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1. Introduction 
Equations of motion long established complicated approaches in their formulations and solutions. After the inception of Newtonian 
mechanics these equations were derived from the forces at play. To make this simpler, Lagrange formulated a method that was based 
on the kinetic and potential energies. For unclear reasons other than the complexity this formalism was unpopular hence the concept 
remained unexplained for a long time. Spiegel [1969] worked using the method for up to two masses suspended in series.The masses 
and their lengths of separation were equal in magnitude. The equations found were given by: 
ଵߠ2̈ + ଶߠ̈ = ଵߠ2−

୥
௟
(1.1) 

and 
ଵߠ̈ + ଶߠ̈ = ଶߠ−

୥
௟
(1.2) 

In latertimes Chow [1995] handled a simple pendulum and a double pendulum, with uneven quantities of mass and length, using the 
Lagrange method.  
The two equations he found are: 
(݉ଵ + ݉ଶ)݈ଵଶ̈ߠଵ + ݉ଶ݈ଵ݈ଶ̈ߠଶ = −(݉ଵ +݉ଶ)݈ଵߠଵg																																																																													(1.3) 
and 
݉ଶ݈ଵ݈ଶ̈ߠଵ+݉ଶ݈ଶଶ̈ߠଶ = −݉ଶ݈ଶߠଶg																																																																																																												(1.4) 
 
There was no effort made to work beyond a double pendulum by the Lagrangian formalism. In the work by Jones and Kush [2006] for 
the examination of chaos variation in multiple pendulum systems with different amounts of energy, no idea of determination of the 
equations of motion was done. They however noted that as the number of links (or masses in our case) increases; there was notable 
increase in divergence with inherent implications of heightened chaotic nature of the system hence the complexity. Thus, with 
increased terms and unknowns, the motion of the system will be majorly characterized by the initial conditions which concur with our 
findings for pendulum cascade. They were specific that with varying masses and lengths, it is more difficult when more masses are 
added to the system, thus admitting that creating higher n-pendula systems is tedious work which made them stop building systems 
after the quintuple pendulum. This is obviously not enough to identify an exact mathematical relationship between the order of chaos 
and the number of links. 
There was an extensive study of coupled systems as a new quantitative system save for the theoretical challenges involved in the 
investigations of such systems. This is in reference to the work of Hedrich [1999,2007]. He worked on vibrations of a multi-pendulum 
system inter-coupled by standard light elements and different properties were explored in which the obtained analytical solutions were 
numerically analyzed. Acheson et al [1993,2005] made annotations on counter intuitive phenomenon of a driven inverted chain 
consisting of N linked pendulums balanced on top of one another. It was realized that the amplitudes diminish with the number of 
pendulums involved in the chain. 
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Furuta [1984] and Spong [2001] proposed and studied numerous extensions of pendulum systems which include various categories of 
elastic and multi-body pendulum models. Nedic [2008] found that the initial conditions in the agreement protocol could be 
manipulated to produce results that satisfy linear constraints and the same can apply to the control of a distributed network of 
linearized pendulums on a line topology. Joot [2010] noted that by introducing additional mass in a system, the interacting  coupling 
terms increase thus complicating the kinetic energy specifications noting that calculating the energy explicitly for a general n-pendula 
system is likely thought to be too pedantic for even the most punishing instructor to inflict on students as a problem. 
 A rigorous study of a multi-pendula system has been carried out. Diminutive research may have been done on these systems but not 
for more than three mass units. This work covers all the aspects of linearly suspended mass units oscillating in a plane. The approach 
is pegged on the derivations of equations of motion using the energy in the systems. The traditional concept of force has been avoided. 
Apart from its utility as a timing device, the pendulum is used as an apparatus in learning of science in school. Its used as a model for 
the study of linear oscillators. In recent times, exciting research activities were noticeable for the study of the robotic marionettes. 
Unlike Alan B and Jindi S (1995) who found that selective partial-state feedback control approach was successful in the non-linear 
unstable and interactive double pendulum system and they projected that it could be applied to the triple pendulum systems for both 
swing-up control and non-linear pendulum position control. 
Mohamad et al [2014] studied the balance control of humanoid robots against external perturbations. The balancing actions are very 
demanding in terms of torque and power requirements for ankle joints. This is more so after strong and sudden impacts. An optimal 
control problem is formulated for the linearized inverted pendulum model to reduce the peak power requirements during ankle 
balancing strategy. This optimal control is calculated numerically and approximated by optimal compliance regulator whose ability is 
evaluated against other optimal methods 
Maziar and Andre [2015]in Germany studied about the leg function and the ground reaction force in legged locomotion. They used 
the leg force modulated complaint hip in a new model for postural control in walking which employs the leg force feedback to adjust 
the hip compliance. This method gives a stable and robust walking in simulations and imitates human-like kinetic behavior. This gives 
the hip torque-angle relation for different walking speeds. The approach may physically implement the virtual pendulum concept in 
human animal locomotion.  
Studies have been done by Prichani et al [2010,2012]and Sakwa et al [2012] about the planner motion of up to ݊masses linearly 
connected. We derived several equations of motion for unequal mass units and at unequal distances apart. We conclude from our work 
that the angular accelerations for each was dependent on the angular displacements of the nearest masses. In our later studies (2017), 
we worked on the Functions of Multi-Pendula Systems in Spatial Motion. We found that the angular accelerations are directly 
proportional to the sum of the products of azimuth velocity and the respective zenith displacement 
 
2. Theoretical Derivations 
For any number of suspended masses in an (x, y, o) plane, moving at small angles of displacement, the equations can be constructed as 
hereunder: 
The position coordinate for the kth particleis designated as, 
௞ݔ) (௞ݕ, = ൫∑ ݈௜ sinߠ௜ ,∑ ݈௜௞

௜ୀଵ
௞
௜ୀଵ cosߠ௜൯(2.1) 

Consequently its velocity is	, ௞ݒ = ∑ ൫݈௜ଶ̇ߠ௜ଶ൯௞
௜ୀଵ + 2∑ ൛݈௜ ௝݈̇ߠ௜̇ߠ௝ cos൫ߠ௜ − ௝൯ൟ௞ߠ

௜ୀଵ
௜ஷ௝

																						(2.2) 

The total kinetic energy in the system with n masses is derived as 

ܶ = ∑ ݉௞
௡
௞ୀ௙(௜,௝) ቊଵ

ଶ
∑ ൫݈௜ଶ̇ߠ௜ଶ൯௡
௜ୀଵ +∑ ൫݈௜ ௝݈̇ߠ௜̇ߠ௝ cos൫ߠ௜ − ௝൯൯௡ߠ

௜ୀଵ
௜ஷ௝

ቋ(2.3) 

While the total potential energy is		ܸ = ∑ ݉௞
௡
௞ୀଵ ൛∑ ݈௜௡

௜ୀଵ − ∑ (݈௜ cosߠ௜)௞
௜ୀଵ ൟg(2.4) 

Using equation (2.3) and (2.4) we computed the Lagrangian of the system to be 

ܮ = ∑ ݉௞
௡
௞ୀ௙(௜,௝) ቊଵ

ଶ
∑ ൫݈௜ଶ̇ߠ௜ଶ൯௡
௜ୀଵ + ∑ ൫݈௜ ௝݈̇ߠ௜̇ߠ௝ cos൫ߠ௜ − ௝൯൯௡ߠ

௜ୀଵ
௜ஷ௝

ቋ − ∑ ݉௞
௡
௞ୀଵ ൛∑ ݈௜௡

௜ୀଵ −∑ (݈௜ cosߠ௜)௞
௜ୀଵ ൟg(2.5) 

which when subjected to the Lagrangian equation of motion డ
డ௧
ቀ డ௅
డఏ̇೔
ቁ − డ௅

డఏ೔
= 0																								(2.6) 

results to the following Lagrangian equations of motion for ݊ unequal masses and lengths; 
∑ ݉௞൫݈௜ଶ̇ߠ௜൯௡
௞ୀ௜ + ∑ ݉௞൛∑ ݈௜ ௝݈̈ߠ௝௡

(௜ஷ௝)ୀଵ ൟ௡
௞ୀ௙(௜ ,௝) = −݈௜ߠ௜(∑ ݉௞

௡
௞ୀ௜ )g(2.7) 

Where ݂: the greater of (݅, ݆).  
The combinations could be, for instance, 
݅ = 1, ݆ = (2,3,4); ݅ = 2, ݆ = (1,3,4); ݅ = 3, ݆ = (1,2,4);ܽ݊݀	݅ = 4, ݆ = (1,2,3).  
Hence using equation (2.7) we constructed the equations of motion as hereunder. 
When ݅ = 1, ∑ ݉௞

ସ
௞ୀଵ ݈ଵ̈ߠଵ +∑ ݉௞݈ଶ̈ߠଶ +ସ

௞ୀଶ ∑ ݉௞݈ଷ̈ߠଷସ
௞ୀଷ + ݉ସ݈ସ̈ߠସ = −݈ଵߠଵ∑ ݉௞

ସ
௞ୀଵ g(2.8) 

	݅ = 2,∑ ݉௞݈ଵ̈ߠଵସ
௞ୀଶ +∑ ݉௞݈ଶ̈ߠଶସ

௞ୀଶ +∑ ݉௞݈ଷ̈ߠଷସ
௞ୀଷ +݉ସ݈ସ̈ߠସ = −݈ଶߠଶ∑ ݉௞

ସ
௞ୀଶ g(2.9) 

݅ = 3,∑ ݉௞݈ଵ̈ߠଵ +ସ
௞ୀଷ ∑ ݉௞݈ଶ̈ߠଶ +ସ

௞ୀଷ ∑ ݉௞݈ଷ̈ߠଷ +ସ
௞ୀଷ ݉ସ݈ସ̈ߠସ = −݈ଷߠଷ∑ ݉௞

ସ
௞ୀଷ g(2.10) 

݅ = 4,݉ସ݈ଵ̈ߠଵ + 	݉ସ݈ଶ̈ߠଶ + ݉ସ݈ଷ̈ߠଷ +݉ସ݈ସ̈ߠସ = −݈ସߠସ݉ସg(2.11) 
Suppose the mass units suspended are ݉ଵ = 6,݉ଶ = 4,݉ଷ = 3	ܽ݊݀	݉ସ = ௜݉	݁ݎℎ݁ݓ,2 × 10ିଶ݇g  with the lengths of separation 
݈௜and the angles of inclination to the vertical as ߠ௜: ݅ = (1,2,3,4). Substituting these values into equations (2.8-2.11) above yield: 
15݈ଵ̈ߠଵ + 9݈ଶ̈ߠଶ + 5݈ଷ̈ߠଷ + 2݈ସ̈ߠସ =  (2.12)																																																																																					ଵgߠ15−
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9݈ଵ̈ߠଵ + 9݈ଶ̈ߠଶ + 5݈ଷ̈ߠଷ + 2݈ସ̈ߠସ =  (2.13)																																																																																										ଶgߠ9−
5݈ଵ̈ߠଵ + 5݈ଶ̈ߠଷ + 5݈ଷ̈ߠଷ + 2݈ସ̈ߠସ =  ଷg(2.14)ߠ5−
2݈ଵ̈ߠଵ + 2݈ଶ̈ߠଶ + 2݈ଷ̈ߠଷ + 2݈ସ̈ߠସ =  (2.15)																																																																																										ଵgߠ2−
The application of the tri-diagonal symmetric inverse matrix operator gives 

⎝

⎜
⎛
݈ଵ̈ߠଵ
݈ଶ̈ߠଶ
݈ଷ̈ߠଷ
݈ସ̈ߠସ⎠

⎟
⎞

=

⎝

⎜
⎜
⎜
⎛
− ଵ

଺
ଵ
଺ 	0 				0

ଵ
଺

− ହ
ଵଶ

ଵ
ସ

				0

		0

0

ଵ
ସ

0

− ଻
ଵଶ
ଵ
ଷ

ଵ
ଷ

− ହ
଺⎠

⎟
⎟
⎟
⎞
൮

ଵߠ15
ଶߠ9
ଷߠ5
ସߠ2

൲g (2.16) 

After computation the resultant equations are: 
ଵߠ̈ = ଵ

ଶ
ଶߠ3) − (ଵߠ5 ୥

௟భ
(2.17) 

ଶߠ̈ = ହ
ସ

ଵߠ2) − ଶߠ3 + (ଷߠ ୥
௟మ

(2.18) 

ଷߠ̈ = ଵ
ଵଶ

ଶߠ27) − ଷߠ35 + (ସߠ8 ୥
௟య

(2.19) 

ସߠ̈ = ହ
ଷ

ଷߠ) − (ସߠ ୥
௟ర

(2.20) 
If the mass units suspended in (a) above were re-arranged such that ݉ଵ = 3,݉ଶ = 6,݉ଷ = 2	ܽ݊݀	݉ସ = ௜݉	݁ݎℎ݁ݓ,4 × 10ିଶ݇g  with 
the lengths of separation ݈௜and the angles of inclination to the vertical as	ߠ௜:	݅ = (1,2,3,4).Substituting these values into equations                
(2.8-2.11) above yield: 
15݈ଵ̈ߠଵ + 12݈ଶ̈ߠଶ + 6݈ଷ̈ߠଷ + 4݈ସ̈ߠସ =  (2.21)																																																																																			ଵgߠ15−
ଵߠ912̈ + ଶߠ12̈ + 6݈ଷ̈ߠଷ + 4݈ସ̈ߠସ =  (2.22)																																																																																							ଶgߠ12−
6݈ଵ̈ߠଵ + 6݈ଶ̈ߠଷ + 6݈ଷ̈ߠଷ + 4݈ସ̈ߠସ =  ଷg(2.23)ߠ6−
4݈ଵ̈ߠଵ + 4݈ଶ̈ߠଶ + ଷߠ4̈ + 4݈ସ̈ߠସ =  (2.24)																																																																																													ଵgߠ4−
From this equation, the determinant of the symmetric matrix operator is 

ተ
15 12 6 4
12 12 6 4
6
4

6
4

6
4

4
4

ተ × 10ିଶ = (3 × 10ିଶ). (6 × 10ିଶ). (2 × 10ିଶ). (4 × 10ିଶ)                        (2.25) 

																																																= ∏ ݉௜௜ୀଵ,ଶ,ଷ,ସ (2.26) 
When the symmetric inverse matrix operator is applied, the resultant matrix equation is 
 

⎝

⎜
⎛
݈ଵ̈ߠଵ
݈ଶ̈ߠଶ
݈ଷ̈ߠଷ
݈ସ̈ߠସ⎠

⎟
⎞

=

⎝

⎜
⎜
⎛
− ଵ

ଷ
ଵ
ଷ

0 			0
ଵ
ଷ

− ଵ
ଶ

ଵ
଺

			0

0

0

ଵ
଺
0

− ଶ
ଷ

ଵ
ଶ

ଵ
ଶ

− ଷ
ସ⎠

⎟
⎟
⎞
൮

ଵߠ15
ଶߠ12
ଷߠ6
ସߠ4

൲ g(2.27) 

 
Solving this equationfor the angular accelerations the results are: 
 
ଵߠ̈ = ଶߠ4) − (ଵߠ5 ୥

௟భ
(2.28) 

ଶߠ̈ = ଵߠ5) − ଶߠ6 + (ଷߠ ୥
௟మ

(2.29) 

ଷߠ̈ = ଶߠ2) − ଷߠ4 + (ସߠ2 ୥
௟య

(2.30) 

ସߠ̈ = ଷߠ)3 − (ସߠ ୥
௟ర

 (2.31) 
If the masses ݉௜ :	݉௜ାଵ = ݉௜ାଶ = ݉௜ାଷ = 5 × 10ିଶ݇g  and ݉௜ାସ = ݉௜ାହ = 3 × 10ିଶ݇g when substituted in equation (2.7) the 
symmetric matrix operator is 
 

⎝

⎜
⎛

21 16 11 6 3
16 16 11 6 3
11
6
3

11
6
3

11
6
3

6
6
3

3
3
3⎠

⎟
⎞

× 10ିଶ                                                                                                       (2.32) 

whose determinant is  
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ተ
ተ

⎝

⎜
⎛

21 16 11 6 3
16 16 11 6 3
11
6
3

11
6
3

11
6
3

6
6
3

3
3
3⎠

⎟
⎞

× 10ିଶተ
ተ                                                                                                     (2.33) 

= (5 × 10ିଶ). (5 × 10ିଶ). (5 × 10ିଶ). (3 × 10ିଶ). (3 × 10ିଶ)                                                 (2.34) 
= ∏ ݉௜௜ୀ௜ାଵ,௜ାଶ,௜ାଷ. .∏ ௝݉௝ୀ௜ାସ,௜ାହ.                                                                                                     (2.35) 
But ݉௜ାଵ = ݉௜ାଶ = ݉௜ାଷ  and  ݉௜ାସ = ݉௜ାହ 
Therefore for ݊(݉௜) = and  ݊൫ ݔ ௝݉൯ = =	the determinant for the symmetric matrix operator  ݕ ݉௜

௫ . ௝݉
௬ . 

Consequently for ݊ unequal mass units the determinant for the symmetric matrix operator is 
ห∑ ݉௞

௡
௞ୀ௜ ∑ ݉௞

௡
௞ୀ(௜ାଵ) ∑ ݉௞

௡
௞ୀ(௜ାଶ) ∑ ݉௞

௡
௞ୀ(௜ାଷ) ⋯∑ ݉௞

௡
௞ୀ(௡ିଶ) ݉(௡ିଵ) ݉௡ห = ∏ ݉௞

௡
௞ୀ௜ (2.36)  

It can be deduced that if all the ݊	mass units are equal then the determinant for symmetric matrix operator = ݉௡  
 
3. Discussion and Conclusion 
The general equations of motion for an n-pendula system are established as well as the Lagrangian of the system. Various matrix 
operators from a variety of combinations of equal and unequal quantities of masses, lengths and angles are constructed. For the 
derivations of equations of motion, the respective inverse matrix operators are used to obtain the subsequent angular accelerations of 
the systems. Each inverse matrix operator is unique to its mother matrix. The application of these operators gives many determinants 
that are also computed to a pattern as explained in the text. 
It might be interesting to advance this study in the determination of the Hamiltonian formulations for n suspended mass units 
oscillating in a plane or in space. This research may prove handy for robotic science, theoretical physics and engineering.  
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