THE INTERNATIONAL JOURNAL OF SCIENCE & TECHNOLEDGE

Bipartite Representation of a Hypercube with Respect to the Norm of a Vertex

A. Anto Kinsley

Associate Professor, Department of Mathematics, St. Xavier's College, Palayamkottai, India **D. Princy**

Research Scholar, Department of Mathematics, St. Xavier's College, Palayamkottai, India

Abstract:

Given a n-dimensional hypercube Q_n , we form a bipartite structure of Q_n with respect to norm of a vertex. The norm of a vertex is the number of ones in its binary representation. We prove some theorems which are useful to form the structure of a bipartite hypercube with respect to norm of a vertex. Also the circumference of Q_n is 2^n .

Keywords: Hypercube, norm of a vertex, degree, equi norm-dist vertices, equi dist-norm vertices, circumference.

1. Introduction

The n-dimensional hypercube or n-cube is a highly concurrent multiprocessor architecture consisting of 2^n nodes each connected to n neighbors. Such machines have been advocated as ideal ensemble architectures because of their powerful interconnection.

The n-dimensional hypercube Q_n is an undirected graph whose vertex set consists of all binary vectors of length n and two vertices are joined by an edge whenever their binary representation differ in a single position is defined in [3]. The structural properties of hypercubes are important in application level. Among other things, we propose a theoretical characterization of the bipartite hypercube as a graph using the norm of the vertex which is defined in [4].

Note that any hypercube is a bipartite graph with an even number of vertices.

1.1. Definition

The distance d(u, v) between two vertices u and v in a graph G is the minimum length of a path joining them and if there exists no such path then $d(u, v) = \infty$.

1.2. Definition

The hypercube (n- cube) Q_n , is defined as the graph whose vertex set is the set of ordered n- tuples of 0s and 1s (i.e., in n positions) and where two vertices are adjacent if their ordered n- tuples differ in exactly one position. That is, if uv is an edge in Q_n , then u and v differ in exactly one position among the n-positions.

The number of vertices in Q_n is 2^n . The number of edges in Q_n is (2^{n-1}) n.

1.3. Example

The 3-cube Q_3 . The number of vertices in Q_3 is $2^3 = 8$. The number of edges in Q_n is $(2^{3-1})3 = 8$.

Figure 1: The graph Q_3 .

The 3-D view of the hypercube shown in Figure 1 is defined in [5] also every hypercube Q_n is a regular bipartite graph with degree n for $n \ge 1$ is proved in [5].

1.4. Remark

For any hypercube Q_n , rad(G) = diam(G) = n.

➤ Proof:

Let Q_n be a hypercube. Then every vertex v of Q_n is adjacent to n different vertices, which are different from v in a single position. Hence every vertex is farthest from a vertex such that the two vertices differ in n positions. Therefore the eccentricity of every vertex is n. Hence radius and diameter of every vertex is n. Thus every hypercube is a self-centered and self-periphery graph.

1.5. Definition

Norm of a vertex v belongs to $V(Q_n)$ is the number of 1s appears in the binary representation of v and is denoted by ||v||.

1.6. Definition

The *circumference* of a graph G is the length of the longest cycle of G.

2. Construction of a Bipartite Hypercube with Respect to Norm of a Vertex

Bipartite hypercubes are already studied in [2]. We develop these bipartite concepts with norm of a vertex. Large hypercubes are such difficult to form, but using the norm of the vertices we can construct the large n-regular bipartite hypercubes.

Every hypercube has 2^n vertices. We divide the total number of vertices into two partitions, each partition has 2^{n-1} vertices. One partition has vertices of odd norm and the other partition has the vertices of even norm. In this paper we will refer to the hypercube or n-cube graph, or hypercube or n-cube, as the graph thus defined.

The graph Q_3 in Figure 1 is transformed into

Figure 2: Bipartite view of a hypercube

2.1. Theorem

Let Q_n be a bipartite hypercube. Then

$$d(v_i, v_j) = \begin{cases} 1, 3, \dots n - 1 & \text{if } v_i \in B_1(or B_2) \text{ and } v_j \in B_2(or B_1) \\ 2, 4, \dots, n & \text{if } v_i, v_j \in B_1(or B_2) \end{cases}$$
 for n is even and
$$d(v_i, v_j) = \begin{cases} 1, 3, \dots n & \text{if } v_i \in B_1(or B_2) \text{ and } v_j \in B_2(or B_1) \\ 2, 4, \dots, n - 1 & \text{if } v_i, v_j \in B_1(or B_2) \end{cases}$$
 for n is odd.

Proof:

Let Q_n be an n-regular bipartite graph. For n is even, let v_i belongs to B_1 (or B_2) be a vertex. Then v_i is adjacent to n vertices in B_2 (or B_1). Take a vertex $v_1 \in B_2$ (or B_1) from these n vertices, we get $d(v_i, v_1) = 1$.

Then v_1 is adjacent to n-1 vertices other than v_i in B_1 (or B_2). Take a vertex $v_2 \in B_1$ (or B_2) from these above n-1 vertices. Then $d(v_i, v_2) = 2$, $d(v_i, v_3) = 3$,, $d(v_i, v_{n-1}) = n$ -1.

Proceeding like this we get the following,

Froceeding like this we get the following,
$$d(v_i, v_j) = \begin{cases} 1, 3, \dots n - 1 & \text{if } v_i \in B_1(or \ B_2) \text{and } v_j \in B_2(or \ B_1) \\ 2, 4, \dots, n & \text{if } v_i, v_j \in B_1(or \ B_2) \end{cases}$$
Similarly, we proceed as above we get the following for n is odd
$$d(v_i, v_j) = \begin{cases} 1, 3, \dots n & \text{if } v_i \in B_1(or \ B_2) \text{and } v_j \in B_2(or \ B_1) \\ 2, 4, \dots, n - 1 & \text{if } v_i, v_j \in B_1(or \ B_2) \end{cases}$$

2.2. Remark

In an hypercube Q_n number of vertices of odd norm and number of vertices of even norm is same.

2.3. Theorem

Let v_i , v_i be two vertices in the n-regular bipartite hypercube Q_n . Then $d(v_i, v_i) = n$ if and only if v_i and v_i are differ in n positions.

> Proof

Let Q_n be an n-regular bipartite graph.

2.3.1. Case

Take *n* is odd. Assume that $d(v_i, v_i) = n$. Then $v_i \in B_1(\text{or } B_2)$ and $v_i \in B_2(\text{or } B_1)$.

First we take the vertex v_i belongs to B_1 (or B_2). Then v_i is adjacent to n vertices in B_2 (or B_1) such that v_i and these n vertices differ in one position. Take a vertex v_1 which belongs to B_2 (or B_1) from these above n vertices we get

 $d(v_i, v_1) = 1$. Then v_1 which belongs to B_2 (or B_1) is adjacent to n-1 vertices in B_1 (or B_2) other than v_i such that v_1 and these n-1 vertices differ in one position. Take a vertex v_2 which belongs to B_1 (or B_2) from these above n-1 vertices we get $d(v_1, v_2) = 1$ and $d(v_i, v_2) = 2$. Then v_i and v_2 are differ in two positions. Also v_2 is adjacent to n-1 vertices in B_2 (or B_1) other than v_1 such that v_2 and these n-1 vertices differ in one position. Take a vertex v_3 belongs to B_2 (or B_1) from the above n-1 vertices, we get $d(v_2, v_3) = 1$ and $d(v_i, v_3) = 3$. Then v_i and v_3 differ in three positions.

Similarly, we get $d(v_3,v_4) = 1$ and $d(v_i,v_4) = 4$ where v_4 belongs B_1 (or B_2) and , v_i and v_4 differ in 4 positions. Also we have $d(v_4,v_5) = 1$ and $d(v_i,v_5) = 5$ where v_5 belongs to B_2 (or B_1) and v_i and v_5 differ in five positions. Since n is odd, we get $d(v_{n-2},v_{n-1}) = 1$ and $d(v_i,v_{n-1}) = n-1$ where v_{n-1} belongs to B_1 (or B_2) and v_i and v_{n-1} differ in n-1 positions. Hence v_i and v_i are differ in n positions.

2.3.2. Case

Take *n* is even. Assume that $d(v_i, v_i) = n$. Then v_i, v_i belongs to B_1 (or B_2).

First we take the vertex v_i belongs to B_1 (or B_2). Then v_i belongs to B_1 (or B_2) is adjacent to n vertices in B_2 (or B_1) such that v_i and these n vertices differ in one position. Take a vertex v_1 belongs to B_2 (or B_1) from these above n vertices we get $d(v_i, v_i) = 1$.

Then v_1 belongs to B_2 (or B_1) is adjacent to n-1 vertices in B_1 (or B_2) other than v_i such that v_1 and these n-1 vertices differ in one position. As the above case,

 $d(v_3, v_4) = 1$ and $d(v_i, v_4) = 4$ where v_4 belongs B_1 (or B_2) and v_i and v_4 differ in four positions.

 $d(v_4, v_5) = 1$ and $d(v_i, v_5) = 5$ where v_5 belongs to B_2 (or B_1) and v_i and v_5 differ in five positions.

Since *n* is even, we get $d(v_{n-2}, v_{n-1}) = 1$ and $d(v_i, v_{n-1}) = n-1$ where v_{n-1} belongs to

 B_1 (or B_2) and v_i and v_{n-1} differ in n-1 positions. Hence v_i and v_j are differ in n positions. Conversely,

Assume that v_i and v_j differ in n positions.

Take v_i belongs to B_1 (or B_2). Then v_i is adjacent to n vertices in B_2 (or B_1) differ in one position.

Therefore $d(v_i, v_1) = 1$, where v_1 is any vertex in B_2 (or B_1) in the above n vertices.

Take a vertex v_2 belongs B_1 (or B_2). Then $d(v_1, v_2) = 1$, $d(v_2, v_3) = 1, \dots, d(v_{n-1}, v_i) = 1$.

If *n* is odd, then v_i belongs to B_1 (or B_2).

If *n* is even, then v_i belongs to B_2 (or B_1).

We have $d(v_1, v_1) + d(v_1, v_2) + d(v_2, v_3) + \dots + d(v_{n-1}, v_i) = 1 + 1 + 1 + \dots + 1(n \text{ times}).$

Hence $d(v_i, v_j) = n$.

2.4. Theorem

Let Q_n be an hypercube. Then $||v_i|| + ||v_j|| = n$ if $d(v_i, v_j) = n$. But the converse need not be true.

➤ Proof:

Assume that $d(v_i, v_j) = n$. Then we have from the above theorem v_i and v_j differ in n positions whenever n is odd or n is even. Hence $||v_i|| + ||v_j|| = n$.

2.5. Definition

Let v_i , v_j be any two vertices in a bipartite hypercube. Then v_i and v_j are called *equi dist-norm* vertices to each other if $d(v_i, v_j) = k$ implies that $||v_i|| + ||v_j|| = k$. The ordered pair (v_i, v_j) is called the *equi dist-norm pair*.

2.6. Definition

Let v_i , v_j be any two vertices in a bipartite hypercube. Then v_i and v_j are called *equi norm-dist* vertices to each other if $||v_i|| + ||v_j|| = k$ implies that $d(v_i, v_i) = k$. The ordered pair (v_i, v_i) is called the *equi norm-dist pair*.

2.7. Remark

If $d(v_i, v_j) = n$, then the pair (v_i, v_j) is an equi dist-norm pair if and only if (v_i, v_j) is an equi norm-dist pair.

2.8. Theorem

For a bipartite hypercube Q_n , the total number of equi dist-norm pair is 2^{n-1} .

Proof:

We shall prove this theorem by induction on 'n'. Take n = 1 d(0, 1) = 1 implies ||0|| + ||1|| = 1. Similarly for n = 2, d(00, 11) = 2 implies ||00|| + ||11|| = 2 and d(01, 10) = 2 implies ||01|| + ||10|| = 2.

Figure 3: The cubes

Hence the result is true for n=1 and n=2. That is there is only one pair of equi dist-norm vertices in Q_1 and there are two pairs of equi dist-norm vertices in Q_2 .

Now we assume that the theorem is true for n-1. That is the total number of pair of equi dist-norm vertices in Q_{n-1} are 2^{n-2} . We have to show that this theorem for Q_n .

In Q_{n-1} , there are 2^{n-1} vertices and the number of pair of equi dist-norm vertices in Q_{n-1} are 2^{n-2} . In Q_{n-1} , there are $2(2^{n-1}) = 2^n$ vertices and hence the number of pair of equi dist-norm vertices in Q_n are $2(2^{n-2}) = 2^{n-1}$. The theorem has been completed.

The circumference of the bipartite hypercube Q_n is 2^n , for $n \ge 2$.

Let Q_n be the *n*-regular bipartite hypercube. Then $|Q_n| = 2^n$.

Hence there are cycles of even length. We shall prove this theorem by induction on n.

Take n = 2. Then $Q_2 = 2^2 = 4$ and $V(Q_2) = \{00,01,10,11\}$,

 $E(Q_2) = \{(00)(01), (01)(11), (10)(11), (00)(11)\}$. Hence the circumference of Q_2 is $Q_2 = 4$.

Assume that this theorem is true for n-1. Hence circumference of Q_{n-1} is 2^{n-1} . That is each partition has 2^{n-2} elements.

Add each vertex to a partition and make the adjacency with respect to the difference in one position. Hence we get a graph with 2^n vertices and of circumference 2^n . Hence circumference of Q_n is 2^n .

2.10. Remark

There are no cycle of odd length in an hypercube. This is already proved in [5]. Let Q_n be a n-regular bipartite hypercube, where n 2. Then the induced cyles of Q_n are of length 4, 6, 8,...., 2^{n-1} .

The circumference of a hypercube is a Hamiltonian cycle of length 2^{n-1} . Hence every hypercube is a Hamiltonian graph. Thus the Hamiltonian path of any hypercube is of length 2^{n-1} -1. Also the girth of Q_n is 4.

3. References

- i. F. Buckley and F. Harary, Distance in Graphs, Addison-Welsey, Reading, MA (1990).
- ii. F. Harary, J. P. Hayes and H-J. WU, A survey of the theory of hypercube graphs, Comput. Math. Applic. 15 (1988), 277–
- iii. G. Chartrand and P. Zhang., Introduction to Graph Theory, Tata McGraw Hill Publishing Company Limited, New Delhi (2006).
- iv. Tomáš Dvořák, Petr Gregor¹ and Václav Koubek, Spanning paths in hypercubes, Discrete Mathematics ad Theoretical Computer Science(DMTCS) proc. AE(2005), 363-368.
- v. Youcef Saad and Martin H.Schultz, Topological Properties of Hypercubes, Research Report, YALEU/DCS/RR- 389 (June
- vi. Zibgniew LONC, Decompositions of Hypercubes into Hyperstars, Discrete Mathematics, 66, 157-168(1987).