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1.  Introduction 

Every second in the modern era, a lot of data set. Imagine the number of people online write their blogs, their homepage design and 

disseminate their experiences through digital support, videos, images and others - others. Imagine also the data formed from living 

organisms and gene research data obtained from space or our earth. 

 Data of transactions through e-banking and others. Be helpful if the data has processed associated with the boom of data so rapidly, 

there are several approaches to the processing of data, the application of classical methods, designing more robust computational 

structures such as distributed computing, multi-core processors, supercomputers, and others - others. However, the amount and 

complexity of data growth exceed the trend increase in computing capability (1). One very popular approach called model of reduction 

that attempts to reduce the complexity while maintaining the assumption of the problem (preliminary data). 

The use of the right model can save time. Also, different types of data require different models to capture the understanding of the 

data. Of course, a proper model considered so that the model can survive better met. An ideal model no, for example, the use of sub-

dominant space with Singular Value Decomposition (SVD) has been proposed as the best model to reduce the complexity of data and 

the complexity of the system (10-11) 

 

2. Literature Review 

 

2.1. Matrix Factorization Nonnegative 

This chapter is a presentation of Nonnegative matrix factorization problem. It consists of a description of the settlement of the problem 

formulation and some observations. This review gives the basics for part of this dissertation. Some comments more carefully 

examined in other chapters. (10,18).  

It model could suggest that there is a non-negative matrix factorization name may be confusing in some cases and that the Matrix 

Approximation Nonnegative which should use instead. The term "factorization" may understand as an exact decomposition such as 

Cholesky decomposition, LU decomposition, and others (9-13). Where factored as an inexact input matrix as a matrix multiplication 

of the other. However, "non-negative matrix factorization" has been so popular that it works for non-negative matrix approximation 

problems with the multiplication of two matrices nonnegative. Determined using this term and nonnegative matrix factorization 

launched inexact to an exact case. 

    Non-Negative Matrix Factorization approach can formulate as follows:  
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A particular cover image C with size mm, can be factorization C into two non-negative matrices B and H where. Nonnegative matrix 

B contained the vector base, FMN and weighted non-negative matrix H, has a coefficient of association (nonnegative weights). To 

measure the quality of the factorization C = BH approach, the cost function between C and BH need to optimize subject to 

nonnegative constraints on B and H. This is done by minimizing Z conflicting information provided by: 
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Even the model matrix B and H the start of a random non-negative matrix and update alternative did so once in the update of the H 

line, need to update the column corresponding to B. In other words, no need to refresh the matrix H is accompanied by the first update 

of the model B. non-negative matrix factorization algorithm is an iterative optimization algorithm. Where modifications at each 

iteration nonnegative basis functions and encodings to converge (3-15).     

Even the non-negative matrix factorization is used to cluster genes and the modified algorithm based on non-negative matrix 

factorization, which used for the same purposes. Non-negative matrix factorization is used to analyze protein sequences. Only non-

negative matrix factorization is used directly to sample cluster expressed genes compared to the group as a hierarchy and mapping 

organization own, non-negative matrix factorization is used to bio clustering of data expressed genes. Here introduce sharper basic 

idea of non-negative matrix factorization, by providing a set of information in the form of a matrix consisting of m samples in n-

dimensional space, where each entry is non-negative (ie for all i, j), is a non-negative matrix factorization to define an approach, 

where B is a matrix and H a matrix nod DXM and the second B, H is also nonnegative. Each column of B can view as a base vector, 

and each column of H can see as new vector images comparable with real data. More details, basically there are two algorithms to 

enhance the implementation of the update via the multiplicative decomposition as follows: 
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 Legal updates can be followed non-negative multiplicative with initialization of non-negative.  

In many types of linear systems that arise in the application, the elements of the coefficient matrix show no negative magnitude. It 

deals with the knowledge of such matrices and their properties.  

The definition of an nxt matrix A with entries called non-negative real numbers if for every i and j, and is called active if for every i 

and j.  

 

2.2. Program Non-Linier 

In the chapter, it was found a certain optimization procedure to maximize or minimize a function of n variables. Worse, as noted 

earlier, this procedure can’t be used to solve problems that are very much exceeds its variable. Here will be presented a few, 

computationally feasible method to solve certain types of problems, non-linear programming. One problem, nonlinear programming 

problem which is a must to maximize or minimize a function f (x ̅), the constraints of a set of equations or inequality constraints. 

Where f (x ̅) or at least one of the functions that appear in the set of constraints or both, is a non-linear function (7-13). Problems, non-

linear programming, can generally be expressed as follows:  

Maximize Z = f (x ̅)   
constraints gi (x ̅) {≤, =, ≥} bi  

Where, one of the three relations {≤, =, ≥} is designed against each of the m constraints the function f (x ̅) in equation (4.1) is called 

the objective function. In connection with the non-negativity constraint (xj ≥ 0) on some, or all, of the variables stated, separately or 

may be deemed to be included in the. constraint. There is no known method of determining the global maximum of the problem, non-

linear programming in general. Even if the objective function and constraints in accordance with the properties of certain global 
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maximum can sometimes be acceptable. For example, proves that the global maximum of a function on a set konfek limited and on, 

an extreme point of the set konfek.  

Here will be lowered "Kuhn-Tucker condition is" a set of necessary conditions for maximizing a non-linear problem. This condition 

also results in certain cases the global maximum. Kuhn-Tucker conditions are very useful indeed, in lowering method to resolve some, 

this type of problem, non-linear. It can be seen how, using Kuhn-Tucker conditions to develop an algorithm, using the simple method 

to solve a quadratic program. In one problem, the objective function is a quadratic program and constrain was linear quadratic. 

 

3. Algoritma 

Mathematical formulation of NMF can be expressed in the following way. Known input matrices A ε RM xn, in which each element 

and a nonnegative integer k <min {m, n}. NMF aims to determine two facts W ε Rm × k and H with the element xn ε Rk nm negative 

so: 

   A = W H                                               

 By using Fortenius norms, facts W and H is obtained by solving the following problems sptinuseri: 
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  f (N, H) = 
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Where the inequality W ≥ 0 and H ≥0 means that all elements of W and H nm negative. 

The basic framework from negative alternative least square (ANLS). before the proposed Algorithm to solve. This is necessary 

because dotted proposed algorithm of ANLS. In the basic framework ANLS, variable  

        Directly divided into two groups. Then both groups updated.  

        This basic framework can be summarized as follows:  

        1 Initialization H ε Rm with elements xl nm negative  

      2 Complete the following problems until termination criteria are met:     
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And W fix 

    3. Column W is normalized into the unit L2 - nom and the corresponding rows of H scaled.  

Alternatively, W can be just as initial iterations of data later in the Press then Release Note that each sub problems is a matter least - 

square wills nm negative (NNLS). Although the initial problem convex.  

NNLS issues and has certain characteristics. NMF is an algorithm to reduce the dimension. Initial dimensions are very large, for 

example thousands, of small dimensions reduced, Because the matrix ε Rm W x L in is very long and thin shape (m >> k) and the 

coefficient matrix HT ε Rm xl in Eq.  is also long and thin (n >> k). Because the WT and the H matrix of the variables in Eq.  and  

respectively - each, data and wide.  

To design the NMF algorithm which is based on ANLS framework, the need for a method to resolve the sub problem in Eq. and for 

NNLS algorithm is an active set method by Lawson and Hanson (). Active set methods seek the optimal set of active and passive to 

maintain between the two sets of variables. If the variable is passive (i.e., positive) solution are known, then the NNLS problem can be 

solved by the least squares procedure was control against passive variable.  

The main limitation of the method is the active set of variables that satisfy the set of retained proceeds vector nm negative completion 

while ensuring that the objective function decreases in each iteration. Means algorithm is slow if the number of large unknown. The 

method proposed piust main block can know the limitations of active set methods.  

 

4. Analysis and Result 

First - assessed all major blocks pivot method developed for NNLS problems with the right-hand side and then proposed a method that 

was developed to handle the right side a lot.  

.1NNLS with Vector Segment One Right  

First - first noticed by a vector NNLS right hand side can be written mathematically as:    

 
���

���
 || Cx – b ||

2

2
                              

Rules support, where feasible only variable with the largest index is exchanged, a pivot rule - the lead single. This rule guarantees 

finite termination. By combining the full exchange rule or rules supporters, the main block pivot method for NNLS problems with one 

segment is obtained. This determinant algorithm listed in Algorithm 1. 

Algorithm1 

Input   : C ε RP x q 
  

and b ε R 
P 

 

output  : x (ε Rq x 1
) = arg min x ≥ 0	||CX- b ||

2

2
  

Initializes F =  , G = {1, …., q}, x = 0, y = - C
T
b, 	∝	= 3	, � = � + 1 
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calculates XF and YG 

While (XF, YG) reject do 

 Calculate  

V   

  if| V | <, for � = 	 |	�|, ∝	= 3	 

and ��  = V if | V |  � and ∝≥ 1, for ∝ 	−1and ��  = V 

if | V |  �	and ∝	= 0	, for ��   

          End while 

Cases supporting for the rule is slower than the full exchange rule, it is only in use if the full exchange rule does not work. Finite 

termination of Algorithm 1 is achieved by controlling the number of variables is not feasible. The variable α is used as a buffer for full 

exchange rules in testing. If the full exchange rule increases the number of variables is not feasible, α minus one.  

After α to zero, supporting the rule is used so that he made a number of variables worth less than the smallest value is reached, which 

is filled in β. It occurs in a finite number of steps because the rules buffer has finite termination properties. As soon as the buffer rule 

reaches the lowest amount of new variables unfit, returned to full exchange rules. Use as the default value for the three α, which 

means that the full exchange rule tested up to three times until he has a decent amount of variable. Because the variable is not feasible 

systematic reduced. 

 

5. Conclusion  

This dissertation proposes a new algorithm to solve FMN based on the framework ANLS. Thus, the algorithm is built on top of the 

block pivot method for nonnegative least squares problems. The method covers the exchange of some variables among the set of the 

processes with the aim to reach the final partition into active and passive sets quickly. Improved methods of applying power so 

reduced gradient method to handle the case of multiple right-hand side of nonnegative least squares problems efficiently. This new 

algorithm has the same convergence properties as ANLS framework can be extended to formulations not FMN FMN way so as sparse 

matrix power. Further research that can be done is to add the Quasi-Newton method and Variable- Matrix besides reduced gradient 

method. The addition of this method will be able to further accelerate convergence. 

 

6. References 

i. Bertsekas, D. 1999. Nonlinear Programming, Athena Scientific, Belmont, MA. 

ii. Catral, M. L. Han,  Neumann  M. and  Plemmons R.  2004.  On  Reduced  Rank  

iii. Non-Negative Matrix  Factorization for symmetric Non-Neative Matrices. 

iv. Chu, M. F, Diele, Plemmons, R. and Ragni S., 2004, Optimality Computation, and Interpretation of Non-Negative Matrix 

Factorization, Unpublished Preprit. 

v. Cichocki, A. R. Zdunek,  NMFLAB  MATLAB Toolbar  for Non-Negative MatrixFactorization.URL: 

www.bsp.brain.riken.jp/ICALAB/nmflab.html. 

vi. Donoho, D. V. Stodden, When Does Non- Negative Matrix Factorization Give a Correct Decomposition into Parts, Adv. 

Neural Inf. Process. Syst., Vol.17. 

vii. Golub,  G. C. V.  Loan, 1996. Matrix Computation, third ed., The johns Hopkins University Pres, Baltimore. 

viii. Hoyer, P., 2004, Non-Negative Sparse Coding, in:  Processing of the IEEE Workshop on Neural Network for Signal 

Processing, Martigny, Switzerland, 557-565. 

ix. Hoyer, P., 2004, Non-Negative Matrix Factorization with Sparseness constraints, J. Mach. Learn. Res., Vol. 5;1457-1469. 

x. Lee, D. D. H. S. Seung, 1999. Learning the Parts of Objects by Non-Negative Matrix Factorization, Nature, Vol. 401; 788-

791. 

xi. Lee, D. D. H. S. Seung, 2001, Algorithms for Non-Negative Matrix Factorization, Adv. Neural inf. Process. Syst., Vol. 

13:556-562. 

xii. Paatero, P. U. Tapper, 1994, Positive Matrix Factorization: A Non-Negative Factor Model with Optimal Utilization of Error 

Estimates of Data Value, Environmetrics, Vol. 5;111-126. 

xiii. Wild, S., 2003, Seeding Non-Negative Matrix Factorization with the Spherical K- Means Clustering, Master Thesis, 

University of Colorado, Department of Applied Mathematics. 

xiv. Zhang, D. S. Chen and Zhou, Z. H., 2005, Two-Dimensional Non-Negative Matrix Factorization for Face Representation and 

Recognition, in: Proceedings of the ICCV’05 Workshop on Analysis and Modeling of Faces and Gestures (AMFG’05), 

Lecture Notes in Computer Science, Springer, Berlin, Vol. 3723;350-36 3. 

 

 

 


