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1. Introduction
For the Fibonacci sequence

1,1, 2, 3,5,8,13,21,34,55,89,144,233,... . F, , ...
defined by the recurrence relation

Fl’l =Fl’l-] +Fl’l-2 . (n23),
with Fj =F, =1, it is well known (Daniel Bernoulli, 1732) that the n-th term of the Fibonacci sequence (F, ). Some recent
generalizations have produced a variety of new and extended results (Berzsenyi, 1975; Horadam, 1965; Iyer, 1969; Walton 1974).

The generalized Fibonacci sequence defined by

Hn:Hn—] +Hn—2’ (HZ?)), (1.1)
with Hy =p,H, = p+q where p,q are arbitrary integers (Horadam, 1961). That is, the generalized Fibonacci sequence is
p,p+tq,2p+q,3p+2q,5p+3q,8p+5q,....(p—qQ)F, +qF,1..... 1.2)

Using the equations (1.1) and (1.2), we get
Hy=qF,+pFy,

Hypo =pFy+(p+q) Fyp (1.3)
For the generalized Fibonacci sequence, it was obtained the following properties:
Hy +H}=Q2p—q)H,, —¢Fy, . (1.4)
Hl —H> =Qp-q)H,, —eF,,, (1.5)
H, H,,-H=(-D"e, (1.6)
H,,=H,,F.+H,F,, (n23), 1.7
Hypor Hpprgr = H3+1 =(-D""e Fr2 ’ (1.8)
Hyg+e Fl=pHy,,. (19)
Hy Hypop —Hyg Hyypygin = -D""e FyFpigin s (1.10)
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2 2 22
[2Hn+1Hn+2] +[HnHrH—3] =l2Hn+1Hn+2 +HnJ ’ (L.1D)
H,, +-)"H
et ;1 ) By =F +(-D"F,. (1.12)
n
where e=p2 —pq—qz.
Also, for p=1,q =0, it was obtained the following well-known results:
Fn2_1 + Fn2 =F,, 1, (Catalan), (1.13)
F, F. —F>=(-1)", (Simpson or Cassini), (1.14)
FX +F*=F, (Lucas). (1.15)
Furthermore, the n-th term C,, of the Complex Fibonacci sequence (C,,) defined by
C,=F,+iF,,, i=-1
and the generalized complex Fibonacci sequence defined by
C,=H,+iH, |,
(Horadam, 1961, 1963).
2
Also, for moduli of the complex Fibonacci number C,, , writing |C n| =c, , we find
— g2 2 _
cn_Fn +Fn+l_F2n+l’ (1.16)
Cn —Cn :Fn2+l _Fn2—1:F2n (L.17)
ie. terms Fi,F),F3,Fy,....Fy, , Fy,q,... of the classical Fibonacci sequence are expressible as
€p,C1 —€0,C1 €y —CpseeeyCpy —Cp_1>Cp,y... TESPECtively.
2. Generalized Dual Fibonacci Sequence
In this section, we will define the generalized dual Fibonacci sequence denoted by Dn .
The n-th term of a generalized dual Fibonacci number defined by
D,=H,+¢H, - 2.1)
where €% = 0, €#0 and it’s called dual' unit (Ercan & Yiice, 2011).
Using the equation (1.3) and (2.1), we write
D,=(p-q+eqQF,+(q+ep)F,, (22)
Thus, elements of the generalized dual Fibonacci sequence is
Dy): pte(p+q), (p+q)+EQRp+q),....(p—q+eqQ)F,+(q+EP)F, ... (2.3)
From the equations (2.1) and (2.2), we get the following properties for the generalized dual Fibonacci sequence:
2 2
D, 1+D, =Q@p-q)+e(p+29)Dy, —e(l+ &) Fp,, 24)
2 2
D, +D, =Qp—-q)+&(p+29)Dy, . —e(1+E)F s (2.5)
2 2
D, 1D, 1=@Qp-q)+&(p+2q)D,, —e(l+e)F,,, (2.6)
D, D, -D; =(-1)"e(+¢), 2.7
DnDn+r+1 _Dn—sDn+r+s+1 = (_1)n+s e(l+e) FsFr+s+1 > (2.8)
2 - 2
Dn+1—an+1+r _Dn+1 = (_1)n ' e(l+¢) Fr 4 (2.9)
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Dy, +e(l+8) Fy =[p+e(p+9)]|Dyya. (2.10)
D,D,, +D, ;D1 =Q2p—q)+&(p+2¢)D, 4y —e(A+E)Fyp iy (2.11)
D,D,.,-D,.D,=e(-1)"D,  +ee-)""F_ . (2.12)
2 2 212
[2Dn+1Dn+2] +[DnDn+3] :|:2Dn+1Dn+2 +Dn:| ’ (2.13)
_ I
Dn+r +( 1) Dn—r :Lr — Fr+1 +(_1)rFr_1 , (214)
Dn
D_,=(=)"'D, +(q+ep)L_,., L, Lucas number (2.15)

where e:p2 —pq—qz.

Special Case- 1: From the generalized dual Fibonacci sequence (Dn) for p=1, ¢ =0 in the equation (2.2), we obtain dual

Fibonacci sequence (D,, ) as follows:
(D,)): 1+¢,1+2¢,2+3¢,3+5¢,....F, +eF,q,...
where given by Giiven and Nurkan (2014).

Theorem 1. Let H, and D ,, are the generalized Fibonacci number and generalized dual Fibonacci number, respectively, then

. Hyy . po+g

lim =

n—e Hy,  qo+(p—q)
and

o D (0’ - pa+ad)a+ pgl+a)+q’
2.2 2
n—e D, g " +2q9(p—q)a+(p-q)
where o= (1+ \/g)/Z =1.618033.. is the golden ratio.

Proof . We have for the Fibonacci number F), ,

F
lim =

n—oo Fn

where o= (1+ \/g)/Z =1.618033.. is the golden ratio.

Then for the generalized Fibonacci number H ,,, we obtain

. Hyn PFu+qF,  pa+tg 216
lim = lim = (2.16)
n—eo Hy  noe qF g +(p—q@)F, qo+(p—-q)
and
lm Dy = lim (p—gq+eq)F,+(q+ep)F, o

n—e D, n—eo (p—q+eq)F,+(q+€p)F, 4

. [(pF,.+qF,1+€l(p+q)F, .+ pF,]
n—se [(p=q)F, +qF, 1+ €lqF, + pF, ] (2.17)

— im [(p* = pg—a*)F,Fpy + pa(Fiy + FD) —q°F;)
noe [(p=q) Fl+2q(p—q)F,F, . +q*Fl)
. [(=D"'(p* - pg—4*)]
lim € ) )
n—e  [(p=q)"F, +2q(p—q)F,F, ;1 +q F, ]
(P> -pg-qHa+pgl+a’)—q*
g’ +2q(p-qa+(p-q)°
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where Fyo =F, +F,41.

Special Case- 2: From p =1, ¢ =0 in the equations (2.16) and (2.17), we obtain

Hyy

F
lim — = jim =0

which given by (Koshy, 2001) and

D D
lim 2 = iy 2 g1 0=¢.
n—o0 n—oc0

n n
Theorem 2. The Binet formula® for the generalized dual Fibonacci sequence is as follows;
\ Za'—B B 2.18
D,=——(@a"-§p"). (2.18)
a-p

Proof . If we use definition of the generalized dual Fibonacci sequence and substitute first equation in footnote, then we get

D,=(p-q+&eq)F,+(q+€p)F,

o — B" an+1 _ pn+l
—(p-gre &Ly grep @5
a-p a-p
] (2.19)
=rﬁa"[(p—q+€q)+a(q+€p)]—ﬂ"[(p—q+€q)+ﬂ(q+€p)]
_aad" - p"
a-B
where &z(p—q+£q)+oc(q+£p) and Bz(p—q+8q)+ﬁ(q+8p).
3. Generahized Dual Fibonacci Vectors
A generalized dual Fibonacci vector is defined by
Dn = (Dn ’Dn+l’Dn+2)
Also, from equations (2.1) and (1.1), (1.3) it can be expressed as
Dnan+€Hn+l 3.1

=(p-q+EQF,+(q+ep)F,,

where H, =(H,,H,,H,.») and F, =(F, ,F,,F,.>) are the generalized Fibonacci vector and the Fibonacci vector,
respectively.

The product of Dn and A€ R is given by
AD,=AH, +eAH,,,
and

RN —

Dn and Dm are equal if and only if
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H,=H,
H,y=H,4
Hn+2:Hm+2‘

Some examples of the generalized dual Fibonacci vectors can be given easily as;
E =(D;.D,,D3)
z[(p+€(p+q), (p+q9)+e@p+gq), (2p+q)+€(3p+2q)]

D, =(H,,Hs,Hy)+&(H;,Hy, Hs)
=[(p+q+e2p+q), 2p+q)+€Bp+2q), Bp+29)+&(5p+3q)]

Theorem 3. Let Dy and Dy, be two generalized dual Fibonacci vectors. The dot product of these two generalized dual Fibonacci
vectors is given by

N N 2
<D” ’Dm> = (p _q) [(Fn+m+3 + Fn Fm) +g(2Fn+m+4 + Fn+1Fm + FnFm+1)]
(2Fn+m+2 + Fn+2Fm+3 + Fn+3 Fm+2)

(3.2)
+& (4Fn+m+3 + Fn+4Fm+2 + Fn+2 Fm+4 + 2Fn+3Fm+3)

+q(p—q)[
2
+q [(Fn+m+5 + Fn+1 Fm+1) + 8(2Fn+m+6 + Fn+2Fm+1 + Fn+1Fm+2)]'

Proof. The dot product of D, =(D,,,D,,,1,D,42) and D, = (D,,,D,,11,D,4,) defined by

<Dn > Dm> = Dn Dm +Dn+1 Dm+1 +Dn+2 Dm+2

:<Hn > Hm>+g(<Hn+1’ Hm>+<Hn’ Hm+1>)

where H_,: =(H,,H,.,H,,,) is the generalized Fibonacci vector. Also, the equations (1.1), (1.2) and (1.3), we obtain

(Hu Fin)=(p =)W Frames + FuFo )
+4( P =) 2Fimiz + FruoFis + Fu3Fnia ] (3-3)
+q° [Frvmss + Frat Fusa ]
<I_'in ,ﬁm+l>:(P _51)2[(Fn+m+4 + FyFppin )]
+q(p—q)2F a3 + FraoFoea + Fr3Fiin ] 34

2
+q [Fn+m+6 + Fn+l Fm+2]
and

Ir Ir 2
<Hn+1 ,Hm>:(P_Q) [(Fn+m+4 + Fp Py )]
+Q(p_Q)[2Fn+m+3 + Fui3Fme3 +Fn+4Fm+2] (3-5)
2
+q [Fn+m+6 +F0 Fm+1]

Then from equation (3.3), (3.4) and (3.5), we have the equation (3.2).
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Special Case- 2: For the dot product of generalized dual Fibonacci vectors Dn and Dn 41 » We get

<D” ’D”+1> :DnDn+1 +Dn+l Dn+2 +Dn+2 Dn+3
:<Hn ’ Hn+1>+g(<Hn’ Hn+2>+<Hn’ Hn+1>)
2 2
:(P—Q) { (F2n+4+FnFn+l)+€[(2F2n+5+Fn+l+FnFn+2)] }

2
+Q(p_Q){ (2F2n+5 +Fn+1 + FnFn+2)+€[(4F2n+6 +3Fn+1Fn +FnFn+3)] }

2 2
+q°{ (Fappe+ Fpp1 Fpn) +E[RFy 7 + Foyp + FFui)l )

and

<1_j" > 13"> = D% +D3+1 +D721+2
=(H, ,H,)+2&(H,, H,,)

= (p _q)z[(F2n+3 + Fn2)+ 2‘C"(FZn+4 + FnFn+1)]
+q(p_Q)[(2F2n+4 +2FnFn+1)+2g(2F2n+5 +FnFn+2)]

2 2
+q [(F2n+5 + Fn+1) + 28(F2n+6 + Fn+1Fn+2)]
Then for the norm of the generalized dual Fibonacci vector’, we have, using identities of the Fibonacci numbers

2 2
Fn +Fn+1_F2n+1

2 2
F F o =Fun

n+l = " n-

Fo Fp + FupFrn = Foomn

(see, (Vajda, 1989)), we have

D,

= \/<]3n ,ﬁn> = \/Di +Dﬁ+1 +Di+2

=P Fyys + FO+q(p @) 2Fsp 14 + 2F, Fy1)
+\/612(F2n+5 +Fh)

+\/25{(P_Q)2(F2n+4 +FF)+q(p—q)(2F,, 5+ FnFn+2)}

+\/2€{612(F2n+6 + Fn+1Fn+2)}'
Special Case- 3: For p=1, ¢ =0, in the equations (3.2), (3.6) and (3.8), we have

<Dn ’Dm>:(Fn+m+3 +FyFy )+ E(2Fimia + Fpn Fyy + FFipi )

<D” ’Dn+1>:(F2n+4+FnFn+l)+8(2F2n+5+Fn2+1+FnFn+2)

and

2
||Dn||:\/(F2n+3 +Fn )+28(F2n+4+Fn Fn+1)
(F2n+4 +Fn Fn+1)
2
\/(F2n+3 +Fn )

2

(3.6)

3.7

(3.8)
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which given by (Giiven & Nurkan, 2014).
Theorem 4. Let Dy and Dy be two generalized dual Fibonacci vectors. The cross product of Dy and Dy is given by

Dy XDy = ()" F,_,, (1+ ) (p* = pg— ¢*)(~i = j + k). (3.9)
Proof. The cross product of ﬁn = Fln + €Hn+1 and 6m = Flm + €Flm+1 defined by

where  H p is the generalized Fibonacci vector and H ; X H p, is the cross product for the generalized Fibonacci vectors H ;, and

—

Hy.

Now, we calculate the cross products Huy X Hp, Hu X H m+1 and H p+1 X H o :

Using the property F,, F, .1 — F,, . F, = =" F,_, . we get

HyxH,y=)"Fyp(=i—j+k)(p> = pg—q”) (3.10)

Hy X H oy = (D" Fpyy (=i = j+0)(p* = pa—q°) (3.11)
and

HyXHpy =(D)"Fyppir (=i— j+K)(p> = pg—q°) (3.12)

Then from the equations (3.10), (3.11) and (3.12), we obtain the equation (3.9).

Special Case-4: For p=1, ¢=0, in the equations (3.9), we have

DnXDm=(-D"F, , (1+€)(—i—j+k)

which given by (Giiven & Nurkan, 2014).

Theorem 5. Let Dy, Dy and Dy be the generalized dual Fibonacci vectors. The mixed product of these three vectors is
(D XD ,Di})=0 (3.13)

Proof. Using the properties
and
Dik=H, ; +€H,,

we can write,
(D XD ,Di) = (H, x H,, Hy )+ €[(H, X H, Hisy )
+(H, X H, 1, Hy )+ (H, XH,,, Hi )l
Then from equations (3.10), (3.11) and (3.12), we obtain
<(—i—j+k),Hk>=—Hk ~Hy +Hppy =0,
<(—i—j+k),?ik+1>=—Hk+l —Hpyy + Hpy =0.

Thus, we have the equation (3.13).
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4. Notes

x®
' The dual numbers extended to the real numbers has the form d=a+&a” where a,a € R . The set

D:{ d=a+éed"

a, a'eR , 82 =0,e+# O} is called dual number system (Ercan & Yiice, 2011).

—_— _

The set D3 ={ Zi = a +ga>i< where a,a* c R3} is a module on the ring D which is called D - Module and the elements of

D3 are called dual vectors (Ercan & Yiice, 2011).

* Binet formula is the explicit formula to obtain the n-th Fibonacci and Lucas numbers. It is well known that for Fibonacci and Lucas

numbers, Binet formulas are

al’l _ ﬂl’l

F,=—
a-p

and

L,=a" +p"
respectively, where a+,8=1, 0{—,6’=\/§, 0:,6’:—1 and a=(1+\/§)/2, ﬁ:(l—\/g)/z (Kalman & Mena, 2003; Rosen
1999).

> Norm of dual number as follows:
‘AH =\a+€a =+a+éea A=a+¢€a (Ercan & Yiice, 2011).

2va
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