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1. Introduction 
Medical Images like MRI, CT (Computed Tomography) etc provide us with a detailed 3-D study of the internal organs [1], [7] [8], [9]. 

Various kinds of information are extracted from these images subject to the organs under examination. As these images are usually 

affected by noise and poor contrast, if not enhanced properly the concluding results will be inaccurate. The area of medical imaging is 

perturbed with this problem. The solution is to reduce the noise while preserving the details of the image. The extent to which blurring 

has to be done should be under control. Many studies are done on noise removal and edge preserving methods. All these methods are 

well known but briefly discussing them will help to differentiate how anisotropic diffusion and topological derivative is better than 

these methods and more application oriented. 

Important denoising methods are: 

 

1.1. Median Filtering 

As image filtering is broadly classified as linear and nonlinear of which median filtering is of type non linear [1]. It is an effective 

method to reduce noise (especially salt and pepper noises) and also preserve the edges. The median filter moves through the pixels of 

the image replacing each value with the neighboring pixels. The area (made up of pixels) surrounding the concerned pixel is called a 

window. The median is calculated by sorting all the pixels in the window in numerical order and replacing the pixel under 

consideration with the median value of the sorted pixels in the window. 

 

1.2. Hybrid Median Filtering 

Images are to some extent corrupted by Impulse noise. Impulse noises occur in an image due to transmission errors, malfunctioning of 

the camera pixels, faulty memory locations and other such factors. Impulse noises are classified in two major types: 

a) Salt and pepper noise: impulse values are represented as numerical values in the range of 0 and 255. The salt and pepper 

noise have equal height of impulses. 

b) Random-Valued Impulse Noise: These types of noises have unequal height of impulses. 

 These Hybrid median filters are non linear class of windowed filters which removes noise after preserving the edges. The unique 

feature of hybrid median filtering is its corner preserving characteristics. The principle of working of the hybrid median filter is by 

constantly altering the window shape and taking the median of the calculated median values and applying on the pixel under 

consideration. The hybrid median takes two medians: in an “X” and in a “+” centered on the pixel. The output is the median of these 

two medians and the original pixel value. 

 The commonly used edge-preserving methods are the Bayesian Estimate, the Maximum Likelihood (ML) that helps us to analyze the 

concerned image more clearly from a corrupted image (that contains Gaussian Noise). Giving a brief about each of the following 

techniques: 
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1.3. Bayesian Estimate 

Bayesian Estimation takes into consideration the prior knowledge of the situation under study [6], [7]. Bayesian Estimation technique 

is based on Posterior Probability that says that the degree of one’s certainty is based on a given situation. According to Bay’s law, the 

posterior probability is proportional to the product of likelihood and the prior probability. Likelihood means the information present in 

the new data and prior probability gives us the degree of certainty concerning the situation before the data is taken. Posterior 

Probability mainly describes the state of certainty of any possible image, but Bayesian Estimation proceeds by taking into 

consideration a single image that maximizes the posterior probability. This type of estimate is also called MAP estimate. Choosing the 

prior is critical in this method which makes it unique from the other methods. 

 

1.4. Summary of Posterior Probability and Priors 

Let x be the parameter on which we wish to improve our knowledge. We perform some experiments and collect some data d. the 

present state of certainty is characterized by the probability density function p(x). The joint probability density function is given by the 

equation 

P(x,y)=p(y|x)p(x) ………………………….. (1) 

Substituting d for y in the above equation and solving it both the ways (keeping both an and y fixed one at a time) we get the Bay’s 

Law as 

p(x|d) = p(d|x) p(x) ……………………………..(2) 

                                                                         p(d) 

We call p(x|d) as the posterior probability density function as it effectively follows the   experiment. It is the conditional probability of 

x given the new data d. The probability   density function p(x)is called prior as it represents state of knowledge before the experiment. 

The term p(d|x) is called likelihood as it expresses the probability of data d given any particular x. 

 

2. Choice of Estimator 

We need to express p(x|d) in a more concise term as it contains more information than is required. The critical point is that making 

cost analysis as the basis the Bayesian approach provides an optimal way to interpret the posterior probability. To achieve optimality, 

we also need to consider the various costs (risks) associated with the kind of errors in the estimation process. 

A standard measure of the accuracy of the result is the variance (mean square error). The expected variance of a parameter ˆx is  

∫ p(x|d) | x- x
^

 |
2
 dx  ………………………………..(3) 

                 

It can be shown that the estimator that minimizes the posterior probability density function is 

x
^

 = x  = ∫ xp(x|d) dx………………………………(4) 

 

2.1. Use of These Parameters in Image Analysis 

 

2.2.1. Posterior Probability 

Given the data g, the posterior probability of any image f in terms of the proportionality can be expressed as 

p(f|g) ∞ p(g|f)p(f) …………………………….…(5) 

The negative logarithm of the posterior probabi\lity density function is given by 

                                                                   -log[p(f|g)] = Ф(f)=ᴧ(f)+π(f)………………………….(6)                

In the above equation the first term comes from the likelihood and the second term from the prior probability.  

                Priors  
A Gaussian density function is used for the prior whose negative logarithmic term may be written in simplified form as 

                                                       -log[p(f)] = π(f) = 1/2σf
2
|f- f |

2
………………………………(7) 

              The MAP estimate is a solution to the set of linear equation 

                                                      ▼fФ = - 1 /σ
2

n H
T
(g-Hf) + 1/ σ

2
f ( f- f )=0…………………….(8) 

These equations are rearranged to express the solution for ‘f’ in terms of simple matrix      operation. The properties of this solution in 

the use of image reconstruction shed light on the general characteristics of the MAP solution. The use of priori known constraints, 

such as non negativity along with Gaussian prior has shown benefits for reconstruction from limited data. 

 

2.2. Maximum Likelihood Estimation 

This is mainly used for the image contrast enhancement. Image contrast is the difference between the visual property of the object that 

distinguishes it from another object and the back ground of the image. Contrast property helps the human eye to locate the noticeable 

differences in an image [8]. 

In the context of image processing a single mode distribution for text and a multi-mode for back ground are usually used. Normally a 

Gaussian model is used for each mode in these distributions. Distributions are considered as highly local and we take the back ground 
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distribution of a pixel as a single mode one. The question is how to model the behavior of an image and background information in 

features space. Two simple basic models can be used to model each of them. 

 

i) Histogram Based Model 

ii) Gaussian Model 

In Histogram based model each class is estimated according to its probability density function. The Maximum Likelihood Estimation 

is given by 

µml
 
(x) = arg Max{f(x|µ)}

………………………………………………….
 (9) 

where 

f(x|µ) = f(x1|µ),f(x2|µ),…f(xn|µ)…………………………….(10) 

 

is the likelihood function. The maximum likelihood estimation of µ is obtained as the solution to 

(ð/ðµ)f(x|µ)µ= µml=0………………………………………………………………(11)  and 

(ð
2
/ ð

2
u)f(x|µ) µ= µml=0 <0………………………………………………………(12) 

 

The goal of MLE is to binarize the image and separate them from the background and possible interfering patterns. 

Other edge-preserving methods include Markov Random Field (MRF) based method where the posterior conditional probability is 

maximized that is later used to restore the image. There is also adaptive smoothing filter based method that is used to denoise an 

image preserving the edges. The pixel intensities is used as a measure for discontinuities. 

Apart from the above mentioned methods, I would like to elaborate on two methods Anisotropic Diffusion suggested by Perona and 

Malik and Topological derivatives basically used to enhance a medical image. 

 

2.3. Anisotropic Diffusion 

This method deals with scale-space description of images and edge detection [3],[4]. The main use of diffusion in image processing is 

to remove noise using a partial differential equation (PDE). The heat equation or isotropic diffusion equation is given by 

ðu/ðt = div(k▼u)………………………………(13) 

where u = u(x,y,t) the coordinates of the image that is being enhanced in the continuum domain at an instant t. The input image is 

given by u(x,y,0) as the initial condition for the above equation. The pair of coordinates (x,y) specifies a spatial position in the image 

and t is the time parameter. Application of this equation to the input image is similar to applying a Gaussian filter that produces a 

blurring effect and reduces the sharpness of the image edges. 

In this approach suggested by Perona and Malik, an anisotropic coefficient k(x) is used to “stop” the diffusion over the edges of the 

image: 

ðu/ðt = div(k(x)▼u)………………………………………(14) 

The function k(x) is chosen to satisfy that k->0 as x->α, so as to stop the diffusion process in the presence of large gradients. As per 

Perona and Malik k(x) should be 

                                   

K(x, K) =    1/ (1 + x
2
/k

2
)…………………………….(15) 

                                                         

where K is appositive constant. There are different ways to compute the value of k(x). For example if a noisy image needs to be 

enhanced, preserving the image boundaries and reducing as much noise as possible then k can be k =k(▼u). So an alternative 

considering only two possible values of k was studied, where k € {0, 1}. 

There is another variation of anisotropic diffusion model which is called as detail –preserving anisotropic diffusion model that is used 

for image restoration. This model not only preserves the edges of an image but also retains the fine details while smoothing noise in an 

image. It does so by smoothing the non-uniform background and noisy region in the sensed image. It is seen that the neighbor hood of 

the inter region edges generally has both high gradient magnitudes and high gray level variances. In order to preserve fine details after 

removing noise, both the gray-level variance and gradient are considered as two local pixel features. 

If we take (x, y) as the coordinate as the coordinate of the image pixel at iteration t, the gray level variance is calculated from its 3 × 3 

neighborhood, i.e. 

ð1
2
 (x, y) = 1/9 ∑

−=

1

1i

∑
−

1

1j

[I1(x + i, y + j) - I (x, y)]
2
………………..(16) 

where I (x, y) is the mean of gray levels in the 3×3 neighborhood window. After incorporating both local features of gray-level 

variance and gradient in the diffusion process, the diffusion coefficient function is revised as 

g(▼I 
i
t (x , y), σ

2
t,N (x ,y)) = 1/ [1+( ▼I 

i
t (x , y), σ

2
t,N (x ,y))

2
]……………(17) 

                                                                                                    k0 

where k0 is a positive constant used as an edge strength threshold. So the revised diffusion model is given by the equation 

I t+1(x,y) = It (x,y) + 1/4∑
=

4

1i

[g (▼ I
i
t (x ,y), σ

2
t,N (x ,y)) . ▼ I

i
t (x  ,y)]…………(18) 
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If σ
2

t,N (x ,y) is fixed throughout the entire image, σ
2

t,N / k0 will become a constant and the equation 17 above will become the P-M 

diffusion model. 

 

2.4. Topological Derivative 

Topological derivative is mainly used for segmentation in image analysis that helps us to identify major tissues and organs of patient 

specific data [2]. Topological derivative is used to quantify the cost associated with the segmentation of image data. It also helps us to 

quantify the sensitivity of a problem when the concerned image is perturbed by the heterogeneity of the surrounding.  

If classical image segmentation techniques are used then basic approaches are used i.e. discontinuities and similarities. These basic 

approaches are not suitable for the images that are surrounded by other image structure of similar image intensity. Other image 

segmentation approaches like the use of Level Sets though give good results but have high computational costs 

 

. 

Figure 1: Main Concept of Topological Derivative 

 
The image data can be considered as a two dimensional matrix of pixels or three dimensional matrix of voxels (image element) [5]. 

Each of the image elements has associated image intensity. So, the original image data can be a real valued function v that is constant 

at image element level: 

v € V = { w € L
2
 (π) ; w is constant at image element level}……………(19) 

Let C be the set of os classes, such that 

C = {ci € R ; i = 1,…., Nc}…………………………………(20) 

Where Nc is the number of predefined classes in which the original image v is segmented in which ci represents the intensity that 

characterizes the ith-class. 

So as per Topological derivative image segmentation can be defined as, as the image data v € V, a segmented image u* € U exists that 

minimizes a function J: U->R that is associated as the cost of specific segmented image in which U is defined as: 

U = {u € V: u(x) € C, ∀ x € π}…………………………………………(21) 

The following cost function J associated to a segmented image u € U is given as; 

J (π) =1/2 ∫  π   K▼ Ф . ▼ Ф dπ + 1/2 ∫  π (Ф-(v-u))
2
 dπ………………………….(22) 

where Ф is the solution of the following problem. Associated with Ф is defined the function Фє that is the solution of a perturbed 

variation formulation. Therefore, as per this model the perturbed cost functional become 

J (πє) =1/2 ∫  π   K▼ Фє . ▼ Фє dπ + 1/2 ∫  π (Фє-(v-uT))
2
 dπ……………………(23) 

So applying topological derivative on domain under consideration π is non uniform as of a hole, an inclusion of a term in a small 

region Bє (where Bє is a ball of radius є), the topological derivative derived from the equation basic equation  

J (πє) = J (π) + f(є) DT(
^

x ) + o(f(є))……………………………………….(24) 

 

Can be redefined as an integral defined on the boundary of the ball ðBє as: 

DT(
^

x ) = - 
0-

lim
>∈

 1/f ’(є) ∫  ðBє(  ∑
∈

e

-  ∑
∈

i

) n. n………………………….(25) 

                                                             

3. Conclusion 

Simple spatial averaging over neighboring pixels reduces the noise signal amplitude but degrades sharp features and produces a 

blurring effect. This effect can be reduced by using non-linear filters. Even median filters have the ability to retain borders, but image 

details are lost. So the Anisotropic Diffusion by P. Perona and J. Malik enhances an image keeping the boundaries intact and blurring 

the image to the extent necessary. The topological derivates helps to quantify the problem if the image is perturbed by any hole. It 

helps in segmenting those images that are surrounded by similar images of same characteristics and thus helps us to analyze the image 

more vividly. Topological Derivatives are basically used to optimize any problem and has shown excellent results as and when applied 

to image segmentation in the domain of image processing. 



 The International Journal Of Science & Technoledge  (ISSN 2321 – 919X) www.theijst.com 

 

30                                                          Vol 4  Issue 6                                                   June, 2016 

 

 

4. References      
i. W.Gonzalez, ”Digital Image Processing”, 2

nd
 Ed. Prentice Hall, Year of Publication,2008:378   

ii. I. Larrabide, A.A. Novonty, R.A. Feijoo, E.Taroco,” A Medical Image Enhancement Algorithm Based on Topological 

Derivative and Anisotropic Diffusion”,LNCC/MCT,Brasil,25651-075 

iii. Shin-Min Chao; Du-Ming Tsai; Wei-Yao Chiu; Wei-Chen Li, “Anisotropic diffusion-based detail-preserving smoothing for 

image restoration” ,  2010 IEE Conference on Image Processing,1522-4880,26-29 Sep 2010. 

iv. Nezamoddin N. Kachouie, “Anisotropic Diffusion for Medical Image Enhancement”, Computer Science Journals, Vol 4, 

Issue 4, October 2010. 

v. I .Larrabide, A.A.Novonty, R.A.Feijoo, E.Taroco, M Masmoudi, “ Topological Derivative As a Tool for Image Processing”, 

Computers & Structures,Vol 86, Issues 13-14,July 2008 . 

vi. Aroop Mukherjee, Soumen Kanrar,” Image Enhancement with Statistical Estimation”, IJMA,Vol 4,No.2, April 2012. 

vii. Ali Mohammad-Djafari, “Bayesian Image Processing” Conf On Modeling (MCO),July 2004. 

viii. K.M.Ha'nson, “ Introduction to Bayesian Image Analysis” M.H.Loew,ed,1999. 

ix. Rakesh M.R, Ajeya B,Mohan A.R “Hybrid Median Filter for Impulse Noise removal of an image in image restoration”, 

IJAREEIE,Vol 2,Issue 10, October 2013. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 


