THE INTERNATIONAL JOURNAL OF SCIENCE & TECHNOLEDGE

More on Separation Axioms

N. Bandyopadhyay Assistant Professor, Panskura Banamali College, West Bengal, India P. Bhattacharyya Professor, University of Kalyani, West Bengal, India

Abstract:

In this paper we study R0 space with the help of semi-preopen sets introduced by Andrijevic/[1]. Semi-prekernel of a set is defined and its several properties are investigated. Semi-prekernel of a set is used as a tool to characterize the new space termed as sp- R0 space. 2010 Mathematics subject classification: 54C99

Keywords: sp-ker, sp-R0

1. Introduction

In 1943, N. Shanin [5] introduced R_0 separation axiom. Maheswari [4] et al. introduced $(R_0)_s$ space with the aid of semi-open sets while Caldas et al. [2] defined R_0 space utilizing preopen sets. The purpose of this paper is to introduce sp- R_0 space using semi-preopen sets introduced by Andrejevic⁷ [1]. In Section 2 of this paper some known definitions and results necessary for the presentation of the subject are given. Section 3 and Section 4 deal with the definitions and characterization along with some basic properties of semi-pre kernel (briefly sp-ker.) and sp- R_0 space respectively.

2. Preliminaries

Throughout the paper (X, τ) or X always denotes a non trivial topological space.

- ➤ Definition 2. 1. A ⊂ X is called a semi-preopen set (briefly s. p. o. set) [1] iff A ⊂ Cl (Int (Cl (A))). The family of all s. p. o. sets are denoted by SPO(X). For each $x \in X$, the family of all s. p. o. sets containing x is denoted by SPO (X, x).
- Definition 2. 2. The complement of a s. p. o. set is called semi-preclosed [1]. Equivalently a set F is semi-preclosed [1] iff Int (Cl (Int (A))) ⊂ F. The family of all semi-preclosed sets is denoted by SPF (X).
- ▷ Definition 2. 3. The semi-preclosure [1] of $A \subset X$ is denoted by spcl (A) and is defined by spcl (A) = $\cap \{B: B \text{ is semi-preclosed and } B \supset A\}$.
- ▷ Definition 2. 4. A topological space X is said to be sp- T_1 [3] iff for every pair of points $x,y \in X$ such that $x \neq y$, there exists a U \in SPO(X,x) not containing y and a V \in SPO(X,y) not containing x.
- Elemma 2. 1[1]. Let A be a subset of X, then spcl (A) = A \cup Int (Cl (Int (A))).
- Lemma2. 2[3]. Every one pointic set in a topological space is either semi-preclosed or open.
- > Theorem 2. 1[3]. A topological space X is $sp-T_1$ iff every one pointic set is semi-preclosed.

3. Semi-Pre Kernel

- > Definition 3. 1. Let (X, τ) be a topological space and A ⊂ X. Then the semi-pre Kernel of A (briefly sp-Ker (A)) is defined to be the set sp-Ker (A) = $\cap \{U: U \in SPO(X), A \subset U\}$.
- Remark 3. 1. Ghosh [3] defined semi-pre Kernel of a point $x \in X$ as sp-Ker $(\{x\}) = \cap \{y \in X : x \in \text{spcl}(\{y\})\}$.
- Theorem 3. 1. Let x, $y \in X$. Then $y \in \text{sp-Ker}(\{x\})$ iff $x \in \text{spcl}(\{y\})$.
- ▶ Proof. Necessity. Let $y \in \text{sp-Ker}(\{x\}) \Rightarrow y \in \cap \{U : U \in \text{SPO}(X), \{x\} \subset U\} \Rightarrow \{y\} \cap U \neq \phi \text{ for every } U \in \text{SPO}(X, x).$ Therefore, $x \in \text{spcl}(\{y\})$.
- Sufficiency. Suppose $x \in \text{spcl}(\{y\})$. Then $\{y\} \cap U \neq \phi$ for every $U \in \text{SPO}(X, x) \Rightarrow y \in \cap \{U : U \in \text{SPO}(X), \{x\} \subset U\}$ $\Rightarrow y \in \text{sp-Ker}(\{x\})$.
- Remark 3. 2. From the above lemma, one now observes that for a one pointic set, Ghosh's definition coincides with Definition 3. 1.
- Theorem 3. 2. Let X be a topological space and $A \subset X$. Then sp-Ker $(A) = \{x \in X : \text{spcl}(\{x\}) \cap A \neq \phi\}$.
- → Proof. Let $x \in \text{sp-Ker}(A)$ and suppose spcl ({x}) $\cap A = \phi$. Clearly $x \in \text{spcl}(\{x\}) \Rightarrow x \notin X \text{spcl}(\{x\})$. We observe that $A \subset X \text{spcl}(\{x\}) \in \text{SPO}(X)$, but $X \text{spcl}(\{x\})$ does not contain x. This contradicts our assumption that $x \in \text{sp-Ker}(A)$.

Thus spcl $(\{x\}) \cap A \neq \phi \Rightarrow$ sp-Ker $(A) \subset \{x \in X : \text{spcl}(\{x\}) \cap A \neq \phi\}$. To prove the reverse inclusion let $x \in X$ be such that spcl $(\{x\}) \cap A \neq \phi$. If possible let $x \notin$ sp-Ker (A). Then there exists a $U_0 \in \text{SPO}(X)$ with $A \subset U_0$ such that $x \notin U_0$. Again since spcl $(\{x\}) \cap A \neq \phi$ there exists a $y \in A$ such that $y \in \text{spcl}(\{x\})$. By Theorem 3. 1, $x \in \text{sp-Ker}(\{y\})$. Thus $x \in \cap \{U: U \in \text{SPO}(X), \{y\} \subset U\} \subset \cap \{U: U \in \text{SPO}(X), A \subset U\} \Rightarrow$ a contradiction to the above assertion that $x \notin U_0$ whence $\{x \in X: \text{spcl}(\{x\}) \cap A \neq \phi\} \subset \text{sp-Ker}(A)$. Hence sp-Ker $(A) = \{x \in X : \text{spcl}(\{x\}) \cap A \neq \phi\}$.

4. Semi-Pre R₀ Spaces

- ▷ Definition 4. 1. A topological space (X, τ) is said to be a semi-pre R_0 (briefly sp- R_0) space if spcl $(\{x\}) \subset U$ for every $U \in$ SPO (X, x).
- ➤ Theorem 4. 1. A topological space (X, τ) is sp-R₀ iff for each U ∈ SPO (X, x) Int (Cl (Int ({x}))) ⊂ U.
- → Proof. Let $U \in SPO(X,x) \Rightarrow spcl(\{x\}) \subset U$. Then Lemma 2. 1 yields $\{x\} \cup Int (Cl (Int (\{x\}))) \subset U \Rightarrow Int (Cl (Int (\{x\}))) \subset U$. Conversely, let the given condition holds. Also let $x \in X$ and $U \in SPO(X, x)$. Then Int (Cl (Int ($\{x\}$))) $\subset U \Rightarrow \{x\} \cup Int (Cl (Int (<math>\{x\}$))) \subset U. (Int ($\{x\}$))) $\subset U$. Again, by Lemma 2. 1 one obtains spcl ($\{x\}$) $\subset U$.
- > Theorem 4. 2. A topological space is $sp-R_0$ iff it is $sp-T_1$.
- → Proof. Let X be a sp-R₀ space and $x \in X$. Then, by Lemma 2. 2, $\{x\} \in SPO(X)$ or $\{x\} \in SPF(X)$. If $\{x\} \in SPO(X)$ then spcl $(\{x\}) \subset \{x\} \Rightarrow$ spcl $(\{x\}) = \{x\} \Rightarrow \{x\} \in SPF(X)$.

Thus in any case every one pointic set in X is semi- preclosed. Hence by Theorem 2. 1, X is sp-T₁. Conversely, let X be sp-T₁ and U \in SPO(X, x). The sp-T₁-ness of X gives {x} \in SPF (X) whence one deduces spcl ({x}) \subset {x} \subset U \Rightarrow X is sp-R₀.

- > Theorem 4. 3. For a topological space (X, τ) the following statements are equivalent :
- (i) (X, τ) is sp-R_{0.}
- (ii) For any $F \in SPF(X)$, $x \notin F$ there exists a $U \in SPO(X)$ such that $x \notin U$ and $F \subset U$.
- (iii) If $F \in SPF(X)$ and $x \notin F$ then $F \cap spcl(\{x\}) = \phi$.
- (iv) For any two points x and y of X

 $\operatorname{spcl}({x}) \neq \operatorname{spcl}({y}) \Rightarrow \operatorname{spcl}({x}) \cap \operatorname{spcl}({y}) = \phi.$

- → Proof. (i) \Rightarrow (ii). Let (X, τ) be sp-R₀, F \in SPF (X) and x \notin F. Then X F \in SPO (X, x)
- $\Rightarrow \text{spcl}(\{x\}) \subset X F \Rightarrow X \text{spcl}(\{x\}) \supset F. \text{ Set } U = X \text{spcl}(\{x\}). \text{ Clearly } U \in \text{ SPO}(X), x \notin U \text{ and } F \subset U.$

(ii) \Rightarrow (iii). Let $F \in SPF(X)$, $x \notin F$. By (ii) there exists $U \in SPO(X)$ such that $F \subset U$ and $x \notin U$. Now $U \cap \{x\} = \phi \Rightarrow U \cap spcl(\{x\}) = \phi \Rightarrow F \cap spcl(\{x\}) = \phi$.

(iii) \Rightarrow (iv). Suppose $spcl(\{x\}) \neq spcl(\{y\})$ for $x, y \in X$. Obviously, $x \neq y$. Now distinct semi-pre-closures indicates that there exists a $z \in spcl(\{x\})$ but $z \notin spcl(\{y\})$ or

 $z \notin \text{spcl}(\{x\})$ but $z \in \text{spcl}(\{y\})$. To fix our ideas let $z \in \text{spcl}(\{x\})$ and $z \notin \text{spcl}(\{y\})$.

Since $z \notin \text{spcl}(\{y\})$ there exists a $V \in \text{SPO}(X, z)$ such that $\{y\} \cap V = \phi \Rightarrow y \notin V$. Again $z \in \text{spcl}(\{x\})$ yields that $x \in V$. Therefore, $V \in \text{SPO}(X, x)$ and hence $x \notin \text{spcl}(\{y\})$. If we write $F = \text{spcl}(\{y\})$, then $x \notin F$. Now using (iii) we deduce $\text{spcl}(\{x\}) \cap \text{spcl}(\{y\}) = \phi$.

 $(iv) \Rightarrow (i)$. Suppose (iv) holds. Let $x \in V \in SPO(X)$. Also let $y \notin V$. This, then, assures that $x \neq y$ and $x \notin spcl(\{y\})$. Thus spcl $(\{x\}) \neq spcl(\{y\})$. By (iv), $spcl(\{x\}) \cap spcl(\{y\}) = \phi$ for each $y \in X - V$. Let y run over X - V. Then from above

spcl ({x}) \cap (\cup spcl ({y})) = ϕ . Since X–V is a semi-preclosed set containing {y},

 $X - V = \bigcup \text{ spcl } (\{y\}).$ So from above $\text{spcl } (\{x\}) \cap (X - V) = \phi \Rightarrow \text{spcl } (\{x\}) \subset V.$

$y \in X - V$

Hence (X, τ) is sp-R₀.

Elemma 4. 1. Let X be a topological space. Then for any two points $x, y \in X$

$$p-Ker({x}) \neq sp-Ker({y}) \text{ iff spcl}({x}) \neq spcl({y}).$$

- → Proof. Suppose sp-Ker ({x}) ≠ sp-Ker ({y}). This then guarantees the existence of a point z such that either z ∈ sp-Ker ({x}) but z ∉ sp-Ker ({x}) or z ∉ sp-Ker ({x}) but z ∈ sp-Ker ({y}). To fix our ideas let z ∈ sp-Ker({x}). Since z ∈ sp-Ker({x}), by Theorem3. 1, one obtains x ∈ spcl ({z}). Again z ∉ sp-Ker ({y}) ensures the emptiness of the set {y} ∩ spcl ({z}). Now x ∈ spcl ({z}) ⇒ spcl ({x}) ⊂ spcl ({z}). Thus {y} ∩ spcl ({x}) = φ ⇒ spcl ({x}) ≠ spcl ({y}). Next let spcl ({x}) ≠ spcl({y}). Then there exists a point z ∈ X such that z ∈ spcl ({x}) but z ∉ spcl ({y}). This indicates that there exists a U ∈ SPO (X, z) such that U ∩ {y} = φ. Now z ∈ spcl ({x}) ⇒ {x} ∩ U ≠ φ ⇒ x ∈ U⇒ x ∉ spcl ({y}) ⇒ y ∉ sp-Ker ({x})⇒ sp-Ker ({x}) ≠ sp-Ker ({y}).
- Example 4. 1. Let $X = \{a, b, c\}$ be the set with the topology $\tau = \{\phi, X, \{a\}\}$. Then SPO $(X) = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}\}$. Clearly X is not sp-R₀. For a, $b \in X$ we note that

sp-Ker ({a}) = {a} and sp-Ker ({b}) = {a, b} i. e. sp-Ker({a}) \cap sp-Ker ({b}) $\neq \phi$. Thus in an arbitrary topological space sp-Ker of any two points may not be disjoint. But the disjointness of sp-Ker of any two points characterises sp-R₀ space. In fact we have Theorem 4. 4. A topological space (X, τ) is sp-R₀ iff x, y \in X and

sp-Ker ({x}) \neq sp-Ker ({y}) \Rightarrow sp-Ker ({x}) \cap sp-Ker ({y}) = ϕ .

→ Proof. Necessity. Let X be sp-R₀ and x, $y \in X$ be such that sp-Ker ({x}) \neq sp-Ker ({y}).

Lemma4. 1 yields $\operatorname{spcl}(\{x\}) \neq \operatorname{spcl}(\{y\})$. If possible suppose $\operatorname{sp-Ker}(\{x\}) \cap \operatorname{sp-Ker}(\{y\}) \neq \phi$. Let $z \in \operatorname{sp-Ker}(\{x\}) \cap \operatorname{sp-Ker}(\{y\})$. Since $z \in \operatorname{sp-Ker}(\{x\})$ by Theorem 3. 1, $x \in \operatorname{spcl}(\{z\}) \Rightarrow \operatorname{spcl}(\{z\}) \cap \operatorname{spcl}(\{z\}) \neq \phi$. The $\operatorname{sp-R_0}$ -ness of X and Theorem 4. 3 together indicate that $\operatorname{spcl}(\{x\}) = \operatorname{spcl}(\{z\})$. Similarly $\operatorname{spcl}(\{z\}) = \operatorname{spcl}(\{y\}) \Rightarrow \operatorname{spcl}(\{x\}) = \operatorname{spcl}(\{y\}) \Rightarrow \operatorname{spcl}(\{x\}) \Rightarrow \operatorname{spcl}(\{x\}) = \operatorname{spcl}(\{y\}) \Rightarrow \operatorname{spcl}(\{x\}) = \operatorname{spcl}(\{$

- Sufficiency. Let the given condition holds and x,y ∈ X with spcl({x})≠spcl ({y}). Then by Lemma 4. 1 sp-Ker ({x}) ≠ sp-Ker ({y}) ⇒ sp-Ker ({x}) ∩ sp-Ker ({y}) = φ. We assert that spcl({x}) ∩ spcl ({y}) = φ. If possible suppose spcl ({x}) ∩ spcl ({y})≠φ. This indicates that there exists a z ∈ spcl ({x}) and z ∈ spcl ({y})⇒ x ∈ sp-Ker ({z}) and also y∈ sp-Ker({z})⇒sp-Ker({x}) ∩ sp-Ker({z})≠φ and sp-Ker ({y}) ∩ sp-Ker ({z})≠φ. Then by hypothesis sp-Ker ({x}) = sp-Ker ({y}) ⇒ a contradiction to the foregoing. Therefore spcl ({x}) ∩ spcl ({y}) = φ. Hence by Theorem 4. 3, (X, τ) is sp-R₀.
- Theorem 4. 5. For a topological space (X, τ) the following statements are equivalent :
 - (i) (X, τ) is sp-R₀ space.
 - (ii) For any non-empty set A and any $G \in SPO(X)$ with $A \cap G \neq \phi$, there exists a $F \in SPF(X)$ such that $A \cap F \neq \phi$ and $F \subset G$.
 - (iii) $G \in SPO(X) \Rightarrow G = \cup \{F : F \in SPF(X), F \subset G\}.$
 - $(iv) \ F \in \ SPF(X) \Longrightarrow F = \ \cap \ \{G : G \in \ SPO(X), F \subset G\}.$
 - (v) $x \in X \Rightarrow \operatorname{spcl}(\{x\}) \subset \operatorname{sp-Ker}(\{x\}).$
- → Proof. (i) \Rightarrow (ii). Suppose A $\neq \phi$, G \in SPO (X) and A \cap G $\neq \phi$. Let x \in A \cap G. Put F = spcl ({x}). Then F \in SPF (X, x). Since X is sp-R₀, x \in G \in SPO (X) \Rightarrow spcl ({x}) \subset G \Rightarrow F \subset G. Finally x \in F and x \in A ensures that A \cap F $\neq \phi$.

(ii) \Rightarrow (iii). Assume $G \in SPO(X)$. Clearly $\cup \{F : F \in SPF(X), F \subset G\} \subset G$. To prove the reverse inclusion suppose $x \in G$. By hypothesis there exists a $F \in SPF(X)$ such that

 $x \in F$ and $F \subset G$, which, in its turn, imply that $x \in F \subset \bigcup \{F : F \in SPF(X), F \subset G\}$. Hence $G = \bigcup \{F : F \in SPF(X), F \subset G\}$. (1).

(iii) \Rightarrow (iv). Assume that (iii) holds. An application of De Morgan's Law to (1) yields the desired result.

(iv) \Rightarrow (v). Let x, y \in X with the property $y \notin$ sp-Ker ({x}). Then there exists a $U \in$ SPO (X, x) such that $y \notin U$. Hence {y} $\cap U = \phi$ whence spcl ({y}) $\cap U = \phi$. Now, by (iv), we have spcl ({y}) $= \cap \{G : G \in$ SPO (X), spcl ({y}) $\subset G\}$. So, from above

 \cap {G : G \in SPO (X), spcl ({y}) \subset G} \cap U = ϕ . This, then, ensures the existence of a G \in SPO(X) such that spcl({y}) \subset G and x \notin G. So {x} \cap G = ϕ whence spcl({x}) \cap G = ϕ .

This gives $y \notin \text{spcl}(\{x\})$. Consequently spcl $(\{x\}) \subset \text{sp-Ker}(\{x\})$. $(v) \Rightarrow (ii)$. Let $G \in \text{SPO}(X, x)$. By definition sp-Ker $(\{x\}) \subset G$. Also by (v)

 $spcl (\{x\}) \subset sp-Ker (\{x\}). So, x \in spcl (\{x\}) \subset sp-Ker (\{x\}) \subset G \Rightarrow spcl (\{x\}) \subset G.$

Thus $x \in G \Rightarrow$ spcl $(\{x\}) \subset G \Rightarrow X$ is sp-R₀.

- Corollary 4. 1. (X, τ) is a sp-R₀ space iff spcl $(\{x\})$ = sp-Ker $(\{x\})$ for all $x \in X$.
- → Proof. Let (X, τ) be sp-R₀ and $y \in$ sp-Ker $(\{x\})$. Then Theorem 3. 1 gives $x \in$ spcl $(\{y\})$. Hence spcl $(\{x\}) \cap$ spcl $(\{y\}) \neq \phi$. Therefore, by Theorem 4. 3, spcl $(\{x\}) =$ spcl $(\{y\})$ from which one concludes $y \in$ spcl $(\{x\}) \Rightarrow$ sp-Ker $(\{y\}) \subset$ spcl $(\{x\})$. The reverse inclusion because of sp-R₀-ness,directly follows from Theorem 4. 5(v). Hence spcl $(\{x\}) =$ sp-Ker $(\{y\})$. Conversely,sp-R₀-ness of X follows readily from (v) of Theorem 4. 5.
- > Theorem 4. 6. For a topological space X, the following statements are equivalent :

(i) X is $sp-R_{0}$.

- (ii) $F \in SPF(X)$ then F = sp-Ker (F).
- (iii) $F \in SPF(X)$ and $x \in F$, then sp-Ker $(\{x\}) \subset F$.
- (iv) If $x \in X$, then sp-Ker $(\{x\}) \subset$ spcl $(\{x\})$.

 \rightarrow Proof. (i) \Rightarrow (ii). This follows from Theorem 4. 5(iv) and the definition of sp-Ker.

(ii) \Rightarrow (iii). Let $F \in SPF(X)$ and $x \in F$. Clearly $\{x\} \subset F \Rightarrow sp-Ker(\{x\}) \subset sp-Ker(F) = F$.

(iii) \Rightarrow (iv). Suppose $x \in X$. Obviously spcl ({x}) \in SPF (X) and $x \in$ spcl ({x}).

Therefore by (iii) sp-Ker $({x}) \subset$ spcl $({x})$.

 $(iv) \Rightarrow (i)$. Let $y \in X$ and $x \in X$ be such that $x \in \text{spcl}(\{y\})$. Then, by Theorem 3. 1, $y \in \text{sp-Ker}(\{x\})$. By hypothesis sp-Ker $(\{x\}) \subset \text{spcl}(\{x\})$ which, in its turn, indicates that $y \in \text{spcl}(\{x\})$. This then implies, again by Theorem 3. 1, that $x \in \text{sp-Ker}(\{y\})$. From this one infers that spcl $(\{y\}) \subset \text{sp-Ker}(\{y\})$. Hence by Theorem 4. 5(v), X is sp-R₀.

5. References

- i. D. Andrijević, Semipreopen Sets, Mat. Vensik 38 (1986), 24 32.
- ii. M. Caldas, S. Jafari and T. Noiri, Characterizations of $pre-R_0$ and $pre-R_1$ Topological spaces, Topology Proceedings, 25 (2000), 17 30.
- iii. P. K. Ghosh, Ph. D. Thesis, University of Kalyani, Kalyani, West Bengal, 2005.
- iv. S. N. Maheshwari and R. Prasad, On (R₀)s spaces, Portugaliae Mathematica, 34 (Fasc 4) (1975), 213 217.
- v. N. Shanin, On separations in Topological Spaces, Akademiia Nauk SSR Comptes Rendus (Doklady) 48 (1943), 110 113.