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1. Introduction 

The future of human survival has attracted renewed interest in recent decades. The historic rise in life expectancy shows little sign of 

slowing, and increased survival is a significant contributor to population ageing. In this context, forecasting mortality has gained 

prominence. The future of mortality is of interest not only in its own right, but also in the context of population forecasting; on which 

economic, social and health planning is based. The future provision of health and social security for ageing populations is now a 

central concern of countries throughout the developing and developed world. This renewed interest in mortality forecasting has been 

accompanied by the development of new and more sophisticated methods; for a review. A significant milestone was the publication of 

the Lee-Carter method [1]; although a principal components approach had previously been employed by [2]. The Lee-Carter method is 

regarded as among the best currently available and has been widely applied [3]; [4]. The Lee-Carter method was a significant 

departure from previous approaches: in particular, it involves a two-factor (age and time) model and uses matrix decomposition to 

extract a single time-varying index of the level of mortality, which is then forecast using a time series model. The strengths of the 

method are its simplicity and robustness in the context of linear trends in age-specific death rates. While other methods have 

subsequently been developed [5]; [6], the Lee-Carter method is often taken as the point of reference. 

In spite of all the policies, declarations, conferences and other efforts aimed at reducing the scourge of maternal deaths across the 

globe, only modest gains in maternal mortality reduction appear to have been achieved in many countries in the past 20 years [7]. 

Countries in Africa may have actually lost ground while many developing countries have fallen far short of the standards set by the 

World Health Organization’s initiative on Safe Motherhood. In Nigeria, the Federal Ministry of Health had set Year 2006 as the target 

year that maternal mortality would have been reduced by 50 percent. However, not only were these targets not achieved but also the 

maternal health situation in Nigeria is now much worse than in previous years [8]. Past efforts to reduce maternal mortality ratio in 

Nigeria were concentrated on making direct improvements to the health system. These efforts have not involved enough resources to 

successfully reduce maternal mortality in the country. In view of this lack of success, reference [9] noted that the high maternal 

mortality in the country will have to be tackled by generating sufficient political priority to make governments deploy enough 

resources to successfully reduce maternal mortality in Nigeria. 

Maternal and Infant mortality is not an uncommon event in several parts of the developing world. Mothers and children are at the 

highest risk for disease and death. While motherhood is often a positive and fulfilling experience, for too many women, it is associated 

with ill health and even death [10]. The death of a woman during pregnancy, labour or pueperium is a tragedy that carries a huge 

burden of grief and pain, and has been described as a major public health problem in developing countries like Nigeria [11]. Women 

have an enormous impact on their families’ welfare. Deaths of infants/children under five are peculiar and closely related to maternal 
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health.  Available evidence indicates that Africa accounts for the highest burden of mortality among women and children in the world 

[12]. This unhealthy trend has become a matter of great concern, calling for a concerted approach from all and sundry. 

 

2. Data and Method 

The study mainly used data extracted from the Nigeria Demographic and Health Survey (NDHS) 2013 national sample survey which 

provides up-to-date information on basic demographic and health indicators and other background characteristics of the respondents. 

The NDHS 2013 was implemented by the National Population Commission (NPC) and the final cleaning of the data set was carried 

out by the ICF data processing specialist and completed in August, 2013. It is a follow-up to the 1999, 2003 and 2008 NDHS surveys. 

It covers the age-specific mortality rate records of mothers aged 15 to 49 years for the time periods, 1999, 2003, 2008 and 2013 in 

Nigeria. All NDHS data files are organized by sex, age and time. Population size is given for one-year and five-year age groups. One-

year age groups means 1, 2, …, 109, 110+; and five-year age groups means 0, 1-4, 5-9, 10-14, …, 105-109, 110+. Age groups are 

defined in terms of actual age, for instance, “10-14” extends from exact age 10 to right before the 15th birthday. In this paper, the data 

we will use is the death rate period and the population size is five-year age groups. Methods used for analysis include the Singular 

value decomposition technique using the principal component analysis option. Forecast of the mortality index was done by applying 

the random walk with drift model. The analysis for this study was done using the biplotad-in in Microsoft Excel 10.0 and Statgraphics 

16.1 

 

2.1 The Lee–Carter Model 

The Lee-Carter model is a simple bilinear model in the variables x (age) and t (calendar year) defined as; 

ln��� = a� +���� + ���       (1) 

Where; ���: is the matrix of the observed age-specific death rate at age x during year t. It is obtained from observed deaths divided by 

population exposed to risk. 

ax: represents the logarithm of the geometric mean of the empirical mortality rates, averaged over the historical data. It describes the 

average shape of the age profile. ��: represents the underlying time trend for the general mortality. It captures the main time trend on the logarithmic scale in mortality 

rates at all ages. It is also referred to as the mortality index. ��: represents the sensitivity of the hazard rate at age x to the time trend. It indicates the relative pace of change in mortality by age as �� varies. It modifies the main time trend according to whether change at a particular age is faster or slower than the main trend. ���: is the residual term at age x and time t. It reflects the age specific influences not captured by the model. Each of ��� is independent 

and identically distributed ���~ (0, �2). 

 

2.1.1. Merits of the Model 

i. It produces an excellent fit to mortality trends; 

ii. It is parsimonious in the number of parameters used; 

iii. It linearizes mortality trends and thereby adds confidence to extrapolations; 

iv. It produces sensible estimates of forecast of uncertainty and the model outperforms other models with respect to its prediction 

errors. 

 

2.1.2. Assumptions of the Model 

i. The model assumes that �� is invariant (remains constant) over time for all x. 

ii. It assumes that �� is fixed over age-groups for all t. 

iii. The practical use of the model assumes that the disturbances ��� are normally distributed i.e. ���~� (0, �2)’ 

 

2.2. Estimating the Parameters 

The Lee-Carter model unlike most regression formulations is not a common model structure with observed variables on the right-hand 

side and thus it cannot be fit with simple regression formulations. Hence, the estimation of �� and �� cannot be solved explicitly. The 

singular value decomposition (SVD) method was used to find a least squares solution in this study. The Singular Value 

Decomposition (SVD) is a technique used to decompose a matrix into several component matrices, exposing many of the useful and 

interesting properties of the original matrix. Ideally, the matrix is decomposed into a set of factors (often orthogonal or independent) 

that are optimal based on some criterion. In other words, any real m x n matrix A can be decomposed uniquely as: 

A = UDV
T        

(2) 

U is m x n and orthogonal (its columns are eigenvectors of AA
T
) 

V is n x n and orthogonal (its columns are eigenvectors of A
T
A) 

D is n x n diagonal (non-negative real values called singular values) 

D = diag (
1, 
2, … . , 
�) ordered so that 
1 ≥ 
2 ≥ ⋯ ≥ 
� 

(If 
 is a singular value of A, it’s square is an eigenvalue of A
T
A) 

The application of the SVD approach follows about 6 steps: 

Step: 1. �� =  �� ∑ ln (���)����      

Step: 2. Create a matrix Z x t, for estimating �� andkt, where Z x t =ln(���) − �� =  ���� 
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Step: 3. Apply the Singular Value Decomposition to matrix Zx,t, which decomposes the matrix of Zx,t, into the product of three 

matrices: ULV '= SVD(Zx,t) = L1 Ux1 Vt1+ ... + LXUxXVtX, where U representing the age component, L is the singular values and V 

representing the time component. 

Step: 4. Select Singular Value Decomposition Dialog from Biplot in Microsoft Excel, by running the program. �� is derived 

from the first vector of the time- component matrix and the first singular value (�� = L1 Vt1), and �� is derived from the first vector 

of the age-component matrix (��= Ux1). 

Step: 5. (Lee-Carter) Approximate a new matrix ��� by the product of the estimated parameters �� and�� and get Z x 1t1= ��1 ��1 

 

Zx,t = ������ ����� … ���������� ���� … �����… … …��˄�� ��˄�� �����
!��     (3) 

  �� 
Where; 

 

�� ="�#��…��
$        (4) 

 �� = %�# �� ⋯ ��&      (5) 

Step: 6. Estimate the logarithm of the central death rate ln(���) = �� +  )�� = �� +  ����     (6)  

The purpose of using Singular value decomposition is to transfer the task of forecasting an age-specific vector lnmxtinto 

forecasting a scalar t, with small error. As earlier stated, the model is given by: ln (mx,t) = ax +���(�) + ��, (�) and we need to 

estimate ax, �� and t. 

In order to achieve a unique solution, the following restrictions are used; 

 ∑ �����*�*+� = 1 - - - - - - (7) 

 ∑ ������ *+� = 0: - - - - - - (8) 

 

Where x = 1.... m age groups and t = 1......n calendar years. 

To estimate the parameters, choose the values that minimize Q; 

 

Q = ∑ (�� +  ���� − .��)��,�  - - - - (9) 

Where: ln��� and Q are subject to the constraints in (7) and (8) above. 

To find values that minimize Q, introduce Lagrange’s multipliers; α and 0 

 

R = Q - α∑ �� − 0 ∑ �����  - - - -  (10) 

And substitute equation (3.3) into (3.4) and then minimize; 

 

R = ∑ (�� +  ���� − .��)��,� − α∑ �� − 0 ∑ �����  

 

 The first derivative of R in respect of ax, bx and t respectively are; 

 12134 = 2 ∑ (�� +  ���� − .��)� ∀ x - - - -  (11) 

 12174 = 2 ∑ ��(�� +  ���� − .��) −  20��� ∀ x - - -  (12) 

 12189 = 2 ∑ ��(�� +  ���� − .��) − :� ∀ t  - -  (13) 

 

The derivatives are set to equal zero as: 

 12134 = 0, 
12174 = 0, 

12189 = 0 

 

To solve equation (3.5); 
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 2 ∑ (�� + 	���� − .��
� = 0 

 

⇒��� +	�� ∑ �� − ∑ .���� = 0 

 (∑ ������	*+� = 0) ⇒��� − ∑ .���  = 0 

 �� = 	1�;.���  

�� = 	1�; ln����
���  

 

The estimate for ��is thus computed as the average over time of the logarithm of the central death, which corresponds to the 

definition of ��in section 3.0. 

 

Now define ��� = 	.�� − ��⇒∑ .�� = 0�  for every x. 

Equation (7) can now be rewritten as: 2∑ ��(�� +	���� − .��
 − :�  = 2∑��(���� − ���
 − : 

 

If we set the new expression of the derivative with regard to t equal to zero, we have; 2∑ ��(�� +	���� − .��
 − :�  = 0 ⇒∑��(���� − ���
 = <� 

 

= �� ∑ ��� − ∑ ����� = <���  

 

(; �����*
�*+� = 1
 

 

 �� − ∑ ����� = <�� - - - - - -  (14) 

 

Taking the sum over‘t’ in the equation (14) above we get, 

 ;(�� −;�����
 =;:2��  

 

⇒∑�� − ∑ ∑ ������� =	∑ <��  

=; �����
�	*+� = 0> 

 

⇒�∑ �� ∑ ��� = 	*<���  ∑ ���� = 0⇒: = 0 

 

We now have an expression for �� by putting : = 0  in equation (14). 

Hence, ��=∑ ������  for every t - - - - - (15) 

 

The constraint for �� is now fulfilled. 

 

If we substitute the expression ���= .�� − ��   into equation (12), we obtain; 

 2;�(�� +	��	�� − .��
 − 20�� = 2;��(� ���� − ���
 − 20��	�  

 

Setting this equal to zero we have, 
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2 ; ��(� ���� − ���) − 20��	 = 0 

 ��(∑ ��� − 	0
 =	� ∑ ������ ∀ x - - - - - (16) 

 

By taking the square of both sides and summarize over x you get 

 ;(��(;��� − 	0

�� = 	;(;�����
����  

 

⇒(∑ ��� − 	0
�∑ (��
�� = 	∑ (∑ �����
����  

 

; �����*
�*+� = 1 

 

⇒(∑ ��� − 	0
� =	� ∑ (∑ �����
���  

 

 (Taking the square root of both sides) 

;��� − 	0 = 	?;(;�����
����  

 

⇒0 = 	∑ ��� −	@∑ (∑ �����
����  - - -  (17) 

We are able to get an expression for ��by inserting the equation for β in (17) into equation (16): 

 ��(;��� − 	0
 =	� ;������  

 

(0 = 	;��� −	� ?;(;�����
���  

 

⇒��(∑ ��� −		� ∑ ��� + @∑ (∑ �����
��� =		� ∑ ������  

 

⇒�� = 	 ∑ 89A499@∑ (∑ 89A49
B94 ∀	x		
Hence,   �� = 	 ��∑ ln������� 	,	�� = 	 ∑ 89A499@∑ (∑ 89A49
B94 	,	�� = 	∑ ������  

 

 

2.3. Forecasting Using Arima with Drift 

To produce mortality forecasts, Lee and Carter assume that bx remains constant over time and they use forecasts of kt from a standard 

univariate time series model. After testing several ARIMA specifications, they find that a random walk with drift is the most 

appropriate model for their data. They make clear that other ARIMA models might be preferable for different data sets, but in practice 

the random walk with drift model for kt has been used almost exclusively. This model is as follows: 

kt= kt -1 + µ + Ԑt  - - - -  (18) 

Ԑt ~ N (0, δ2
) 

Where µ is known as the drift parameter and its maximum likelihood estimate is simply µ = (kT – k1)/ (T −1), which only depends on 

the first and last of the Kt estimates. Then, to forecast two periods ahead, we plug in the estimate of the drift parameter µ and also 

substitute for the definition of t−1 shifted back in time one period: 

kt= kt -1 + µ + Ԑt - - - - -   (19) 

= (kt -2 + µ + ԑt -1) + µ + ԑt 

= kt -2 + 2µ + (ԑt -1 + ԑt) 

To forecast kt at time T + (∆t) with data available up to period T, we follow the same procedure iteratively (∆t) times and obtain 

kT+ (∆t) = kT+ (∆t)µ + ∑ 	ԑT	(∆�
	+�� + F − 1 - -   (20) 
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= kT+ (∆t) µ + @(∆t)Ԑ� 

Where the second line is, a simplification made possible by the fact that the random variables ԑt are assumed in this model to be 

independent with the same variance. The second line indicates that the conditional standard errors for the forecast increase with the 

square root of the distance to the forecast horizon (∆t). These are conditional standard errors and would be larger if we included 

estimation uncertainty. From this model, we can obtain forecast point estimates, which follow a straight line as a function of (∆t), with 

slope µ: 

E[kT+ (∆t) | k1, ……kT] ≡ µT + (∆t) = (∆t)µ - -   (21) 

The Lee-Carter model for the k’s is thus very simple: Extrapolate from a straight line drawn through the first k1 and last 

kTpoints. All other k’s are ignored. We now plug these expressions into the empirical and vectorized version of Equation (19) to make 

a point estimate forecast for log-mortality: 

µT+ ( ∆ t) = m +βkT+( ∆ t) - - - -   (22) 

= m +β [kT+ (∆ t)µ]. 

 

3. Summary of Results 

 

We present below a summary of our findings. 

 

 Test critical value  

Variable 1% 5% 10% ADF Status 

IMR -3.574446 -2.923780 -2.599925 -3.196158 1(1) 

MMR -3.737853 -2.991878 -2.635542 -4.290664 1(1) 

Table 1: Test critical value 

 

In the above unit root test the null hypothesis of a unit root is H0: a = 0 versus the alternative: H1: a < 0. The ADF unit root test result 

presented above confirms that stationarity was achieved for IMR and MMR at the first difference. The null hypothesis of unit root was 

not rejected rather the variables, were differentiated at first difference. 

 

Correlations 

 IMR MMR 

MR 

Pearson Correlation .978
**

 

Sig. (2-tailed) .000 

N 26 26 

Bootstrap
b
 Bias  .001 

Std. Error .006 

99% Confidence Interval Lower .959 

Upper .993 

MR 

Pearson Correlation .978
**

 

Sig. (2-tailed) .000 

N 26 26 

Bootstrap
b
 Bias .001 

Std. Error .006 

99% Confidence Interval Lower .959 

Upper .993 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

Table 2: Correlation between MMR and IMR 

Source: SPSS Output 

 

In order to explain the relationship between the IMR and MMR, Correlation analysis was adopted and the result shows that the Value 

0.978 shows a strong positive correlation between MMR and IMR. 

As earlier stated, the Lee-Carter model is given by: ln (mx,t) = ax +���(�) + ��,(�) and we need to estimate ax, �� and kt. first we need to 

create a matrix Z x t where Z x t =ln(���) − 	 �� =	���� 
 

Z x t   = 

"0.080658 −0.004008021 0.02429 −0.159 −0.42465 0.23953 0.03459−0.02429 −0.121038328 0.02429 −0.001 −0.42159 0.26788 0.08121−0.19601 0.041141943 0.01309 0.466874 0.138021 0.02327 1.09362−0.34249 0.22314355 0.10436 0 0.482426 0.09531 0.52763$ 
Source: Author’s computation 
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ax: represents the logarithm of the geometric mean of the empirical mortality rates, averaged over the historical data. It describes the 

average shape of the age profile. It is estimated as �� = 	 ��∑ ln�������  

ax=   

15-19 -0.12053 

20-24 0.03481 

25-29 0.010672 

30-34 0.076719 

35-39 -0.05645 

40-44 -0.10884 

45-49 -0.43426 

Table 3 

Source: Author’s computation 

 

 
Figure 1: General Pattern of Mortality by Age 

 

The minimum general maternal mortality is found in age 40-45 and the maximum at 30-34. The results show that ax values are 

decreasing with increase in age from 30-49. This implies a downward trend in mortality with respect to the age-groups. As shown in 

Figure 1 above, the younger ages have a higher mortality rate than the older ages ��������: represents the sensitivity of the hazard rate at age x to the time trend. It indicates the relative pace of change in mortality by age as �� varies. It modifies the main time trend according to whether change at a particular age is faster or slower than the main trend. �� is 

derived from the first vector of the age-component matrix (��= Ux1) after selecting Singular Value Decomposition Dialog from Biplot 

in Microsoft Excel, by running the program. 

 

bx =  

15-19 0.237009469 

20-24 -0.14313339 

25-29 -0.04855694 

30-34 -0.299493 

35-39 -0.57840131 

40-44 -0.22903242 

45-49 0.666544513 

Table 4 

Source: Output from the Excel biplot 10. 
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Figure 2: Relative space of change in Mortality by Age 

Relative space of change in Mortality by Age 

 

Figure 2 depicts the tendency of mortality at age x to change as the general level of mortality changes. The larger the value of �� at a 

particular age-group, the more fluctuant the mortality rate at that age-group as compared to the general level of mortality change. The 

results obtained shows that persons aged 40-49 have a more fluctuant mortality pattern than other age groups. The relative pace of 

change is lowest in age group 20-29 as illustrated in Figure 2 above.     ��������: represents the underlying time trend for the general mortality. It captures the main time trend on the logarithmic scale in mortality 

rates at all ages. It is also referred to as the mortality index. �� is derived from the first vector of the time- component matrix and the 

first singular value (�� = L1 Vt1), after selecting Singular Value Decomposition Dialog from Biplot in Microsoft Excel, by running the 

program. 

kt = 

1999 0.529111317 

2003 0.460943991 

2008 -0.5884811 

2013 -0.4015742 

Table 5 

Source: Output from the Excel biplot 10 

 

 
Figure 3: Time Trend for General Mortality 
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Figure 3 captures the main time trend on the logarithmic scale in death rates at all ages. When kt values decrease overtime, it signifies 

a decline in mortality trend as the years’ increase. Our findings show a downward trend from 1999 to 2008 and a slight rise from 2008 

to 2013 as shown in Figure 3. However, it is important to note that the straight line obtained in Figure 3 from 2003 to 2008 is as a 

result of the 2-time point nature of the data. It does not necessarily imply that the mortality pattern from 2003-2008 was not a 

fluctuating one.  
 

Model: Random walk with drift = -0.310229 

Period Data Forecast Residual 

1.0 0.529111 4.68277E-275 0.529111 

2.0 0.460944 0.218883 0.242061 

3.0 -0.588481 0.150715 -0.739197 

4.0 -0.401574 -0.89871 0.497135 

 

  Lower 99.0% Upper 99.0% 

Period Forecast Limit Limit 

5.0 -0.711803 -7.19018 5.76658 

6.0 -1.02203 -10.1838 8.13978 

7.0 -1.33226 -12.5531 9.88862 

8.0 -1.64249 -14.5992 11.3143 

9.0 -1.95272 -16.4388 12.5334 

10.0 -2.26295 -18.1317 13.6058 

11.0 -2.57317 -19.7134 14.567 

12.0 -2.8834 -21.207 15.4402 

13.0 -3.19363 -22.6288 16.2415 

14.0 -3.50386 -23.9903 16.9826 

15.0 -3.81409 -25.3004 17.6723 

16.0 -4.12432 -26.5661 18.3174 

Table 6: Forecast Table for Mortality Index 

Source: Statgraphics Output 

 

Table 6 shows the forecasted values for Mortality Index.  During the period where actual data is available, it also displays the 

predicted values from the fitted model and the residuals (data-forecast).  For time periods beyond the end of the series, it shows 99.0% 

prediction limits for the forecasts.  These limits show where the true data value at a selected future time is likely to be with 99.0% 

confidence, assuming the fitted model is appropriate for the data. 

 
4.3. Model Comparison 

Data variable: Mortality Index 

Number of observations = 4 

Start index = 1.0 

Sampling interval = 1.0 

� Models 

(A) Random walk with drift = -0.310229 

(B) Constant mean = 2.77556E-17 

(C) Invalid model 

(D) Simple moving average of 3 terms 

(E) Simple exponential smoothing with alpha = 0.2164 

    Math adjustment:  

� Estimation Period 

Model RMSE MAE ME 

(A) 0.652744 0.492798 1.85037E-17 

(B) 0.57735 0.495028 0.0 

(D) 0.535432 0.535432 -0.535432 

(E) 0.636781 0.532604 -0.024596 

 

Model RMSE RUNS RUNM AUTO MEAN VAR 

(A) 0.652744      

(B) 0.57735      

(D) 0.535432      

(E) 0.636781      

Source: Statgraphics Output 
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This table compares the results of three different forecasting models. Looking at the error statistics, the model with the smallest root 

mean squared error (RMSE) during the estimation period is model D. The model with the smallest mean absolute error (MAE) is 

model A. 

 

 
Figure 4: Forecast Plot for Mortality Index 

 

The forecast of the mortality time trend show a gradual decline in mortality from 2013-2025 

 

5. Conclusion 
The Lee-Carter model follows the mortality pattern very well for most of the ages despite the limited nature of the data. The forecast 

of the mortality time trend show a gradual decline in mortality from 2013-2025 as expressed in Figure 4 while the general pattern of 

mortality shows a downward trend from age 30-49 years all things being equal. We can therefore say that the lee-carter model can be 

used to model the Nigeria mortality data even when the data available is limited in nature. However, the level of data heterogeneity for 

which the lee-carter model will give successful result is another issue for discussion. 
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