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1. Introduction 

The notion of semigraph is the outcome of an attempt by E. Sampath kumar [2] to generalize the notion of a graph. Semigraph is thus 

a generalization of graph, which resembles graph when drawn in a plane and where most of the notions or results of graph can find 

their natural counterparts in a generalized setting. The beauty of semigraph lies in the variety of definitions, concepts and results, most 

of which coincide with corresponding ideas for graphs. 

It is well-known that graph theory is related not only to areas of pure and applied mathematics, but many diverse fields of knowledge 

also. Graph theory is a study of some 2-tuples (u,v) of distinct elements belonging to a set V, while the Semigraph theory is a study of 

n-tuples (u1,u2,……,un) of distinct elements belonging to a set V, for various n≥2, with the conditions: 

i) any n-tupple (u1, u2,……,un) is the same as the n-tupple (un,un-1,……,u1)  and  

ii) any two such n-tuples have at most one element in common. 

Since an edge in a semigraph geometrically resembles an edge in a graph, one can easily give a direction or an orientation to each 

edge and obtain a structure called directed semigraph analogous to the concept of directed graph. 

There is another significant generalization of graph, called Hypergraph, which is due to C. Berge [7].A hypergraph H (V, E) with a 

vertex set V and an edge set E differs from a graphin that, in a hypergraph an edge can connect more than two vertices, that is, an edge 

is an arbitrary subset of the vertex set V. While both hypergraph and semigraph allow edges with more than two vertices, however, the 

vertices in any edge of a semigraph follow a particular order though the vertices in an edge of a hypergraph do not have any such 

order. The particular way of arranging the vertices of an edge in a semigraph makes the semigraph more akin to graph than 

hypergraph. 

Basis, domination and other related concepts are extensively studied for graphs and hypergraphs.However, corresponding analogues 

of these notions in semigraph or disemigraph have not received much attention yet. 

Point-basis in digraph was introduced by Dénes König [8].König characterized point-basis in a weak sense and Harary et. al. [21] gave 

some sort of its stronger characterization for finite digraphs. E. Sampathkumar introduced the concept of cycle basis in [2]. No further 

development is found in the literature regarding basis in semigraphs or disemigraphs. 

Historically, the first domination-type problems originated from the game ofchess.The works of C. Berge in 1958 [6] and Ore in 1962 

[22] caused domination to become a formal theoretical area of graph theory. But domination did not become an active area until 1977 

when a survey paper by Cockayne and Hedetniemi [23] was published. The concept of domination in graphs, with its many variations, 

is now well studied in graph theory. B. D. Acharya [11] has introduced domination in hypergraph. In semigraph domination has been 

introduced by S. S. Kamath et. al. [12].Road networks, Traffic routing and density traffic in junction etc. may be studied with the help 

of domination in semigraph, as well as in disemigraph. 
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2. Preliminaries 
To begin with, some basic concepts and definitions from standard texts [1], [4] and research papers [2], [3] follow. 

A graphG (V,X) consists of a finite nonempty set V of points together with a prescribed set X of unordered pairs of distinct points of V. 

In a graphG (V, X),S ⊆ V is a dominating set of G if every vertex of G is either in Sor joined by an edge from some vertex of S. 

An edge (u,v) is called an edge from u to v; we also say that u dominates v. 

A digraphD (V, A) consists of a set V of vertices and a set A of arcs (directed edges). 

For any vertexv of a digraph D (V, A), the reachable setR(v) of v is defined as the set of all vertices of D reachable from v. For a subset 

S of V, the reachable set R(S) of S is the set of vertices reachable from some vertex of S. A set S is a cover for D if R(S)=V. Abasis for 

D is a minimal set B of vertices such that R(B)=V; that is, a basis is a minimal cover. 

For any vertex v of D, the antecedent setQ(v) of v is the set of all vertices u from which vis reachable. For a subset C of V, the 

antecedent set Q(C) of C is the set of all vertices of D from which some vertex of C is reachable. A contrabasis for D is a minimal 

subset C of V such that Q(C) =V.A duobasis of D is a subset S of V such that R(S)=V=Q(S). 

A digraph is strong if any two of its vertices are mutually reachable. 

Let D (V, A) be a digraph. A subset S of the vertex set V (D) is a dominating set of D if for each vertex v not in S there exists a vertex u 

in S such that (u, v) is an arc of D. Thus a dominating set S ⊆ V is a set of vertices that dominate every vertex in D. It may be noted 

that V(D) itself is a dominating set of D. A dominating set S of D for which no proper subset of S is a dominating set is called a 

minimal dominating set of D. The cardinality of a minimal dominating set is called the domination number of D and is denoted by 

γ(D). 

A semigraph G is a pair (V, E) where V is a non-empty set whose elements are called vertices of G, and E is a set of n-tuples, called 

edges of G, of distinct vertices, for various n≥2 satisfying the following conditions- 

S.G.1- Any two edges have at most one vertex in common. 

S.G.2- Two edges (u1, u2,…,un) and (v1,v2,…,vm) are considered to be equal if and only if  

i. m=n and 

ii. either ui=vi for 1≤i≤n, or ui=vn-i+1 for 1≤i≤n. 

All vertices on an edge of a semigraph are considered to be adjacent to one another. 

A cyclein semigraph is a closed path. A cycle space is a vector space over the field F= {0,1} where 1+1=0. A cycle basis of a 

semigraph G is a basis for the cycle space of G consisting of only cycles. 

The adjacency graphGa of a semigraph G is a graph with the same vertex set V(G) and such that two vertices in Ga are adjacent if and 

only if they are adjacent in G. The distanced (u, v) between two vertices u and v in a semigraph G is defined as the distance between 

them in the adjacency graph Ga of G. A subset S ⊆ V in G is called an independent set if noedge is a subset of S, and S is e-

independent if no two end vertices of an edge belong to S. Further,S is strongly independent if no two vertices of an edge belong to S. 

A directed semigraph or disemigraphD is a finite set of objects called vertices together with a (possibly empty) set of ordered n-tuples 

of distinct vertices of D for various n≥2, called directed edges or arcs, satisfying the condition- 

“For any two distinct vertices u and vin a disemigraph D, there is atmost one arc containing u and v such that u is adjacent to v and at 

most one arc containing u and v such that v is adjacent to u”. 

While drawing a disemigraph in a plane, the initial (or terminal) vertex of an arc which is not a middle vertex of any arc is represented 

by a thick dot. Middle vertices of arcs are represented by small circles. If a middle vertex is also an initial (or terminal) vertex of an 

arc, we draw a small tangent to the circle. 

If a=(u1,u2,…,un) is an arc in a disemigraph D then a subarc of a is an r-tupple (��� , ��� , … ���)where 1≤i1<i2<….<ir≤n.The adjacency 

digraph Da of D has V(D) as vertex set where for any two vertices u and v, u is adjacent to v if and only if it is so in D. A s-cycle(w-

cycle) in D is a closed s-path(w-path) in D. A cycle of odd (even)length is called an odd (even) cycle. 

A disemigraph D is simple if any two arcs inD either contain atmost one vertex or all vertices in common. 

A disemigraph D(V,A) is called oriented if (u1,u2,…,un)∈A(D)⇒ no ui, 2≤i≤n is adjacent to any uj, 1≤i≤n−1 where j<i. 

A disemigraph D1(V1,A1) is a subdisemigraph of a disemigraph D(V,A) if V1 ⊆ V and A1 ⊆ A. The induced subdisemigraph ˂U˃ of a 

disemigraph D induced by U is the subdisemigraph whose vertex set is U with arc set A(<U>)={a∩U: a∈A(D)}. A component of a 

disemigraph D is a maximal connected subdisemigraph of D. The converse of a disemigraph D is the disemigraphDc with vertex set 

V(D) where (u1, u2,…,un)∈A(D) if and only if (un,un-1,……,u1)∈A(Dc). 

A sourceis a vertex which has no arcs directed towards it and can reach all others. Asinkis the dual concept of source. 

Any vertex which has in-degree zero and out-degree greater than zero is said to be a transmitter. A receiver is the dual concept of 

transmitter. 

A disemigraph D is complete if for any two distinct vertices u and v in D, at least one of the following holds- 

i. u is adjacent to v. 

ii. v is adjacent to u. 

A disemigraph D is called strongly complete if 

i. D is complete, 

ii. Every vertex in D appears as an end vertex of an edge in D, and 

iii. Any two vertices in D are mutually reachable. 

A complete oriented semigraph is called a tournament. A strong tournament is a strongly complete oriented semigraph. 

For all other terminology and notations not specifically defined here the reader is referred to [1], [2] and [4]. 



 The International Journal Of Science & Technoledge  (ISSN 2321 – 919X) www.theijst.com 

 

195                                                          Vol 4  Issue 7                                                   July, 2016 

 

 

In this paper only connected, simple and oriented disemigraphs with finite number of vertices will be considered unless mentioned 

otherwise. 

 

3. Basis in Disemigraph 

In the following few terms, particularly the concept of point-basis (which will be simply called a basis) in disemigraph are presented 

for future reference. 

 
3.1. Definitions 

Let D (V,A) be a disemigraph with vertex set V and arc set A. Then for any vertex v of D, R(v) is the reachable set defined as the set of 

all vertices of D reachable from v. For a subset S of V, the reachable set R(S) of S is the set of vertices reachable from some vertex of 

S. 

A subset S ⊆ V is said to be a cover of D if R(S)=V. 

A minimal cover of D is said to be a point-basis (or basis) for D. 

The cardinality of a minimum basis set is said to be the basis number and is denoted byδ(D). Trivially 1≤δ≤n–m, where n is the total 

number of vertices and m is the number of middle vertices in D. For a disconnected disemigraph D a basis set S is the minimal 

collection of vertices where any vertex of D is either in S or reachable from some vertex of S. 

It is observed that a basis set S satisfies the following conditions- 

i) All vertices of Dare reachable from some vertex in S, and 

ii) No vertex in S can reach another vertex of S. 

Here follows an application of basis in disemigraph. 

 

� Example3.1: 

The end vertices of an edge represent the parents and the middle vertices represent their children. The relationship among the 

members of a number of families can be represented by a disemigraph D(V,A), where V={a,b,c,d,e,f,g,h,i,j,k,Ɩ} as given in the diagram 

bellow.  The directions from father to mother is drawn. The disemigraph then has the basis {a,f,i} which consists of the guardians of 

the families, where father or grandfather is assumed as guardian of some family. Hereδ(D)=3. 

 

 
Figure 1 

 

Similarly group discussion among some groups can be represented and studied by a disemigraph with leaders from different groups 

forming basis for the disemigraph. 

It may be noted that all the bases in a disemigraph have the same cardinality. 

Analogous to semigraphs the following concepts can be defined. 

 

3.2. Definitions  

A set S ⊆ V in D is an independent set (Strongly independent set) of D if no two vertices of an arc belong to S. An independent set is 

said to be the maximal independent set if no other vertex can be added to the set without destroying its independence property. An 

independent set will be the maximum independent set if there exists no other independent set with greater cardinality. The cardinality 
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of the maximum independent set is said to be the independence number of D and is denoted by β(D). Here, a simple observation can 

be made viz., 1≤β≤n–m, where n is the total number of vertices and m is the number of middle vertices in D. 

A Strong component of a disemigraph D is a component of D which is strong in the sense that any two vertices of the component are 

mutually reachable. 

In the following few characterizations of basis set are deduced. 

� Proposition 3.1: Every basis in a disemigraph is an independent set. 

→ Proof: Let D(V,A) be a disemigraph and S be a basis in D.Then R(S)=V and S is minimal. Suppose u∈S is reachable from v∈
S. Then T=S−{u} also satisfies R(T)=V. Thus S is not minimal, which is a contradiction. Hence S is an independent set. Thus every 

basis set is an independent set.  

• Corollary 3.1:δ≤β. 

• Corollary 3.2:No two vertices of a basis belong to the same strong component of D. 

� Proposition 3.2: Every basis set in adisemigraph consists of at least one vertex from each initial strong component. 

→ Proof: Let D be a disemigraph with a basis set S and C be any initial strong component in D. If possible, letu∈Sbut u∉C. 

Then D does not contain any path from u to Cbecause C is initial. This contradict that S is a basis in D. Hence u∈C.  

• Corollary 3.3:A basis of a disemigraph D cannot contain more than one vertex from each strong component of D. 

� Proposition 3.3: Every disemigraph has a basis. 

→ Proof: Let D(V,A) be a disemigraph. 

To show thatD has a basis. 

Let B={S⊆V|R(S)=V} ……..(i) 

Then B≠φ as R(V)=V. 

If D has an arc i.e. ifD is not totally disconnected then V is not minimal with respect to (i). Since D is finite, there exists a minimal S

⊆ V such that R(S)=V. 

Thus S is a basis of D.  

• Corollary 3.4:  Every disemigraph contains an independent set. 

� Proposition3.4: For a connected disemigraph, all transmitters belong to every basis of the disemigraph. 

→ Proof: Let D (V,A) be a connected disemigraph with vertex set V and edge set E. Let S be any basis of D and T={t1, t2, …., tn} 

be the set of all transmitters of D. 

If possible let ti∉S for any ti∈T.S being a basis of D, ti is reachable from some vertex in S, which contradicts the fact that tiis a 

transmitter. So ti∈S, for anyti∈T. 

Thus all transmitters belong to every basis of the disemigraph.  

• Corollary 3.5: Every acyclic disemigraph has a unique basis consisting of its transmitters. 

• Corollary 3.6: A disemigraph having a source u (say) contains exactly one basis S={u}. 

� Proposition3.5: If D(V,A) is strongly complete then |B|=|V|, where B is the set of all bases in D. 

→ Proof: Let D (V,A) be a strongly complete disemigraph with vertex set V and arc set A. Then any two vertices of D are 

mutually reachable. 

Let v∈Vbe any vertex of D. Then any other vertex of D is reachable from v and so {v} constitutes a basis in D. 

Thus if B is the set of all bases in D then |B|=|V|.  

� Proposition 3.6: For any tournament, δ=β=1. 

→ Proof: Trivial.   

Analogous to semigraphs, the distance between any two vertices in a disemigraph is defined as follows. 

 

3.3. Definition 

Let D (V, A) be a disemigraph. Then for any two vertices u and v in D, distance between u and v denoted by d(u,v) is the distance 

between the vertices in the underlying adjacency digraph Da. 

 

3.4. Definitions 

For any vertex u of D, the k-reachability setRk(u) is {v∈V|d(u,v)≤k}, where d(u,v) is the distance from u to v. 

A set S ⊆ V is a k-cover for D if Rk(S)=V. 

A set S ⊆ V is a k-basis if it is a minimalk-cover with no two vertices of S being mutually adjacentand reachable from any other vertex 

of Swithin k steps. 

Like the basis number a k-basis number can be defined for a disemigraph which is denoted by δk. Obviously, 1≤δk≤n–m, where n is 

the total number of vertices and m is the number of middle vertices in D. 

 

� Remarks 3.1: 

i) All k-bases in a disemigraph may not have the same cardinality. 

e.g. The following disemigraph D(V,A) with vertex set V={a,b,c,d,e,f} has two 1-bases namely {a,c} and {f,b,e}. 
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Figure 2 

 

ii)Every tournament in a disemigraph contains a 2-basis. 

iii)Every strong tournament in adisemigraph contains a 1-basis. 

iv)Every minimal k-cover in a disemigraph may not be a k-basis. 

 

e.g. In the following disemigraph {1,2,5,6} is a minimal 1-cover but not a 1-basis. 

 

 
Figure 3 

 

v) Every disemigraph may not have a k-basis. See Figure 3 

It will not be inappropriate to cite the following results that hold in digraph setting but may not hold in a disemigraph setting. 

(i)[1] Every digraph with no odd cycles has a 1-basis. 

This result is not necessarily true in disemigraph as can be observed from the figure 4, which shows a disemigraph without having any 

odd cycle as well as any 1-basis.  

 

 
Figure 4 

 

(ii) [1] Every acyclic digraph has a 1-basis. 

The disemigraphD displayed in figure 4 is acyclic but does not contain any 1-basis. 

� Proposition 3.7: For any disemigraph D, δ(D)≤δk(D). 

→ Proof: From the definition of basis and k-basis, it is obvious that the basis set is a subset of some k-basis set. Thus the result 

follows.  

 

3.5. Definition  

A vertex w in D(V, A) is an r-king if d(w,v)≤r, ∀ v∈V. 

e.g. In Figure 4,d is a 2-king. 

From the above definition remarks can be made as follows- 
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� Remarks 3.2: 

i) Every disemigraph may not have anr-king. Figure 1 may be referred. 

ii) Every tournament T contains a 2-king. And, any vertex with highest out degree (i.e. score) is a 2-king. 

iii) Every r-king is anr-basis. 

 

3.6. Definitions 

For any vertex v of D, the antecedent set Q(v) of v is the set of all vertices from which v is reachable. For any set S ⊆ V, the antecedent 

set Q(S) is the set of all vertices of D from which some vertex of S is reachable. 

A minimal subset C of V is called a contrabasis if Q(C)=V. 

A duobasis of D is a subset S ⊆ V such that R(S)=V=Q(S). 

The properties of contrabasis are analogous to those of basis where each arrow is replaced by the opposite counterpart. Thus the 

contrabasis set of a disemigraph is same as the basis set of the disemigraph obtained by reversing the arrows of the original 

disemigraph. 

Again few remarks are in order- 

 

� Remarks 3.3: 

i)A duobasis has always cardinality equal to one. 

ii) Contrabasis and duobasis are both independent sets. 

iii) Every disemigraph possesses both a basis and contrabasis but it may not have a duobasis. 

e.g. In Figure 3, {1,5} is a basis and {4,8} is a contrabasis for the disemigraph but it does not have any duobasis. 

iv) A source is a basis of cardinality one and a sink is a contrabasis of cardinality one. 

v) Every strong tournament contains a duobasis. 

vi) A disemigraph having source or sink as well as transmitter or receiver cannot possess a duobasis. 

e.g.Figure 3 and Figure 4 are referred. 

� Proposition 3.8: A disemigraph contains a duobasis if and only if it is strong. 

→ Proof: Let D be a disemigraph with vertex set V. 

We assume that D contains a duobasis, say S, such that R(S)=V=Q(S). 

Then any vertex in V is both reachable from and reachable to (QR(S)=Q(S)=V ) to the vertex of S (Q |S|=1). Thus any two vertices of 

D are mutually reachable. Hence D is strong. 

Conversely, Let D be strong. 

Then D has a spanning cycle and so any two vertices in D are mutually reachable. Thus for any vertex v∈V,v is reachable to and 

reachable from any other vertex of D. Hence S={v} forms a duobasis.   

• Corollary3.7: If B is the set of all duobasis in a strong (strongly complete) disemigraph D, then |B|=|V|. 

• Corollary 3.8: A disemigraph contains a duobasis if and only if it has a spanning cycle. 

� Proposition 3.9: All the receivers of a disemigraph D belongs to every contrabasis of D. 

→ Proof: Let D(V,A) be a disemigraph with a contrabasis C and let R={r1,r2….,rs} be the set of all receivers of D. If possible, let 

r∉C for any r∈R.C being the contrabasis in D, r is reachable to some vertex of C in D which guarantees that od(r)≥1. This is a 

contradiction to the fact that r is a receiver in D. Thus r∈C, for any receiver r of D. Hence the result follows.  

• Corollary 3.9: If a disemigraph D has a sink t, then D contains the contrabasis C={t} only. 

 

4. Domination in Disemigraph 

In this section an attempt has been made to develop the concept of domination (i.e. vertex domination) in disemigraphs. 

 

4.1. Definition  

Let D(V,A) be a disemigraph. 

A subset S of V is said to be a vertex dominating set of D if for each vertex v∈V\S there exists a vertex u∈S such that (u,v) is an arc or 

subarc in D. A dominating set will be simply referred to as a dominating set. 

A dominating set S is a minimal dominating set if no proper subset of S is a dominating set. A dominating set S is a minimum 

dominating set if there is no dominating set with smaller number of elements(vertices).The cardinality of a minimum dominating set is 

said to be the domination number of D and is denoted by γ(D). 

Note that V(D) itself is a dominating set of D. If S is a dominating set in D then every vertex in V is reachable from some vertex of S 

within one step i.e. S dominates every other vertex in D. 

Recall that in an arc or sub arc (u1, u2,…,un), ui is adjacent to uj for 1≤i≤j≤n.Here we say that ui dominates uj, for 1≤i≤j≤n. 

� Example 4.1: 

In the following disemigraphD(V,A),S={a,b,e} is a minimum dominating set and soγ(D)=3. 
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Figure 5 

 

From the above definition of dominating set few remarks follow. 

 

� Remarks 4.1: 

i) Every disemigraph contains a dominating set. 

ii) Every basis set is a subset of some dominating set. 

iii) Every 1-basis is a dominating set and so δ1=γ. 

iv)δ≤β≤γ. 

v)A dominating set may or may not be an independent set. 

vi) A disemigraph may have many minimal dominating set of different sizes but every disemigraph can have only one minimum 

dominating set. 

vii) Every tournament or a strong tournament contains a dominating set of maximum cardinality 2. 

 

4.2. Definitions 

Let D(V,A) be a disemigraph. A dominating set S is said to be total dominating setif the induced subdisemigraph 〈 S 〉  has no isolated 

vertices. 

The cardinality of a minimum total dominating set is called the total domination number of D and is denoted by γt(D). 

e.g. For the disemigraph D given in Figure 5,St={a,b,c,e} is a minimum total dominating set and so γt(D)=4. 

In the following two types of connected dominating set are defined depending on whether the dominating set is strong or weak. 

 

4.3. Definitions  

A dominating set S of a disemigraphD is said to be a weakly connected dominating set(wc-dominating set) if the induced 

subdisemigraph 〈 S 〉 is weakly connected.The cardinality of a minimum wc-dominating set is the weakly connected domination 

number of D and is denoted by γwc(D). 

A dominating set S of a disemigraph D is said to be a strongly connected dominating set (sc-dominating set) if the induced 

subdisemigraph 〈 S 〉 is strongly connected. The cardinality of a minimum sc-dominating set is the strongly connected domination 

number of D and is denoted by γsc(D). 

 

� Example 4.2: 

Let D(V,A) be a disemigraph with vertex set V={a,b,c,d,e,f,g,h,i,j}. HereD has awc-dominating set Swc={a,c,e,f,g} and sc-dominating 

set Ssc={a,c,e,f,g,h} which areminimum, thus γwc(D)=5 and γsc(D)=6. Here D has a dominating set S={a,c,e,g} and so γ=4 

 

 
Figure 6 

 

From the above definitions of total and connected dominating set followings remarks are immediate. 
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� Remarks 4.2: 

i) Every disemigraph contains a total dominating set and a connected dominating set. 

ii) Every connected dominating set is a total dominating set but the converse is not necessarily true. 

iii) γ≤γwc≤γsc 

 

4.4. Definition  

A dominating set S is called open dominating set if for allv∈V(D), there isu∈S such that (u,v) is an arc or subarc in D. 

The cardinality of a minimum open dominating set is called the open domination number of D and is denoted by γo(D). 

e.g. For the disemigraph D given in Figure 6,So={a,c,e,f,g} is a minimum dominating set and so γo(D)=5. 

Now, the following remarks about an open dominating set are quite natural. 

 

� Remarks 4.3: 

i)Every disemigraph may not have an open dominating set. 

e.g. Let D(V,A) be a disemigraph with vertex set V={a,b,c} and arc set A={(a,b), (a,c)}. ThenD has a dominating set S={a} but it does 

not have any open dominating set. 

 

 
Figure 7 

 

ii) A disemigraph containing an open dominating set cannot have a source (resp. transmitter) and sink (resp. receiver). 

iii) Every disemigraph containing open dominating set contains a cycle. 

iv) A tournament may not have an open dominating set but a strong tournament always has an open dominating set. 

Now few results on relationships among independent set, basis set and dominating set are established in the following. 

 

� Proposition 4.1: Every basis setis a subset of some dominating set. 

→ Proof: Let D(V,A) be a disemigraph. 

Let B be a basis set and S be any dominating set. 

For any v∈V, there exists some u∈B such that v is reachable from u. And obviously some w∈V exists such that (u,w)∈A which 

implies that u dominatesw in D. So u is in some dominating set, say, S i.e. u∈S. 

Thus every basis set is a subset of some dominating set i.e.B ⊆ S.  

• Corollary 4.1: A basis set is a subset of all kinds of dominating set provided any such dominating set exists. 

� Proposition 4.2: Every maximal independent set is a dominating set. 

→ Proof: Let D(V,A) be a disemigraph and S ⊆ V be a maximal independent set. 

If S does not dominate D, then there is at least one vertex which is neither belongs to S nor is adjacent to any other vertex in the set S. 

Such a vertex can be added to the independent set without destroying its independence property. But then the maximality condition of 

the independent setSwill be violated. Hence the result follows.  

• Corollary 4.2: An independent dominating set is the same as a maximal independent set. 

• Corollary 4.3:γ(D)≤β(D) for any disemigraph D. 

In the following some characterizations of the various dominating sets are derived. 

� Proposition 4.3: For any disemigraph D(V,A), 1≤γd(D)≤(n–m), where γd is the domination number of any kind, n=|V| and m is 

the number of middle vertices in D. 

→ Proof: Obviously γd(D)≥1. Consider an arc (u1,u2,…,ut), then all the middle vertices ui for 1<i<t are dominated by u1. So 

clearly γd(D)≤(n–m). Hence 1≤γd(D)≤(n–m).  

• Corollary 4.4: If D is a tournament then γd=2. 

� Proposition 4.4: For any disemigraph D(V,A) 

 γt(D)≤n–∆+
(D)+1, where ∆+

(D)=max{od(v): v∈V} 

→ Proof: Let D(V,A) be a disemigraph of order n. 

Let v be any vertex in D with maximum out-degree p (say). 

So ∆+
(D)=p. 

Now v will dominate exactly p vertices inD and for the remaining n–p–1 numbers of vertices excepting v amaximum of n–p–1 vertices 

can be found to form a dominating set S (say) for D along with v. 

a 

c 

D 

b 
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If id(v)≥1 then S will be a total dominating set. Also if id(v)=0 then S must contain at least one vertex fromp vertices to satisfy the 

criteria for a dominating set to be a total dominating set (otherwise S will contain v as an isolated vertex) along with v and the 

remainingn–p–1 vertices. 

Thus |S|≤1+n–p–1+1 

 =n–p+1 

⇒γt(D)≤n–∆+
(D)+1.  

• Corollary 4.5:γ(D)≤n–∆+
(D). 

Here we reproduce the following result due to S. Arumugam et al. which will be required to prove the next proposition. 

Theorem 2.5: [15] If D=(V,A) is weakly connected digraph of order n with δ–
(D)>0, then γo(D)=n if and only if D is a dicycle, where 

δ–
(D) is the minimum in-degree of D. 

� Proposition 4.5: If D(V,A) is a disemigraph of order n with m number of middle vertices and with no transmitter or receiver 

then γo(D)=n–m if and only ifD is a directed cycle. 

→ Proof: Let D(V,A) be a disemigraph of order n with m number of middle vertices . 

By proposition 4.3, 1≤γo(D)≤(n–m). 

Case i) m=0 

Then D becomes simply a digraph which is connected and with δ–
(D)>0 (∵D is without any transmitter),so by Theorem 2.5:[15] the 

result is immediate. 

Case ii) m≥1 

Let D be without any transmitter or receiver and γo(D)=n–m. It is required to show thatD is a directed cycle. If possible, letD is not a 

directed cycle. Then D contains at least one transmitter or receiver, which is a contradiction. Hence D is a directed cycle. 

Conversely, letD be a directed cycle. Then it is obvious that γo(D)=n–m.  

Nowan application of domination is discussed in the following- 

• Application 4.1: 

Let us consider a region where a State Transport Corporation conducts running of its buses to various destinations via some stoppages 

to cover the whole region by some route maps. This situation can be represented by disemigraph where each stoppage represents a 

vertex; each edge represents the road way with the stoppages other than the initial and terminal ones as middlevertices. The direction 

in an edge is from the starting point of journey to the terminal one. This is the example of various domination types by which the 

Corporation can accommodate and provide best service to the public. 

Following conjectures and problems are posed for further study and solutions. 

• Conjecture4.1: For any disemigraph D(V,A), γwc(D)≤2β. 

• Conjecture4.2: 1≤γ≤γt≤γwc≤γo≤ n, if the specific dominating set exists. 

• Problem 4.1:To characterize all the disemigraphs for which δ=β=γ. 

• Problem 4.2: To investigate the bounds for strongly connected domination number γsc. 
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