
 The International Journal Of Science & Technoledge (ISSN 2321 – 919X) www.theijst.com

1 Vol 4 Issue 10 October, 2016

THE INTERNATIONAL JOURNAL OF

SCIENCE & TECHNOLEDGE

Blum Blum Shub in Generating Key in RC4

1. Introduction
RC4 is one of a cryptographic model that uses 1 to 256 characters as the security key [1][4]. However, the key created is not too
secure. When attaching the key, people always makes it which can easily remember. The key generated is repeated until the length of
the plaintext is reached. The process of this algorithm is to round the position in SBOX array. The SBOX array has 256 bytes’ length.
Each post has its number used to generate a pseudorandom number to be xor with the plaintext. The weakness of this technique in
making the core is it not safe. The strength core must be applied to make the strength ciphertext as well. Blum Shub method offers the
advance of security technique. The algorithm will generate the key. Some of the advantages of using this approach are the total
amount of character, and the range of ASCII can be determined beforehand.

2. Theories
Two closely-related pseudo-random sequence generators presented: The lIP generator, with input P a prime, outputs the quotient digits
obtained on dividing by P. The x mod Generator with data N, Xo (where N P. Q is a product of distinct primes, each congruent to 3
mod 4, and x0 is a quadratic residue mod N), outputs bob1 b2" where bit parity (xi) and xi+ x mod N [2][3].
The RC4 algorithm is one of symmetric cryptography algorithms which commonly used for encryption and decryption. RC4 derived
from the RSA Data Security, Inc [5]. In symmetric ciphers, both the encryption and decryption use the same keys. It is designed to be
easily performed even in large amounts of data. Symmetric ciphers can operate in block or stream mode. In block mode, the message
will split into several fixed size blocks and each block will be encrypted one by one while in flow mode the message will be encrypted
from the first character to the end of the message.
RC4 has the SBOX to save the random position which will be applied to plaintext after. The SBOX will be numbered from 0 to 255 as
an array [6]. RC4 uses two indices, i and j in the algorithm. The index i is used to ensuring that an element changed while the index j
will make sure that an item changed randomly [7][8]. In essence, this encryption algorithm will generate pseudo-random byte of the
key that has xor operation on plaintext to produce the ciphertext. To obtain the plaintext back from the ciphertext, the decryption
module performs the same operation as the encryption does. Figure 1 tells how to get the SBOX data. The SBOX obtained by mixing
the core and the value of j.

Andysah Putera Utama Siahaan
Faculty, Department of Computer Science,

Universitas Pembangunan Panca Budi, Medan, Sumatera Utara, Indonesia

Abstract:

In the manufacture of RC4 encryption, a user always input the key as a security approval. The encryptor usually makes the

core. Sometimes the encryptor does not feel that the key made is breakable. The Blum Blum Shub method can generate

random key more secure. It means that the key generated can help the data from being solved by a hijacker. Blum Blum

Shub uses two prime numbers to generate a key. When attached in RC4, a user does not need to create its key; and fully

produce by the Blum Blum Shub module. The ciphertext will be more secure and robust after being combined with Blum

Blum Shub.

Keywords: Cryptography, Blum Blum Shub, RC4

 The International Journal Of Science & Technoledge (

2

Figure 1:

After the SBOX is compiled, the encryption or decryption process can be carried on. The main part of this method is to perfor
XOR operation to the plaintext which is taken from the SBOX. This is a repeated process since the length of the message is greater
than the SBOX or greater than 256 characters. Figure 2 is the flowchart of RC4 encryption and decryption.

The International Journal Of Science & Technoledge (ISSN 2321 – 919X)

 Vol 4 Issue 10

Figure 1: Process of theSBOX generator

After the SBOX is compiled, the encryption or decryption process can be carried on. The main part of this method is to perfor
ion to the plaintext which is taken from the SBOX. This is a repeated process since the length of the message is greater

than the SBOX or greater than 256 characters. Figure 2 is the flowchart of RC4 encryption and decryption.

Figure 2: Encryption process

www.theijst.com

 October, 2016

After the SBOX is compiled, the encryption or decryption process can be carried on. The main part of this method is to perform the
ion to the plaintext which is taken from the SBOX. This is a repeated process since the length of the message is greater

than the SBOX or greater than 256 characters. Figure 2 is the flowchart of RC4 encryption and decryption.

 The International Journal Of Science & Technoledge (ISSN 2321 – 919X) www.theijst.com

3 Vol 4 Issue 10 October, 2016

Blum Blum Shub (BBS) is a random number which is generated by a pseudo-random number generator. It was created by Lenore
Blum in 1986, Manuel Blum and Michael Shub that is derived from Michael O. Rabin's oblivious transfer mapping. The formula of
BBS is shown below:

�� + 1 = �����		��. �� (1)

Where:
 p & q : prime numbers
 x : seed

3. Methodology

The BBS module takes apart in generating key as input in the RC4 algorithm. The key in RC4 is in ASCII format which is represented
by 0 to 255 since the input key inserted by typing them on a keyboard. In this case, the number generated by BBS must be limited in a
range of 0 - 255. To perform this case, it needs to be added a modulo expression to turn its number back in that range. The BBS
module will be repeated until the maximum request. If the requested key is 20 characters, it will spin to 20 times and result in 20
random numbers in ASCII format. Table 1 shows the result of generating 20 numbers in range 33-127.

1 2 3 4 5 6 7 8 9 10
79 50 75 70 122 107 107 74 95 39
O 2 K F z k k J _ '

11 12 13 14 15 16 17 18 19 20
56 71 35 107 62 57 68 124 48 40
8 G # k > 9 D | 0 (

Table 1: Result of generating 20 random numbers

The key generated by BBS is “O2KFzkkJ_'8G#k>9D|0(“. Then it generates the SBOX using the key obtained. Table 2 shows the
SBOX value after reposition using SBOX module.

SBOX

79 137 231 24 150 1 49 199
159 94 76 242 251 153 17 45
140 229 108 12 238 53 72 43
77 57 86 241 89 133 23 28
34 147 211 93 183 216 181 182
58 0 152 213 219 132 230 60

198 68 176 196 161 44 19 62
100 244 88 74 73 224 105 214
168 158 175 142 221 29 118 18
255 246 38 191 172 112 50 215
107 63 54 97 27 135 184 187
123 253 145 239 220 2 144 210
5 98 14 3 173 67 126 236

226 119 235 148 167 166 41 122
136 11 189 138 37 163 64 75
78 47 185 202 22 103 117 101
95 204 6 120 85 157 149 31

209 66 87 169 13 35 188 52
192 131 70 164 7 254 39 217
249 162 104 124 178 233 84 71
55 16 129 165 139 201 114 80

218 170 243 61 110 247 240 116
155 109 203 113 102 8 200 83
121 154 46 69 146 197 206 237
208 99 193 248 48 234 20 205
125 42 250 56 223 186 151 128
106 252 212 40 59 30 180 160
228 207 32 82 65 81 143 245
174 222 190 25 130 10 9 111
91 156 90 15 171 232 127 92

195 194 141 21 115 179 36 225
134 51 177 33 26 96 227 4

Table 2: SBOX value

 The International Journal Of Science & Technoledge (ISSN 2321 – 919X) www.theijst.com

4 Vol 4 Issue 10 October, 2016

The SBOX is applied to plaintext and perform the encryption. Assume the plaintext is “THE QUICK BROWN FOX JUMPS OVER
THE LAZY DOG” and the key is “O2KFzkkJ_'8G#k>9D|0(“. Table 3 show the result of encryption.

ENCRYPTION

NO PT K CT

1 T 84 56 108 l
2 H 72 122 50 2
3 E 69 156 217 Ù
4 32 247 215 ×
5 Q 81 133 212 Ô
6 U 85 178 231 ç
7 I 73 141 196 Ä
8 C 67 236 175 ¯
9 K 75 172 231 ç
10 32 63 31
11 B 66 58 120 x
12 R 82 148 198 Æ
13 O 79 129 206 Î
14 W 87 141 218 Ú
15 N 78 130 204 Ì
16 32 182 150 –
17 F 70 25 95 _
18 O 79 240 191 ¿
19 X 88 53 109 m
20 32 141 173
21 J 74 167 237 í
22 U 85 165 240 ð
23 M 77 74 7
24 P 80 236 188 ¼
25 S 83 67 16
26 32 4 36 $
27 O 79 43 100 d
28 V 86 75 29
29 E 69 91 30 -
30 R 82 253 175 ¯
31 32 248 216 Ø
32 T 84 213 129
33 H 72 28 84 T
34 E 69 136 205 Í
35 32 254 222 Þ
36 L 76 227 175 ¯
37 A 65 152 217 Ù
38 Z 90 163 249 ù
39 Y 89 219 130 ‚
40 32 162 130 ‚
41 D 68 88 28
42 O 79 203 132 „
43 G 71 197 130 ‚

Table 3: The result of encryption

There are several unprinted/box characters. If the encryption results between 0 and 32, it will be not printed on the screen. It shows
like a spacebar only. For example, the value of item number one. The plain character is “T” which ASCII is 84. K is the value that will
be xor with the plain character. First, i and j are set to zero. Let’s take a look at the illustration below.

Plain Char = T
PT = 84

i = 0

 The International Journal Of Science & Technoledge (ISSN 2321 – 919X) www.theijst.com

5 Vol 4 Issue 10 October, 2016

j = 0
i = (i + 1) mod 256
 = 1
j = (j + S[i]) mod 256

= 0 + 137
= 137

S[i] = S[1] = 137
S[j] = S[137] = 66 then swap
S[i] = S[1] = 66
S[j] = S[137] = 137

t = (S[i] + S[j]) mod 256

= (66 + 137) mod 256
= 203

K = S[t]

= S[203]
= 56

CT = PT ⊕ K
 = 84 ⊕ 56
 = 108

The calculation gives the correct result. The plain character 84 is turned to 108 after being encrypted with 56. The decryption does the
same way with the encryption. The cipher character 108 will have xor with 56 too, and the final result will be 203 as well. By
attaching BBS in RC4, the provided key will be more powerful and hard to guess. Someone does not have to create the key manually.
BBS uses the prime numbers to compose the single key randomly. It makes the sequence of the characters are invulnerable.

4. Conclusion
From the discussion earlier, it can be concluded that Blum Blum Shub can give a contribution to RC4. The key is a strong determinant
whether the encryption method is powerful. Blum Blum Shub is one of the pseudo-random generators that can be applied in the RC4
technique. The math calculation is not difficult to learn. The RC4 key can be given either by user type or pseudo-random number. All
the important thing is to generate the difficult key to produce the powerful ciphertext. The attacker will be hard to guess the key used
by the encryption and decryption participants.

5. References
i. Kadry, S., & Smaili, M. (2010). An Improvement of RC4 Cipher Using Vigenère Cipher. Lebanon: Lebanese University.

ii. Blum, L., Blum, M., & Shub, M. (1986). A Simple Unpredictable Pseudo-Random Number Generator. SIAM Journal on
Computing, 364-383.

iii. Blum, L., Blum, M., & Shub, M. (1982). Comparison of Two Pseudo-Random Number Generators. Advances in Cryptology:
Proceedings of Crypto (hal. 61-78). Plenum.

iv. Siahaan, A. P. (2016, 04 26). RC4 Technique in Visual Cryptography RGB Image Encryption. International Journal of Computer
Science and Engineering, 3(7), 1-6. doi:10.14445/23488387/IJCSE-V3I7P101.

v. Sidorenko, A., & Schoenmakers, B. (2005). Concrete Security of the Blum-Blum-Shub Pseudorandom Generator.
vi. Weerasinghe, T. D. (2012). Analysis of a Modified RC4 Algorithm. International Journal of Computer Applications, 51(22).

vii. Stošić, L., & Bogdanović, M. (2012). RC4 Stream Cipher and Possible Attacks on WEP. International Journal of Advanced
Computer Science and Applications, 110-114.

viii. Jindal, P., & Singh, B. (2015). A Survey on RC4 Stream Cipher. I. J. Computer Network and Information Security, 37-45.

