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1. Introduction 
Queuing theory deals with one the most unpleasant experience of life, waiting. Queueing is quiet common in many fields, for 

example, telecommunication, traffic engineering, computing, etc. To characterize a queuing system, we have to identify the 

probabilistic properties of performance measure of the queueing system All probability queueing models have assumed Poisson input 

and exponential service times but the fuzzy queues are much realistic than the normally used crisp queues. In real time the arrival rate, 

service rate is normally defined by linguistic terms such as fast, slow or moderate which can be best described by the Fuzzy sets. 

Queuing systems in Fuzzy have been described many researchers
1-6,

 they have analyzed fuzzy queues using zadeh’s extension 

principle. Parametric non-linear programming approach to fuzzy queues with bulk service and non -linear programming approach to 

derive the membership function of steady state performance measure in bulk arrival system were developed recently
7-8

 .The control 

chart technique applied for M/M/1 crisp queueing model using weighted variance 
9
.Standard control chart applied for(M/Ek/1) 

and(Ek/M/1) models
10 

.In this paper the M/M/1 queuing model is analyzed  for E(Wq) and E(Ws) considering that the arrival and 

service rate are fuzzified (i.e)(FM/FM/1),based on zadeh’s  extension principle the membership function is constructed  for the 

fuzzfied arrivals and service. 

 

2. Model Description 

Consider M/M/1 queueing system with infinite capacity. In this queuing system customers arrive according to Poisson distribution 

with arrival rate λ and inter-arrival arrival time follows exponential distribution with one server. The performance measures of this 

queueing system (crisp) are as follows 
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3. The Parameters of the Control Chart for the Expected Waiting Time in the Queue 

UCL= ( ) 3 Var( )q qE W W+  

CL= ( )
q

E W  

LCL= ( ) 3 Var( )q qE W W−  

(ii) The parameters of the control chart of the expected waiting time in the system are 
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4. Model with Fuzzy Parameter 

Consider a queueing system in which the customer arrive at a single-server facility with arrival rate λ
�

 and service rate µ
�

, where λ
�

 

(Poisson rate) is fuzzy in nature and µ
�

(service rate). Let ( )x
λ

µ �
and ( )x

µ
µ � are membership function of arrival rate and service rate 

respectively. 
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Where ( )S λ
�

and ( )S µ
�

 are the supports of λ
�

 and µ
�

which denote the 

universal set of the arrival rate and service rate respectively. 

Let P(x,y) and ,P λ µ
 
 
 

� � �

denotes the parameters of the control chart relating to average waiting time of customers in the crisp and 

fuzzy environment respectively, where p stands for the control chart parameters CL,UCL and LCL. Since &λ µ
� �

are fuzzy eventually 

,P λ µ
 
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will also be fuzzy in nature. Using Zadeh’s extension principle the membership function of the control chart ,P λ µ
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5. Control Chart Parameter for Mean Waiting Time in the Queue

 The fuzzy control chart parameters of for the ( )
q

E W are 

( )
CL(x,y)
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UCL= CL(x,y) 3 Var(x, y)+  

LCL= CL(x,y) 3 Var(x, y)−
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Now we intend a mathematical programming for deriving membership function for the control chart parameters   CL,UCL and LCL 

by using α -cuts . 

 

6. The α -Cut Approach Based on the Extension Principle 

Denote α cuts of λ
�

(fuzzified arrival) and µ
�

 (fuzzified service) as  
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The above crisp sets may be expressed as  
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The above provides information on the arrival rate and service rate with possibility α  

As a result, the bound of the above intervals can be described as functions of α and can be obtained as 
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Therefore, the α -cuts used to form the membership function. 

 

 

7. Building Membership Function 

Consider the membership function relating to CL for ( )
q

E W as ( )
CL

zµ �
 where { }( ) min ( ), ( ) / z ( , )

CL

z x x CL x y
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µ µ µ= =
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 To deal with the above membership function, we need atleast one of the following two cases to hold such that z ( , )CL x y= and 
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Using (2), (3), (4) & (5) we can write , , y , yL U L U
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8. Non -Linear Program for Lower and Upper Bounds 

Using non-linear program (NLP) we find the lower and upper bounds of the α -cut of ( )
CL

zµ �  corresponding to the two cases 

mentioned in (8) & (9) 
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Using the above mentioned case(i) and (ii) we find the left shape function L(z) and the right shape function R(z) of ( )
CL

zµ �  using 

which we can find the ( )L
CL α and ( )U

CL α . 
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To satisfy the condition ( )
CL

zµ α=� atleast one x and y should falls on the boundary of the equation (10) and (11) which falls under 

the category of parametric NLP. Based on the zadeh’s extension principle and by convexity principle of fuzzy we obtain  
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Yaker ranking method is applied to defuzzify ( )CL
�

of ( )
q

E W into crisp one. The yaker ranking index is  
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By applying similar method, the membership functions of lower and upper bounds of ( )CL
�

(i.e) ( )
UCL

zµ � , ( )
LCL

zµ �  and yager ranking 

indices relating control chart parameters can be derived. 

 

9. Control Chart Parameters for the ( )
s

E W  

The parameters of the fuzzy control chart for the average waiting time in the system are  

( )
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UCL= CL(x,y) 3 Var(x, y)+  

LCL= CL(x,y) 3 Var(x, y)−
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By following the same procedure as we did for previous section we can form the membership function and yaker ranking indices 

relating to ( )
s

E W
 

 

10. Numerical Example  

Consider a single server Poisson queue with mean arrival rate [3, 4,5,6]λ =
�

customers per unit time and service according to 

exponential with mean service rate [14,15,16,17]µ =
�

.lets analyses the mean waiting time in the queue and in the system using fuzzy 

control chart. 

[ ], [ 3,6 ], , y 14 ,17L U L U
x x yα α α αα α α α   = + − = + −     

CONTROL CHART PARAMETERS FOR THE ( )
q

E W
 

The upper and lower bounds of fuzzy control parameters for ( )
q

E W are derived as follows 
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For different values of [ ]0,1α ∈ are the values control chart parameters are calculated in table 1. 

 
α   

L
xα  

U
xα  

L
yα  

U
yα  ( )L

CL α   ( )U
CL α  (U )L

CL α   (U )U
CL α  (L )L

CL α  (L )U
CL α  

0.0000 3.0000 6.0000 14.0000 17.0000 0.0126 0.0536 0.1342 0.3613 -0.1090 -0.2542 

0.1000 3.1000 5.9000 14.1000 16.9000 0.0133 0.0510 0.1388 0.3487 -0.1122 -0.2466 

0.2000 3.2000 5.8000 14.2000 16.8000 0.0140 0.0486 0.1435 0.3366 -0.1155 -0.2393 

0.3000 3.3000 5.7000 14.3000 16.7000 0.0147 0.0463 0.1484 0.3251 -0.1189 -0.2324 

0.4000 3.4000 5.6000 14.4000 16.6000 0.0155 0.0442 0.1533 0.3140 -0.1223 -0.2257 

0.5000 3.5000 5.5000 14.5000 16.5000 0.0163 0.0421 0.1584 0.3035 -0.1258 -0.2192 

0.6000 3.6000 5.4000 14.6000 16.4000 0.0171 0.0402 0.1637 0.2934 -0.1294 -0.2130 

0.7000 3.7000 5.3000 14.7000 16.3000 0.0180 0.0384 0.1691 0.2837 -0.1330 -0.2070 

0.8000 3.8000 5.2000 14.8000 16.2000 0.0189 0.0366 0.1746 0.2744 -0.1368 -0.2012 

0.9000 3.9000 5.1000 14.9000 16.1000 0.0199 0.0349 0.1803 0.2655 -0.1406 -0.1957 

1.0000 4.0000 5.0000 15.0000 16.0000 0.0208 0.0333 0.1862 0.2569 -0.1445 -0.1903 

Table 1:  α cut of arrival and service with fuzzy control chart parameters for ( )
q

E W  
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We note that at from table 1, at α =0we observe that the value of CL lie in the range [0.0126, 0.0536] which implies that CL of 

( )
q

E W  can’t exceed 0.0536 or fall before 0.0126   and UCL lies in the range UCL0.1342 0.3613≤ ≤ .
 

At α =1 we observe that the value of CL lie in the range [0.0208, 0.0333] which implies that the CL of ( )
q

E W  can’t exceed 0.0333 

or fall before 0.0208   and UCL lies in the range UCL0.1862 0.2569≤ ≤ . 

By applying Yager ranking index the expected CL and UCL of ( )
q

E W are  
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By using MATLAB the inverse function of L(z) and R(z) of ( )L
CL α , ( )U
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α  & (UCL)U

α are obtained .the membership 
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Figure 1 : Membership function of CL for E (Wq) Figure 2: Membership function of UCL for E (Wq) 

 

The graph of the membership function of ( )
CL

zµ �
 , ( )

UCL

zµ �
 corresponding to α cuts relating to ( )

q
E W  are shown in fig.1 and 2 

respectively. 

The upper and lower bounds of fuzzy control parameters for ( )
s

E W are derived as follows 
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For different values of [ ]0,1α ∈ are the values control chart parameters are calculated in table 2 

α   
L

xα  
U

xα  
L

yα  
U

yα  ( )L
CL α   ( )U

CL α  (U )L
CL α   (U )U

CL α  (L )L
CL α  (L )U

CL α  

0.0000 3.0000 6.0000 14.0000 17.0000 0.0714 0.1250 0.2857 0.5000 -0.1429 -0.2500 

0.1000 3.1000 5.9000 14.1000 16.9000 0.0725 0.1220 0.2899 0.4878 -0.1449 -0.2439 

0.2000 3.2000 5.8000 14.2000 16.8000 0.0735 0.1190 0.2941 0.4762 -0.1471 -0.2381 

0.3000 3.3000 5.7000 14.3000 16.7000 0.0746 0.1163 0.2985 0.4651 -0.1493 -0.2326 

0.4000 3.4000 5.6000 14.4000 16.6000 0.0758 0.1136 0.3030 0.4545 -0.1515 -0.2273 

0.5000 3.5000 5.5000 14.5000 16.5000 0.0769 0.1111 0.3077 0.4444 -0.1538 -0.2222 

0.6000 3.6000 5.4000 14.6000 16.4000 0.0781 0.1087 0.3125 0.4348 -0.1563 -0.2174 

0.7000 3.7000 5.3000 14.7000 16.3000 0.0794 0.1064 0.3175 0.4255 -0.1587 -0.2128 

0.8000 3.8000 5.2000 14.8000 16.2000 0.0806 0.1042 0.3226 0.4167 -0.1613 -0.2083 

0.9000 3.9000 5.1000 14.9000 16.1000 0.0820 0.1020 0.3279 0.4082 -0.1639 -0.2041 

1.0000 4.0000 5.0000 15.0000 16.0000 0.0833 0.1000 0.3333 0.4000 -0.1667 -0.2000 

 Table 2:  α cut of arrival and service with fuzzy control chart parameters for ( )
s

E W
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We note that at from table 2, at α =0we observe that the value of CL lies in the range [0.0714, 0.1250] which implies that CL of 

( )
q

E W  can’t exceed 0.1250 or fall before 0.0714 and UCL lies in the range U0 C.2 L857 0.5≤ ≤ .
 

At α =1 we observe that the value of CL lies in the range [0.0833, 0.1] which implies that the CL of ( )
q

E W  can’t exceed 0.1 or fall 

before 0.0833 and UCL lies in the range U0 C.3 L333 0.4≤ ≤ . 

By applying Yager ranking index the expected CL and UCL of ( )
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E W are  
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By using MATLAB the inverse function of L(z) and R(z) of ( )L
CL α , ( )U

CL α , (UCL)L

α  & (UCL)U

α are obtained. The membership 

function of ( )
CL

zµ �  and ( )
UCL

zµ �  can be stated as  
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The graph of the membership functions ( )
CL

zµ �  , ( )
UCL

zµ �  corresponding to α cuts relating to ( )
q

E W  are shown in fig.3 and 4 

respectively 

 

 
Figure 3 : Membership function of CL for E (Ws) Figure 4: Membership function of UCL for E (Ws) 

 

11. Conclusion 

The theory of fuzzy has been applied in queuing systems to provide broader application in many areas. We have analyzed the 

performance measures of fuzzfied queueing systems in particular waiting times by applying the concept of fuzzy control chart using 

Parametric non-Linear program through α-cuts of the membership function. This analysis enables system designers in enhancing 

decision.  
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