both AOD and PR. This term tends to be small as compared to the other two.For any input data 

matrix of �-variables (spatial variability) and �-observations (samples) (temporal variability) the iterative SOM training procedure is 

as detailed elsewhere(Crane and Hewitson, 2003). To enhance the SOM capabilities in the prediction of both AOD and PR, 

simulations from the CAM4 were utilized as described in Section 2.2. 

 

2.2. Community Atmosphere Model 4 (CAM4) Simulations 

The CAM4 is the sixth generation atmospheric general circulation models (AGCMs) developed by the atmospheric modeling 

community in collaboration with the National Center for Atmospheric Research (NCAR). For detailed descriptions of CAM4 see 

Neale et al. (2011). CAM4 has been designed to produce simulations with reasonable accuracy for various dynamical cores and 

horizontal resolution of 0.9° ×1.25° (Boyle and Klein, 2010). It is important to note that CAM4 includes the direct and semi-direct 

effects of aerosols while missing out on the aerosol first indirect effect (Twomey et al., 1984).  

 

3. Results and Discussions 

Before actual projections in both AOD and PR, it is necessary first to determine the Root Mean Square Error (RMSE)between 

measured and CAM4 simulations to cross validate the CAM4 simulations against MODIS and TRMM measurements over the study 

sites from 2000 to 2014.The values of both RMSE and �� informs us on the reliability of CAM4 simulates for AOD and PR 

projections by 2030 over the region. Figure 1 shows that the CAM4 simulated AOD are lower as compared to MODIS retrievals as a 

result of tropical precipitation in the online simulation as detailed in Lamarque et al. (2011). Despite this observation, AOD CAM4 

simulations correlate positively against MODIS measurements with RMSE = 0.04 and �� = 0.58 over Nairobi (Figure 1a). On the 

contrary, CAM4 overestimates the PR as compared the TRMM actual measurements over Nairobi. The overestimation is attributed to 

the dependence of quality precipitation simulations from CAM4 to the choice of the horizontal resolution used in the retrieval of PR 

over Nairobi (Boyle and Klein, 2010) (Figure 1b). From Figure 1 and based on RMSE = 0.08 and �� = 0.52, it is noticeable that 

AOD and PR CAM4 simulate values can be used to project the irregional evolution with satisfactory uncertainty by 2030.  
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Figure 1a: Cross validation of AOD MODIS retrievals and CAM4 simulations at λ = 550 nm 

 

 
Figure 1b: Cross validation of PR TRMM retrievals and CAM4 simulations. 

 

Error analysis between CAM4 simulations and MODIS measurements shows a close match where �� > 0.58 and RMSE 0.04 (for 

AOD) while �� > 0.52 and RMSE 0.08 (for PR)over Nairobi. The low values of the RMSE shown in Figure 1 enhance the confidence 

in utilizing AOD and PR simulations from CAM4 in environmental related studies. Details of �� and RMSE for the remaining study 

sites are shown in Table 1. Table 1 details the RMSE distributions between the modeled AOD and PR (CAM4 simulated retrievals) 

and MODIS and TRMM retrieved values. 
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Site of Study RMSE in AOD (?@) RMSE in PR (?@) 

Nairobi 0.04 (0.58) 0.08 (0.52) 

Mbita 0.065 (0.73) 0.026 (0.78) 

Malindi 0.06 (0.83) 0.091 (0.40) 

Mau Forest 0.014 (0.67) 0.021 (0.48) 

Mt Kilimanjaro 0.032 (0.59) 0.036 (0.57) 

Kampala 0.029 (0.63) 0.034 (0.56) 

Table 1: RMSE between the simulated CAM4 and MODIS and TRMM observed AOD and PR study sites 

 

High RMSE for simulated CAM4 and TRMM values over the study sites may be attributed to the dependence of quality precipitation 

simulations from CAM4 to the choice of the horizontal resolution used in the retrieval of PR over the site (Boyle and Klein, 2010). On 

the other hand, cross validation between simulated AOD from CAM4 and that retrieved from MODIS relatively low RMSE values 

(0.014-0.065) signifying an appreciable agreement in the two techniques. Therefore, the utilization simulated CAM4 AOD and PR in 

quest to project their future characteristics is possible due to the low RMSE and high �� (see Table 1). 

 

3.1. Projections of Aerosol Optical Depth and Precipitation Rate 

Essentially, several means were utilized to display the SOM array in both AOD and PR over each study site; these are histogram, 

correlation analysis and Sammon map. Based on these results, it is clear that SOM classifies both AOD and PR into 20 clusters based 

on the amount of PR (mm per month) over each site. Of significance to note are the clusters with zero FO (y-axis of the histogram) i.e. 

there is no monthly AOD or PR values that were classified into the corresponding cluster e.g. PR classification over Malindi for 

clusters 10-19 (see Figure 2c, plane 3 x 1). Figure 2 shows a SOM array for both AOD and PR over the study sites during the study 

period. 

 

 
Figure 2a: SOM array for both AOD and PR over Nairobi. 
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Figure 2b: SOM array for both AOD and PR over Mbita. 

 

 
Figure 2c: SOM array for both AOD and PR over Malindi. 
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Figure 2d: SOM array for both AOD and PR over Mau Forest Complex. 

 

 
Figure 2e: SOM array for both AOD and PR over Mount Kilimanjaro. 
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Figure 2f: SOM array for both AOD and PR over Kampala. 

 

In the present study we focused on AOD and PR projections over East Africa by 2030. Figure 3 displays the projected percentage 

change in both AOD and PR based on the CAM4 simulated values by 2030 using SOM technique as described in Sections 2.1 and 2.2. 

 

 
Figure 3: Projected percentage change in both AOD and PR over East Africa based on SOM and simulated CAM4 by 2030 

 

Total AOD is projected to increase between 1.34-2.43 % while PR is projected to decrease between 1.03-1.98 % respectively. The 

projected increase in AOD may be attributed to continual increase in anthropogenic influence of aerosol characteristics over the region 

i.e. vehicular and industrial emissions, deforestation, and biomass burning among others (Vliet and Kinney, 2007; Fairman et al., 

2011; Makokha and Angeyo, 2013; Ngaina and Mutai, 2013; Ngaina et al., 2014). The projected decrease in PR over the region is 

associated to the dependence of Lake-land air mass over Mbita. The projected decrease in PR over the sites will lead to adverse effects 

such as hampering food production therefore impacting negatively on regional food security. These projections are on assumption that 

if no mitigation efforts are implemented to minimize both anthropogenic and natural aerosol modulators over East Africa, then aerosol 

loading increase is imminent.   
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4. Conclusions 
Improved techniques in climate projections and scenarios informs on decision making relating to climate change adaptation. This not 

only enhances the preparedness of key policy making institutions on climate change effects but also allows for advancing mitigation 

efforts beforehand. In the present study, utilization of CAM4 simulates i.e. AOD and PR in the projection of their future evolutionary 

characteristics over the region is appropriate as noted from the low RMSE and high ��. Utilization of the proposed SOM algorithm 

indicated a diminishing PR as projected by the SOM algorithm over the region which may impact negatively on food production by 

2030. Increasing aerosol burdens as projected by the SOM algorithm calls for urgent planning by all stakeholders concerning food 

security in the region and minimizing on the increasing anthropogenic burden on aerosol loading mainly through biomass and refuse 

burning. 
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