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1. Introduction 

Epidemic models described by ordinary differential equations have played important role in analyzing the spread and control of 

infectious diseases. In 1760, Bernoulli used mathematical models for smallpox. The deterministic S-I-R compartmental model was 

introduced by W.O. Kermack and A.G. McKendrick and has been a tool in mathematical epidemiology [6]. The models are 

compartmental because the population is divided into groups representing discrete disease states. In a Susceptible-Infectious-

Recovered (SIR) model, infected individuals recover from disease into a life-long recovered state; they are never again susceptible to 

disease. A detailed history of mathematical epidemiology and basics of SIR epidemic models may be found in several monographs 

and classical books [1, 4, 7, 8]. The Antonine Plague, 165180 AD, was an ancient pandemic brought back to the Roman Empire by 

troops returning from campaigns in the Near-East. The epidemic invaded the Roman Empire, claimed the lives of two Roman 

emperors. Influenza or flu is a viral infection that is transmitted through the air and causes respiratory problems in humans and other 

animals. It occurs seasonally and results in an average of 30,000 deaths in the U. S. annually. The SARS epidemic of 2002 received 

attention of many authors and epidemic models were used to predict the spread of the disease. H1N1 flu, often called "swine flu," 

caused a worldwide pandemic in 2009. The outbreak began in Mexico. The virus spread worldwide. Ebola virus disease is a severe, 

often fatal illness, with a case fatality rate of up to 90%. The first Ebola outbreak took place in 1976 in Congo. Since August 2014, it 

is spreading mainly in Guinea, Sierra Leone, and Liberia. Asper WHO, more than 10,477 people have died and more than 25,263 have 

been infected with Ebola virus as on 31st March 2015, [2, 11]. The ongoing Zika virus (ZIKV) epidemic poses a major global public 

health emergency. It is known that ZIKV is spread by Aedes mosquitoes, recent studies show that ZIKV can also be transmitted via 

sexual contact, [3, 5]. 

 

2. Reproduction Number 

In epidemiology, the reproduction number ( 0R ) is very important, because the stability of the proposed model is associated with 

reproduction number. R0 determines whether there is an epidemic or not. If 0R < 1, the infection dies out, while if 0R >1, there is an 

epidemic. The basic reproduction number 0R  is defined as the average number of secondary cases arising from an average primary 

case in an entirely susceptible population. The value 0R  = 1 of the basic reproduction number does not, in general, identify the 

threshold. The basic reproduction number 0R  is often available; it can be used to estimate the model parameters, [1,7]. Reproduction 

number for Ebola transmission is 5.15 [9]. For Zika virus, the estimated basic reproduction number is 2.055. 

 

3. Equilibrium Points and Stability 

Difference equations can be used in modeling discrete dynamical systems. A dynamical system at equilibrium does not change over 

time.
*

x is an equilibrium point of the system ( 1) ( ( )),x n f x n+ =  if ( )* *x f x= , 
*

x is also called fixed point or steady state. The 

linear difference equation ( 1) ( )x n ax n b+ = + possess exactly one  fixed point 
* .

1

b
x

a
=

−
 In 2 – D case, a discrete system can be 
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expressed as ( 1) ( ( ), ( )); ( 1) ( ( ), ( ))x n f x n y n y n g x n y n+ = + = and the stationary states satisfy 

* * * * * *( , ); ( , ).x f x y y g x y= =  If 1λ  and 2λ are the Eigen values of the Jacobian [8] 

f f

x y

g g

x y

∂ ∂ 
 ∂ ∂
 

∂ ∂ 
 ∂ ∂ 

 

evaluated at the equilibrium points (
* *,x y ), then we have 

• 
* *

1,2 1 ( , )x yλ < ⇒ is locally stable.  

• 1
j

λ < for j = {1,2} 
* *( , )x y⇒ is unstable. 

Equivalently, 1,2 1λ < and the steady state (
* *,x y ) is stable, if 2 1 det Trace ,A A> + > [10]. 

 

4. Discrete Sir Model and Stability Analysis 

We shall investigate the Susceptible-Infectious-Removed (SIR) model as given below: 

 

 

(1) 

 

 

 

where , , , , 0b β µ γ α > The system (1) has two equilibria 0 0 0
b

E
µ

 
=  
 

 and 1
(1 )

b b
E

α µ β αµ

β α β β β

 −
= − − 

 with 

0 .
b

R
β

αµ
=  The local stability analysis of the model can be carried out by computing the Jacobian matrix corresponding to each 

equilibrium point. The Jacobian Matrix J for the system (1) is 

 

 

(2) 

 

 

 

From (2), Jacobian matrix for the Equilibrium point 0E is given by 
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0Trace ( ) 2
b

J E
β

β α µ
µ

= + − − +  and 0

1
Det ( ) (1 )(1 ) 1J E bβ µ α β

µ

  
= − − − −  

  
.The Eigen values of the matrix 

0( )J E are 1 1λ µ= − , 2λ β=  and  3 1
bβ

λ α
µ

= − + . The equilibrium point 0E  is Stable, when 0 1.R <  From (2), Jacobian 

matrix for 1E  is given by 

 

( 1) ( ) ( ) (1 ) ( )

( 1) ( ) ( ) [1 ] ( )

( 1) ( ) ( )

S n b S n I n S n

I n S n I n I n

R n I n R n

β µ

β α

α β

+ = − + −

+ = + −

+ = +

1 0

( , , ) 1 0

0

I S

J S I R I S

µ β β

β α β

α β

− − − 
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Trace ( ) 2

b
J E

β
β

α
= + − and [ ]2

1

1
Det ( ) 1 1 .J E bβ β αµ

α

 
= − − −  

 The Eigen values of the matrix J( 1E ) are 1λ β= and 

2 2 2

2,3

1
1 4 ( ).

2 2

b
b b

β
λ β α β µα

α α
= − ± − −  The equilibrium point 1E  is Stable, when 0 1.R >  

 

4.1. Numerical Simulation of the Model 

In this section, we present some numerical simulations to verify our theoretical results. Numerical study of non linear discrete 

dynamical systems gives an insight in to dynamical characteristics. We also present the time plots of ( ); ( ); ( )S n I n R n  for the 

system (1) with corresponding phase portraits. Dynamic behavior of the system (1) about the equilibrium points under different sets of 

parameter values is presented. 

 

Example 1. Choose the parameter 0.8; 0.87; 0.859; 0.5b β µ α= = = =  with initial Conditions ( , , ) (0.6,0.4,0.2).S I R =  

Here 0 0.7488 1,
b

R
β

αµ
= = <  so the equilibrium point 0E is globally stable, see fig - 1(A). 

 

Example 2. Choose the parameter 0.099; 0.8; 0.03; 0.6,b β µ α= = = =  with initial Conditions ( , , ) (0.6,0.4,0.2).S I R =  

Here 0 4.4 1,
b

R
β

αµ
= = >  so the equilibrium point 1E  is globally stable, see fig - 1(B). 

 

 

Figure 1: Time plot for the Axial and Interior fixed point of the system (1) with 0 1R <  and 0 1.R >  
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Figure 2: Phase Portrait of the Axial fixed point for the system (1) 

 

Example 3. In this example, 0.099; 0.8; 0.099; 0.8,b β µ α= = = = for 0 1,R = 0.099;b =  0.8;β =  0.099;µ = 0.4,α =  

for 0 2,R =  0.099; 0.8; 0.099; 0.2666,b β µ α= = = =  for 0 3,R = 0.099;b =  0.8; 0.099; 0.2,β µ α= = =  for 

0 4,R =  0.099; 0.8; 0.099; 0.16,b β µ α= = = =  for 0 5.R =  Figure – 4; describes the dynamical behavior of the model for 

different values 01 5.R≤ ≤  

 

 

 
Figure 3: Phase Portrait of the Interior fixed point for the system (1) 
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Figure 4: Variation of 0R for the system (1) 

 

5. Another Discrete Sir Model 

In this section, we consider the following discrete SIR model for discussion of qualitative behavior.  

  

 

(3) 

 

 

 

where , , , 0.b g dβ >  Here we have, b is the recruitment rate, d  is the death rate and g  is the recovery rate. The system (3) has the 

two equilibria 0 ,0,0
b

E
d

 
=  
 

 and 1 , ,
( )

d g b d gb g
E

d g d d gβ β β

 +
= − − 

+ + 
 provided 0

( )

b
R

d d g

β
=

+
. 

 

5.1. Stability: The Jacobian Matrix J for the system (3) is  

 

 

(4) 

 

 

 

 

Trace  ( , , ) 3(1 ) ( )J S I R d S I gβ= − + − −   and 

Det ( , , ) (1 )[(1 )(1 ) [(1 )( ) ]]J S I R d d d g d S I gIβ= − − − − + − − + . From (4), using the equilibrium point 0E , Jacobian 

matrix at 0E  is given by 
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b
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2
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d
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 The Eigen values of the matrix  

0
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3

1
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0
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0
1.R <  From(4), at the 
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1
,E Jacobian matrix for 

1
E  is 

 

( 1) (1 ) ( ) ( ) ( )

( 1) (1 ) ( ) ( ) ( ) ( )
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We obtain Trace ( , , ) 3
b

J S I R d
d g

β
= − −

+
 and  

Det
(1 )

( , , ) (1 )[1 ( ) ] .
b d

J S I R d d g d ab
d g

β −
= − − + + −

+
 The Eigen values of the matrix 

1
( )J E are 

1
1 dλ = −  and 

2 2

2,3

1
1 4( )[ ( ) ].

2( ) 2( )

b
b d g d d g b

d g d g

β
λ β β= − ± + + + −

+ +
 The equilibrium point 

1
E  is stable when 

0
1.R >  

 

5.2. Numerical Examples: Numerical study of non linear discrete dynamical systems gives an insight in to dynamical characteristics. 

In this section, we present the time plots of ( ); ( ); ( )S n I n R n for the system (3). Dynamic behavior of the system (3) for disease free 

equilibrium and endemic equilibrium states are presented. 

 

Example 4. For the parameter values 0.12; 0.99; 0.53; 0.19,b g dβ= = = =  and the initial condition 

( , , ) (0.7,0.5,0.2).S I R =  Here 
0

0.868 1
( )

b
R

d d g

β
= = <

+
 so the equilibrium point

0
E  is stable, see fig - 5.  

 

 

Figure 5: Time Series and Phase Portrait for the Axial fixed point of the system (3) with 
0

R < 1 

 

Example 5. Considering 0.1; 1.299; 0.5; 0.1,b g dβ= = = = and the initial condition ( , , ) (0.7,0.5,0.2).S I R =  Here 

0
2.1650 1,

( )

b
R

d d g

β
= = >

+
 Hence the equilibrium point 

1
E is stable, see fig – 6. 

 

 

Figure 6: Time Series and Phase Portrait for the Interior fixed point of the system (3) with 
0

1.R >  
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Here 0.1; 1.299; 0.5; 0.1886,b g dβ= = = =  for 
0

1;R = 0.1; 1.299; 0.5; 0.107,b g dβ= = = =  for 
0

2;R =  

0.1; 1.299; 0.5; 0.07527,b g dβ= = = =  for 
0

3;R = 0.1; 1.299; 0.5; 0.05818,b g dβ= = = =  for 
0

4;R =  

0.1; 1.299; 0.5; 0.047456,b g dβ= = = =  for 
0

5.R =  Figure - 7; describes the dynamical behavior of the model for different 

values 
0

1 5.R≤ ≤  

 

 

Figure 7: Variation of 
0

R  for the system (3) 
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