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1. Introduction 

There are numerous methods in the literature for summing the Leibnitz alternating series of the type 

�(−1)���
∞

��	
, �� > 0, �� → 0																																																															(1) 

In Chakrabarti & Hamsapriye (1996) and Hamsapriye (2000), the �-convexity conditions imposed on theterms of the series (1) give 

rise to various correction terms, which accelerate the summation procedure. Initially, the kth partial sum 

 �� = �	 − �� + �� −⋯+	(−1)���																																																									(2) 
 

is considered as an approximation to the sum of the series, with the remainder or the error term given to be �� = (−1)������� +(−1)������� + (−1)������� +⋯. The procedure for obtaining the corrected partial sums and the corrected remainders can be 

utilized repeatedly, whenever additional α convexity conditions are satisfied by the terms of the series Chakrabarti & Hamsapriye 

(1996). On imposing �-convexity conditions the series will retain the structure of being a Leibnitz series. This further helps in 

estimating the error at every step of correction. In the first stage, α convexity conditions are given to be 

 

� (1 − �)���� − ���� + ����� ≥ 0�	���� − ���� + (1 − �)���� ≥ 0�,			∀	 > 0	� !	0 < 	� < 1								(3) 
 

and the correction term added to the kth partial, along with the corresponding remainder termare given to be Chakrabarti & 

Hamsapriye (1996): 

 

 (−1)��	����	|��| ≤ (1 − �)(���� − ��)																																																																								(4) 
 

We can also derive higher order correction and remainder terms, provided the terms of the series satisfy the higher order �-convexity 

conditions. The details of the explanation of these higher order�-convexity conditions, higher order correction terms and 

corresponding remainder terms are described in Chakrabarti & Hamsapriye (1996) and Hamsapriye (2000). There are classes of series 

which do not satisfy (3) uniformly for all values of n. That is, the summation procedure depends on the number of terms (even or odd) 

chosen in the partial sum��. Such series are not α-convex Chakrabarti & Hamsapriye (1996) and in this case there exists different 

ranges of α for even and odd values of		 . These series are therefore called as partially �-convex series. For example, the class of 

series of the form 
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��± = �� ± (−1)�()���
∞

��	
																																																																														(5) 

with the conditions 

 (+)	�, ( > 0; (++)	� > (; (+++)	) > 1; (+-)	)(� − ( > (� + ()								(6) 
 

is Leibnitz series. The terms of this series fail to satisfy the inequalities in (3) for all n, whenever /01/ < 23��34�5�holds good. But the 

series can still be effectively summed-up by imposing what are called the partial �-convexity conditionsChakrabarti & Hamsapriye 

(1996). It can be verified that the exact sums of the two series are�� = 0
3�� + 1

34�and	�4 = 0
3��− 1

34�. In fact, in the first correction 

itself the exact sum of the series is obtained by choosing the optimal αChakrabarti & Hamsapriye (1996). This fact has been proved 

theoretically in Hamsapriye (2000). The subject matter of this paper is to investigate the reason for obtaining the exact sum of the 

series, in the light of linear programming.  

In section 2, we have explained the direct connection between choosing the optimal � of the first correction that leads to the exact sum 

of the series and its relation with the linear programming method in one variable. Few numerical examples are worked in section 3, 

based on first correction, which are also extended to higher correction levels. 

 

2. First Correction and Linear Programming 

We first rewrite the series in (5) as 

 

� � = 	 �� + ��
				= 	 ��6� +	 ��7�8,   for 0 < 	� < 1																																					(7)	 

where the first corrected sum 
��6� is defined as  ��6� = �� + �(−1)�����																																																																(8) 

and the first error estimate 
��7� is given by ��7� = �� − �(−1)�����																																																																(9) 

Our objective function is 
��6�which is linear in � and is also one dimension. The problem reduces to finding an appropriate α that 

optimizes the objective function, in the sense that � − ��6� is zero, under the restrictions given by (3). Plotting the two inequalities in 

(3), results in an interval for �. 

Since the problem is of one dimension, graphically the interval of � is the portion of the horizontal line bounded by these two 

inequalities, which may be called as the convex interval. A weak version of what is sometimes called the fundamental theorem of 

linear programming states that the extremal values of a linear function over a convex polygonal region are attained at corners of the 

convex region. Thus choosing α to be the right-end point of the interval we obtain the optimal value of the objective function or the 

exact sum of the series itself. The examples in the next section prove this fact. This can be extended to second, third corrections and 

these statements are supported by several examples. Since the remainder term contains (1 − α), choosing the left-end point of the 

convex interval results in a larger error. 

 

3. Numerical Results 

In this section we have worked out several examples for the sake of clarity. Although we have chosen the same examples as in 

Chakrabarti & Hamsapriye (1996), the theory is valid for any choice of the constants. 

 

� Example 1. 

 

We set �	 = 	1, (	 = 	0 and )	 = 	2 in (5). Since	(	 = 	0 the ± sign is dropped and the series � is 

� = �(−1)� 12�
∞

��	
																																																																											(10)	 

With �� = �
�< , the inequalities in (3) reduce to  

�2 − 3�	 ≥ 03� − 1	 ≥ 0=																																																																																	(11) 
On simplification we obtain 

�
� 	≤ 	�	 ≤ 	 ��. The objective function for the above series is ��6� = �� + �(−1)� 12��� 																																																												(12) 
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Figure 1 shows the plot of the inequalities in (11) and the convex interval is marked in black. For > = 0, �	 = 1	and with 		�	 = 	 �� , the 

corrected sum coincides with the exact sum of the series. That is,
�	�?	 = �

� = �. For > = 1, �� = �
�and with 	�	 = 	 ��	, the corrected sum is 

again
��6� = �

� = �. Thus in either case, whether > is odd or even, we get the sum of the series with first correction itself. It can be 

verified that for any > the value of 
��6� is unchanged. 

 

 

Figure 1: Feasible range of � for Example 1 

 

3.1. Analysis and Reasoning 

The question is why �	 = 	 �� is an optimal value? This is best understood through the conceptsof linear programming/optimization 

theory. The two inequalities are plotted in Figure 1 and the feasible region is marked in black. Figure 1 shows that �	 = 	 �� and �	 = 	 �� 
are the two extreme pointsand that �	 = 	 �� is the optimal point. At these points the inequalities cut the horizontal axis, giving us arange 

of �. Here we may recall the fundamental theorem of linear programming stated earlier and therefore �	 = 	 �� is the optimal choice, 

since this reduces the error. 

 

� Example 2. 

 

We next consider the example  

��4 = �4− (−1)�5���
∞

��	
																																																																																																							(13) 

Using the constraints (3) on the terms of the series (13), we finally arrive at 

 

�25	(1 − �)(4 − (−1)���) − 5	(4 − (−1)���) + �	(4 − (−1)���) ≥ 025	�	(4 − (−1)���) − 5	(4 − (−1)���) + (1 − �)(4 − (−1)���) ≥ 0�							(14) 
 

> ��  ���� 
��6�  

> = 1 
25 

3125 
512 

> = 3 
52125 

33125 
512 

Table 1: 
��6� = �4for different values of > and � = 	 �@�A 
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It is to be noted that the constants �	 = 	4, (	 = 	1 and )	 = 	5 of this series satisfy the condition/01/ > 23��34�5�. Hence, for this series we 

cannot fix a common α for all	 . We thus have to fixdifferent � depending on whether   is odd (the partial sum consists of even 

number of terms)or even (the partial sum consists of odd number of terms). We discuss these cases separately. 

 

Case I: If   is odd then we obtain the range � to be
�
�� 	≤ 	�	 ≤ 	 �@�A. The table below showsthat the corrected partial sum

��6�is equal to 

the exact sum	�4, for any odd		>. 

 

3.2. Analysis and Reasoning 

If   is odd, then the first and the second constraints in (14) simplifies to 

 B(�) 	= 	−120�	 + 	10	 ≥ 	0																																																																													(15) 
 

and 

 C(�) = 	−72�	 + 	50	 ≤ 	0	(16) 
 

Figure 2 displays the plot of these two functions and the feasible or the convex interval is marked in black color. In Figure 2, �	 = 	 ��� 
and �	 = 	 �@�A are the two extreme points and the choice of �	 = 	 �@�Agives the exact sum. 

 

 

Figure 2: Feasible range of � for Example 2, for odd > 

 

Case II: If   is even then then we obtain the range � to be
��
�A 	≤ 	�	 ≤ 	 ����.The table below shows that the corrected 

��6�is equal to the 

exact sum	�4, for any even		>. 

 

> ��  ���� 
��6�  

> = 2 
53125 − 1125 

512 

> = 4 
13033125 − 13125 

512 

Table 2: 
��6� = �4for different values of > and� = 	 ���� 

 

If   is even, then the first and the second constraints in (14) simplifies to 

 D(�) = 	−72�	 + 	22	 ≥ 	0																																																																													(17) 
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and 

 E(�) = 	−120	�	 + 	110	 ≤ 	0(18) 
 

These functions are plotted as shown in Figure 3 and the feasible region is as usual marked in black color. In Figure 3, 
��	
�Aand 

��	
��  are 

the extreme points and that 
��	
��  is the optimal choice. 

 

 

Figure 3: Feasible range of � for Example 2, for even > 

 

� Example 3. 

We next consider the example  

��4 = �13 − (−1)� . 32��@
∞

��	
																																																																															(19) 

 

Case I: If   is odd then we obtain the range � to be
�
�� 	≤ 	�	 ≤ 	 ��@. The table below showsthat the corrected partial sum

��6�is equal to 

the exact sum	�4, for any odd		>. 

 

> ��  ���� 
��6�  

> = 1 
116 

564 
112 

> = 3 
564 

5256 
112 

Table 3: 
��6� = �4for different values of > and � = 	 ��@ 

 

Figure 4 shows the plots of the functions B(�) = −12	� + 1 ≥ 0 and C(�) = −15	� + 4 ≤ 0 and the two extreme points are 
�
�� and 

�
�@ and the optimum choice is		� = �

�@.  
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Figure 4: Feasible range of � for Example 3, for odd > 

 

Case II: If   is even then then we obtain the range � to be
��
�@ 	≤ 	�	 ≤ 	 ����.The table below shows that the corrected 

��6�is equal to the 

exact sum	�4, for any even		>. 

 

> �� ���� 
��6� 

> = 2 
964 − 116 

112 

> = 4 
25256 − 164 

112 

Table 4: 
��6� = �4for different values of > and � = 	 ���� 

 

Figure 5 shows the plots of the functions D(�) = −15	� + 11 ≥ 0 and  E(�) = −12	� + 11 ≤ 0 and the two extreme points are 
��
�@ 

and 
��
�� and the optimum choice is	� = ��

��.  
 

 

Figure 5: Feasible range of � for Example 3, for even > 
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4. Conclusions 
Summation procedure of Leibnitz alternating series using α-convexity conditions, imposed on the terms of the series, has been re-

considered and the basic idea of choosing an appropriate � has been explained in the light of optimization technique. Determining a 

range for � has been related to determining the convex region formed by the α-convexity constraints. Several numerical examples 

have been worked out in support of the statements. Although the same examples as in Chakrabarti & Hamsapriye (1996) and 

Hamsapriye (2000) have been considered, the results of this paper are not just restricted to them. We first impose the α convexity 

conditions on the class of series in (5) and obtain pair/s of functional inequalities. By plotting these inequations we obtain the region/s 

of their intersection with that of the horizontal axis. Depending on whether the series is �-convex or partially �-convex, we obtain a 

common range of � for all   or different intervals of	� separately for   odd and   even. We choose the right end point of the convex 

interval as the optimal	� and proceed for correcting the partial sum. The corrected partial sum coincides with the exact sum or the 

limit of the series. These ideas provide a new way of thinking for researchers and the student community and in particular to those 

interested in Mathematics Education. In other words, summing of �-convex series can be now understood in the light of optimization 

theory. 
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