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1. Introduction 

The n-dimensional hypercube or n-cube is a highly concurrent multiprocessor architecture consisting of 2
n
 nodes each connected to n 

neighbors. Such machines have been advocated as ideal ensemble architectures because of their powerful interconnection. 

The n-dimensional hypercube Qn is an undirected graph whose vertex set consists of all binary vectors of length n and two vertices are 

joined by an edge whenever their binary representation differ in a single position is defined in [3]. The structural properties of 

hypercubes are important in application level. Among other things, we propose a theoretical characterization of the bipartite 

hypercube as a graph using the norm of the vertex which is defined in [4]. 

Note that any hypercube is a bipartite graph with an even number of vertices. 

 

1.1. Definition  

The distance d (u, v) between two vertices u and v in a graph G is the minimum length of a path joining them and if there exists no 

such path then d (u, v) = ∞. 

 

1.2. Definition 

The hypercube (n- cube) Qn, is defined as the graph whose vertex set is the set of ordered n- tuples of 0s and 1s (i.e., in n positions) 

and where two vertices are adjacent if their ordered n- tuples differ in exactly one position. That is, if uv is an edge in Qn, then u and v 

differ in exactly one position among the n-positions. 

The number of vertices in Qn is 2
n
. The number of edges in Qn is (2

n-1
) n. 

 

1.3. Example 

The 3-cube Q3. The number of vertices in Q3  is 2
3 
= 8. The number of edges in Qn is (2

3-1
)3 = 8. 

 

 

 
 

Figure 1: The graph Q3. 
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Abstract: 

Given a n-dimensional hypercube Qn, we form a bipartite structure of Qn with respect to norm of a vertex. The norm of a 

vertex is the number of ones in its binary representation. We prove some theorems which are useful to form the structure of a 

bipartite hypercube with respect to norm of a vertex. Also the circumference of Qn is 2
n
. 
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The 3-D view of the hypercube shown in Figure 1 is defined in [5] also every hypercube Qn is a regular bipartite graph with degree n 

for n ≥1 is proved in [5]. 

 

1.4. Remark 

For any hypercube Qn, rad(G) = diam(G) = n. 

 

� Proof: 

Let Qn be a hypercube. Then every vertex v of Qn is adjacent to n different vertices, which are different from v in a single position. 

Hence every vertex is farthest from a vertex such that the two vertices differ in n positions. Therefore the eccentricity of every vertex 

is n. Hence radius and diameter of every vertex is n. Thus every hypercube is a self-centered and self-periphery graph.  

 

1.5. Definition  

Norm of a vertex v belongs to V(Qn) is the number of 1s appears in the binary representation of v and is denoted by ║v║. 

 

1.6. Definition 

The circumference of a graph G is the length of the longest cycle of G. 

 

2. Construction of a Bipartite Hypercube with Respect to Norm of a Vertex 

Bipartite hypercubes are already studied in [2]. We develop these bipartite concepts with norm of a vertex. Large hypercubes are such 

difficult to form, but using the norm of the vertices we can construct the large n-regular bipartite hypercubes. 

Every hypercube has 2
n 

vertices. We divide the total number of vertices into two partitions, each partition has 2
n-1

 vertices. One 

partition has vertices of odd norm and the other partition has the vertices of even norm. In this paper we will refer to the hypercube 

or n-cube graph, or hypercube or n-cube, as the graph thus defined. 

The graph Q3 in Figure 1 is transformed into 

 

 
Figure 2: Bipartite view of a hypercube 

 

2.1. Theorem  

Let Qn be a bipartite hypercube. Then 

���� , ��� = 	1,3, … − 1					if	�� ∈ �����	�����	�� ∈ �����	���	2,4, … , 											if	�� , �� ∈ �����	���																																	� for n is even and 

���� , ��� = 	1,3, …														if	�� ∈ �����	�����	�� ∈ �����	���		2,4, … ,  − 1				if	�� , �� ∈ �����	���																																		� for n is odd. 

 

� Proof: 

Let Qn be an n-regular bipartite graph. For n is even, let vi belongs to B1(or B2) be a vertex. Then vi is adjacent to n vertices in B2(or 

B1). Take a vertex v1∈B2(or B1) from these n vertices, we get d (vi, v1) = 1. 

Then v1 is adjacent to n-1 vertices other than vi in B1(or B2). Take a vertex v2 ∈ B1(or B2) from these above n-1 vertices. Then d(vi,v2) = 

2, d(vi,v3) = 3, ….., d(vi,vn-1) = n-1. 

Proceeding like this we get the following,  

          .    ���� , ��� = 	1,3, …  − 1					if	�� ∈ �����	�����	�� ∈ �����	���	2,4, … , 											if	�� , �� ∈ �����	���																																	� 
 Similarly, we proceed as above we get the following for n is odd

 ���� , ��� = 	1,3, …														if	�� ∈ �����	�����	�� ∈ �����	���		2,4, … ,  − 1				if	�� , �� ∈ �����	���																																		� 
 

2.2. Remark  

In an hypercube Qn number of vertices of odd norm and number of vertices of even norm is same. 
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2.3. Theorem 

Let vi, vj be two vertices in the n-regular bipartite hypercube Qn. Then d(vi, vj) = n if and only if vi and vj are differ in n positions. 

 

� Proof: 

Let Qn be an n-regular bipartite graph. 

 

2.3.1. Case 

Take n is odd. Assume that d(vi,vj) = n. Then vi ∈ B1(or B2) and vj ∈ B2(or B1). 

First we take the vertex vi belongs to B1(or B2). Then vi is adjacent to n vertices in B2(or B1) such that vi and these n vertices 

differ in one position. Take a vertex v1 which belongs to B2(or B1) from these above n vertices we get  

d(vi, v1) = 1. Then v1 which belongs to B2(or B1) is adjacent to n-1 vertices in B1(or B2) other than vi such that v1 and these n-1 vertices 

differ in one position. Take a vertex v2 which belongs to B1(or B2) from these above n-1 vertices we get d(v1,v2) = 1 and d(vi,v2) = 2. 

Then vi and v2 are differ in two positions. Also v2 is adjacent to n-1 vertices in B2(or B1) other than v1 such that v2 and these n-1 

vertices differ in one position. Take a vertex v3 belongs to B2(or B1) from the above n-1 vertices, we get d(v2,v3) = 1 and d(vi,v3) = 3. 

Then vi and v3 differ in three positions. 

Similarly, we get d(v3,v4) = 1 and d(vi,v4) = 4 where v4 belongs B1(or B2) and , vi and v4 differ in 4 positions. Also we have 

d(v4,v5) = 1 and d(vi,v5) = 5 where v5 belongs to B2(or B1) and vi and v5 differ in five positions. Since n is odd, we get  d(vn-2,vn-1) = 1 

and d(vi,vn-1) = n-1 where vn-1 belongs to B1(or B2) and vi and vn-1 differ in n-1 positions. Hence vi and vj are differ in n positions. 

 

2.3.2. Case 

 Take n is even. Assume that d(vi,vj) = n. Then vi,vj belongs to B1(or B2). 

 First we take the vertex vi belongs to B1(or B2). Then vi beongs to B1(or B2) is adjacent to n vertices in B2(or B1) such that vi 

and these n vertices differ in one position. Take a vertex v1 belongs to B2(or B1) from these above n vertices we get d(vi,vj) = 1. 

Then v1 belongs to B2(or B1) is adjacent to n-1 vertices in B1(or B2) other than vi such that v1 and these n-1 vertices differ in 

one position. As the above case, 

d(v3,v4) = 1 and d(vi,v4) = 4 where v4 belongs B1(or B2) and vi and v4 differ in four positions. 

 d(v4,v5) = 1 and d(vi,v5) = 5 where v5 belongs to B2(or B1) and vi and v5 differ in five positions. 

 Since n is even, we get d(vn-2,vn-1) = 1 and d(vi,vn-1) = n-1 where vn-1 belongs to  

B1(or B2) and vi and vn-1 differ in n-1 positions. Hence vi and vj are differ in n positions. 

Conversely, 

 Assume that vi and vj differ in n positions. 

 Take vi belongs to B1(or B2). Then vi  is adjacent to n vertices in B2(or B1) differ in one position. 

 Therefore d(vi, v1) = 1, where v1 is any vertex in B2(or B1) in the above n vertices. 

 Take a vertex v2 belongs B1(or B2). Then d(v1, v2) = 1, d(v2, v3) = 1,……., d(vn-1, vj) = 1. 

If n is odd, then vj belongs to B1(or B2). 

If n is even, then vj belongs to B2(or B1). 

We have d(vi, v1) + d(v1, v2) + d(v2, v3) + ….. + d(vn-1, vj) = 1+1+1+ ….. +1(n times). 

Hence d(vi, vj) = n.  

 

2.4. Theorem 

Let Qn be an hypercube. Then ║vi║+║ vj ║= n if d(vi, vj) = n. But the converse need not be true. 

 

� Proof: 

Assume that d(vi, vj) = n. Then we have from the above theorem vi,and  vj differ in n positions whenever n is odd or n is even. Hence 

║vi║+║ vj ║= n.  

 

2.5. Definition 

Let vi ,vj be any two vertices in a bipartite hypercube. Then vi and vj are called equi dist-norm vertices to each other if d(vi, vj) = k 

implies that ║vi║+║ vj ║= k. The ordered pair (vi, vj) is called the equi dist-norm pair. 

 

2.6. Definition 

Let vi ,vj be any two vertices in a bipartite hypercube. Then vi and vj are called equi norm-dist vertices to each other if ║vi║+║ vj ║= k 

implies that d(vi, vj) = k. The ordered pair (vi, vj) is called the equi norm-dist pair.  

 

2.7. Remark 

If d(vi, vj) = n, then the pair (vi, vj) is an equi dist-norm pair if and only if (vi, vj) is an equi norm-dist pair. 

 

2.8. Theorem 

For a bipartite hypercube Qn, the total number of equi dist-norm pair is 2
n-1

. 



 The International Journal Of Science & Technoledge  (ISSN 2321 – 919X) www.theijst.com 

 

86                                                          Vol 4  Issue 3                                                   March, 2016 

 

 

 

� Proof:  

We shall prove this theorem by induction on ‘n’. Take n =1 d(0, 1) = 1 implies ║0║+║1║= 1. Similarly for n =2,  

d(00, 11) = 2 implies║00║+║11║=2 and  d(01, 10) = 2 implies ║01║+║10║=2. 

 

 
Figure 3: The cubes 

 

Hence the result is true for n=1 and n=2. That is there is only one pair of equi dist-norm vertices in Q1 and there are two pairs of equi 

dist-norm vertices in Q2. 

Now we assume that the theorem is true for n-1. That is the total number of pair of equi dist-norm vertices in Qn-1 are 2
n-2

. We have to 

show that this theorem for Qn. 

In Qn-1, there are 2
n-1

 vertices and the number of pair of equi dist-norm vertices in Qn-1 are 2
n-2

. In Qn-1, there are 2(2
n-1

) = 2
n
 vertices 

and hence the number of pair of equi dist-norm vertices in Qn are 2(2
n-2

) = 2
n-1

. The theorem has been completed. 

 

2.9. Theorem  

The circumference of the bipartite hypercube Qn is 2
n
, for n	≥2. 

 

� Proof: 

 Let Qn be the n-regular bipartite hypercube. Then │Qn│=2
n
. 

 Hence there are cycles of even length. We shall prove this theorem by induction on ‘n’. 

 Take n = 2. Then │Q2│=2
2
 = 4 and V(Q2) = {00,01,10,11}, 

  E(Q2) = {(00)(01),(01)(11),(10)(11),(00)(11)}. Hence the circumference of Q2 is 2
2
 = 4. 

 Assume that this theorem is true for n-1. Hence circumference of Qn-1 is 2
n-1

. 

That is each partition has 2
n-2 

elements. 

Add each vertex to a partition and make the adjacency with respect to the difference in one position. Hence we get a graph 

with 2
n
 vertices and of circumference 2

n
. Hence circumference of Qn is 2

n
.  

 

2.10. Remark  

There are no cycle of odd length in an hypercube. This is already proved in [5]. Let Qn be a n-regular bipartite hypercube, where n 2. 

Then the induced cyles of Qn are of length 4, 6, 8,….., 2
n-1

.  

The circumference of a hypercube is a Hamiltonian cycle of length 2
n-1

. Hence every hypercube is a Hamiltonian graph. Thus the 

Hamiltonian path of any hypercube is of  length 2
n-1

-1. Also the girth of Qn is 4. 
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