
 The International Journal Of Science & Technoledge (ISSN 2321 – 919X) www.theijst.com

128 Vol 4 Issue 4 April, 2016

THE INTERNATIONAL JOURNAL OF

SCIENCE & TECHNOLEDGE

Code Hound – Security Analyzer in C/C++ Programs

1. Introduction

C/C++ is one of the foundations for modern information technology (IT) and computer science (CS).
Many working principles of IT and CS, such as programming languages, computer architectures, operating systems, network
communication, database, graphical user interface (GUI), graphics, image processing, parallel processing, multi-threads, real-time
systems, device drivers, data acquisition, algorithms, numerical analysis, and computer game, are based on or reflected in the
functionalities and features of C.
The programming languages such as C/C++ suffer from memory management and security of code especially when their codes are
used in critical systems. Therefore, we need an efficient mechanism to detect memory and type errors (Mcheick, Dhiab, Dbouk &
Mcheik, 2010).
Even though C/C++ is an excellent programming language, there are many security considerations on coding. C is a powerful, robust
language build with strong security features. The paper is structured as follows: Section II presents literature survey discussing the
vulnerabilities when programming. In section III, a scheme is proposed for statically analyzing a C/C+++ program and Summary and
Conclusions are given in Section IV.

2. Literature Survey
There are numerous ways through which a hacker can compromise the security of a system and access private and personal data. With
years of research, computer scientists were successful to figure out several vulnerabilities in programming languages like C and C++.
Of all vulnerabilities identified in computer applications, problems caused by unchecked input are recognized as being the most
common (Livshits & Lam, 2005). Many solutions were suggested to avoid security breaches. These solutions intended to protect the
user by hampering access to some platform constructs and APIs which could be exploited by malware, such as accessing the local
filesystem, running arbitrary commands, or accessing communication networks. But not all solutions were effective enough to stop the
hackers from running malicious codes, exposing the user to several attacks like D-DOS, DOS etc. Soon security related alternative
methods for known exploits started to develop, but even these alternatives were not attained with success because the user didn’t use
them promptly (Viega, Mutdosch, & McGraw, Felten, 2000). Surveys and consensus showed that lack of awareness by many users
about the vulnerability itself also, how to remove them.

2.1. Reasons for Vulnerabilities in C/C++

According to CERN Computer Security, most vulnerabilities in C are related to buffer overflows and string manipulation. In most
cases, this would result in a segmentation fault, but specially crafted malicious input values, adapted to the architecture and
environment could yield to arbitrary code execution (CERN Computer Security Team, 2016).

Akash Govind
Student, Department of Information Technology, SRM University, Kattankulathur, Chennai, Tamil Nadu India

Avinash Kumar Verma
Student, Department of Information Technology, SRM University, Kattankulathur, Chennai, Tamil Nadu India

Radha Singhal
Student, Department of Information Technology, SRM University, Kattankulathur, Chennai, Tamil Nadu India

Akshay Singh Kanwar

Student, Department of Information Technology, SRM University, Kattankulathur, Chennai, Tamil Nadu India

Abstract:

The exponential development in the field of Information Technology has led to the enormous increase in financial, personal

and statistical data which, if compromised, can cause irreparable loss. Hackers exploit the vulnerabilities in the application

code to use this data to their advantage. One of the best ways to identify the exploits in any software application is to use

static analysis. This paper addresses some well- known vulnerabilities found in the C and C++ programs that can be used

by an attacker to conduct malicious actions and, the paper also details about statically analyzing the vulnerabilities in the

C/C++ code.

Keywords: C/C++, vulnerability, attack, program.

 The International Journal Of Science & Technoledge (ISSN 2321 – 919X) www.theijst.com

129 Vol 4 Issue 4 April, 2016

2.2. Programming faults in C/C++ (Seacord, 2005)

1. Buffer overflow vulnerability
Unbounded string copies occur when data is copied from an unbounded source to a fixed length character array (for example, when
reading from standard input into a fixed length buffer). Example,
#include <iostream>

void main(void)

{

 char Password[8];

 puts("Enter 8 character password:");

 gets(Password);

}

The above code may lead to out of bound array indexing and also buffer overflow. Due to the buffer overflow, the C/C++ programs
provide illegal privileges to the hacker. Attackers can run arbitrary codes to conduct malicious actions.

2. Blocks without braces vulnerability
This vulnerability occurs when the condition blocks like if, else, while, try, catch are not within the braces. Example, if (condition ==

true) // execute code
The attacker may create a situation such that instead of running the content inside if block, the content in the else block gets executed,
which is called resource tampering attack.

3. Unbounded string copy- vulnerability
This vulnerability arises when a programmer tries to copy data from once location to another location where the source is larger than
the destination. Example,
#include <iostream>

int main(int argc, char *argv[])

{

 char name [20];

 char name1[21];

 gets(name);

 gets(name1);

 strcpy(name, name1);

 return 0;

}

Here, a character array name of size 20 bytes can be overflown using character array of size 21 bytes.

4. Unexpected behavior of for loop
Unexpected execution condition of for loop leads to this vulnerability. Example, for (int i = 0 ; ; i++) { // code }
This leads to infinite execution of for loop.

5. Zero-length arrays vulnerability
The zero length array vulnerability arises when an empty array is declared in the program, i.e., an array with zero length size is
executed. Example,
int arr1 = new int[0];

int arr1 = new Int[]

{ };

The above code snippet results in unreleased resources attacks.

6. Negative length arrays vulnerability
 Negative length array vulnerability might occur when the array is initialized with a value smaller than zero, or the array length goes to
negative value because of negligent computations in the program. Example, int [] temp = new int [-1];
 This can lead to buffer overflow or integer overflow leading to a denial of service attacks

7. Rethrowing exception vulnerability
Rethrowing the exception multiple times causes a denial of service attacks. Example, catch(whatever exception e) {throw e;}

8. Abrupt program termination vulnerability
This vulnerability might occur when the function exit() is used to abruptly exit the program. This can lead to DOS attacks.

 The International Journal Of Science & Technoledge (ISSN 2321 – 919X) www.theijst.com

130 Vol 4 Issue 4 April, 2016

9. Return null vulnerability
This vulnerability occurs when null is returned by a function. Example, return null;
The above may result in abnormal program termination when the calling function performs operations on null and results in denial of
service attack.

2.3. Attacks due to flaws in the code (Younan,2012) (Constatine, 2013) (Abdullah, Aklima, Håkan & Robert, 2010) (Rutar, Almazan &

Foster, 2004)

10. Denial of service attack
The gets() method has no upper bound on the number of characters to be read from standard input. As a result, the attacker can easily
overflow the buffer and creates a possibility of overflowing the memory causing a DOS attack.

11. Path manipulation Attack
The path manipulation attack arises when the user input is directly embedded into the program and executed, without validating the
correctness and appropriateness input. The attack becomes more critical if the input values are directly embedded into path statements
that read a critical system resource (example, a file) and the program executes them with elevated privileges.

3. Proposed Approach

Need for a static analyzer seems crucial and is highly recommended. The root cause behind the exploits in any language is the lack of
awareness and negligent programming. Hence, a static analyzer analyzes a piece of code supplied to it and hence detects security
vulnerabilities which can be avoided statically. (Chess &West, 2008)
This paper proposes a static analyzer called CodeHound, version 1.0, developed in C# Windows Forms for finding vulnerabilities
caused by unchecked inputs and detects all vulnerable functions. CodeHound reads a C/C++ program as an input as a file. It then
checks the existence of the vulnerable functions in the program. In this world of continuous evolution, one extra feature which makes
the software unique is the ability to dynamically add vulnerability rules and their alternatives, so as to compensate for the C/C++
functions which may be proved to be vulnerable in future. These vulnerabilities are stored in a database with their corresponding
alternatives. Finally, if any vulnerability exists in the program among the pre-listed vulnerabilities or dynamically added
vulnerabilities, then the system prompts the user about the vulnerability and suggests an alternative.

Figure 1: Prototype for the static analyzer.

This tool, as shown in Figure 01, finds all potential matches statically.
CodeHound reads the input, i.e., the C/C++ code line by line and comparing every word with that in the database and pre-listed
vulnerabilities. Upon comparison, all the vulnerable methods used in the program are listed with the alternatives. If all the
vulnerabilities are replaced by their alternatives, the program’s security is enhanced.

4. Summary & Conclusions

The key conclusion of the entire study can be packed down to one sentence: exploits cannot be completely brought down to zero by
releasing patches or writing new alternative secure functions. Users usually ignore updates and cyber criminals, knowing that C/C++
is used by an enormous number of people and enterprises, never miss a chance of catching a vulnerability in the software so they can
exploit them.
The major benefit of static code analysis is that it can help the developer to figure out vulnerabilities in a program early in
development cycle which helps to minimize the cost. Furthermore, static analysis is one of the safest options to have control over the
attackers.

5. Acknowledgment

The first author takes this opportunity to express his profound gratitude and deep regards to all the professors for their exemplary
guidance, monitoring, and constant encouragement and also obliged to all staff members of SRM University, Chennai, for their
valuable guidance.

 The International Journal Of Science & Technoledge (ISSN 2321 – 919X) www.theijst.com

131 Vol 4 Issue 4 April, 2016

6. References
i. Mcheick, H., Dhiab, H., Dbouk, M., & Mcheik, R. (2010). Detecting Type Errors and Secure Coding in C/C++ Applications.

Proceedings of the IEEE/ACS International Conference on Computer Systems and Applications, 1-9.
ii. Benjamin Livshits, V., Lam, M S. (2005). Finding Security Vulnerabilities in Java Applications with Static Analysis.

Proceedings ISSYM’05 proceedings of the 14th conference on USENIX Security Symposium. 1-18.
iii. Viega, J., Mutdosch, T., & McGraw, G., Felten, E. W. (2000). Statically Scanning Java Code for Security Vulnerabilities.

14th USENIX Security Symposium.
iv. CERN Computer Security Team. (2016). Retrieved from

https://security.web.cern.ch/security/recommendations/en/codetools/c.shtml
v. Seacord R. (2005). Secure coding in C and C++: Strings. Retrieved from

http://www.informit.com/articles/article.aspx?p=430402&seqNum=2
vi. Younan, Y., Security research program, Research in motion. (2012). C and C++: vulnerabilities, exploits and

countermeasures. Retrieved from
https://handouts.secappdev.org/handouts/2012/Yves%20Younan/C%20and%20C++%20vulnerabilities.pdf

vii. Constatine., L. (2013). Most Business network riddled by vulnerable JAVA installation. Retrieved from
http://www.pcworld.com/article/2044623/most-enterprise-networks-riddled-with-vulnerable-java-installations-report-
says.html

viii. Abdullah, Al M., Aklima, K., Håkan, K., & F. Robert. (2010). Comparing Four Static Analysis Tools for Java Concurrency
Bugs. Blekinge Institute of Technology, Karlskrona, Sweden.

ix. Rutar, N., Almazan, C.B., & Foster, J.S. (2004). A Comparison of Bug Finding Tools for Java. Software Reliability
Engineering, 2004. ISSRE 2004. 15th International Symposium.

x. Chess, B., & West, J. (2008). Secure Programming with Static Analysis. (1st ed.). Boston, MA, USA: Addison-Wesley.

