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1. Introduction 
The study of free convection MHD flow with heat and mass transfer through porous medium with fluctuating temperature and 
concentration in rotating environment has significant role in the application of astrophysical, geophysical sciences, petrochemical 
engineering and oceanography. The stimulus for scientific research on rotating fluid systems is basically originated from 
geophysical and fluid engineering applications. Rotating flow theory is utilized on determining the viscosity of the fluid in the 
construction of the turbine and other centrifugal machines. 
Several researchers have analyzed a bewildering variety of flows connected to MHD free convection flow through porous media 
of a  rotating/non-rotating fluid with  heat and mass transfer. Sharma and Mathur (1995) studied the steady  laminar free 
convection flow of an electrically conducting fluid along a porous hot vertical plate in the presence of heat source/sink. Unsteady 
two-dimensional laminar flow of a viscous incompressible electrically conducting fluid in the vicinity of a semi-infinite vertical 
porous moving plate was discussed by  Kim (2000). Dash and Rath (1997) have studied the problem of laminar flow and heat 
transfer of an electrically conducting fluid between  parallel porous plates by applying explicit finite difference scheme. The 
hydromagnetic  Raleigh problem in a  rotating fluid has been studied by Rapties and Singh (1986). Flow and heat transfer of an 
electrically conducting visco-elastic fluid between two horizontal squeezing/stretching plates has been studied by Rath et 
al.(2001). 
Ece (2005) has studied the free convection flow about a cone under mixed thermal boundary conditions and a magnetic field. 
Non-parallel vortex instability of natural convection flow over a non-isothermal inclined flat plate with simultaneous thermal and 
mass diffusion has been studied by Acharya et al.(2006). Parvazinia and Nassehi (2006) have investigated the study of shear  
thinning fluid flow through highly permeable porous media. MHD flow through a porous  medium  past a stretched vertical 
permeable surface in the presence of heat source/sink and a chemical reaction has  been studied by Dash et al. (2008). An 
analytical study of boundary layer flows on a continuous stretching surface was reported by Bararnia et al. (2009). 
The main objective  of  the present problem is to study the effect of unsteady free convective viscous flow through porous media 
in a rotating system with fluctuating temperature and concentration. 
 
2. Mathematical Formulation 
We consider the unsteady free convective flow of a viscous incompressible fluid bounded by a vertical infinite porous  surface in 
a rotating system. The temperature on the surface varies with the time about a non-zero constant mean while the temperature of 
the free stream is taken to be constant. We assume that the fluid properties are not  affected by the  fluctuating temperature and 
concentration differences except that of the density in the body force term and the influence of the  density variations in the 
momentum and energy equations is negligible. A vertical infinite porous plate rotating with constant angular velocity Ω about  an 
axis which is perpendicular to the vertical plane surface is considered. The cartesian  co-ordinate system is chosen such that x, y-
axis, respectively, are in the vertical upward and perpendicular directions on the plane of the vertical porous surface z = 0, while z 
– axis is normal to it (Fig. 1). 
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The interaction of Coriolis  force with the free convection sets up a secondary flow in addition to primary flow and hence the flow 
becomes three dimensional. With the above frame of reference and assumption (the plate is  infinite in extent and the flow is 
unsteady), the physical variables are functions of z and time t only. Consequently the equations expressing the conservation of 
mass, momentum, energy and mass transfer, under usual Boussinesq approximation, are given by  

 
z
w

 = 0         (1) 

   )CC(*gTTgv2
z

u
w

t

u
 









+

*k
uuB

z
u 2

0
2

2 









   (2) 

 
*k
vvB

z
vu2

z
v

w
t
v 2

0
2

2 















      (3) 

0 = 
*k
w

z
p1 






         (4) 

2

2

p z
T

C
k

z
Tw

t
T












        (5) 

2

2

z
CD

z
Cw

t
C











         (6) 

In this equation  is the density of the fluid,  is the electrical conductivity of the fluid, B0 is the uniform magnetic field strength, 
 is the coefficient  of the kinematic viscosity, k is the thermal conductivity of the fluid, Cp is the specific  heat of the fluid, is 
the volumetric coefficient of thermal expansion, * is the volumetric coefficient of thermal expansion with concentration, g is the 
acceleration due to  gravity, D is the chemical diffusivity of the fluid and k* is the permeability of the medium. 
The corresponding  initial boundary conditions are  

u = 0, v = 0, T = Tw +  (Tw - T) eit, C = Cw + (Cw – C )eit at z = 0,  

u, v  0, T  T, C  C as z               (7) 

where  << 1 and  is the frequency of oscillation. 

There will be always some fluctuations in the temperature. The plate temperature is assumed to vary harmonically with time. It 
varies from Tw   (Tw - T) as t varies from 0 to  2w. Moreover, the species concentration is subjected to fluctuate harmonically 
and varies as  Cw   (Cw - C). Now there may also occur some variation  in suction at the plate due to the variation of the 
temperature. Here we assume that the frequency of suction and temperature variation are same. Integrating  equation (1) we get 
 w (t) = - w0 ( 1 +  Aeit)         (8) 
Where A is the suction parameter, w0 is the constant suction velocity and  is the small positive number such that  A  1. Since  
is small, the plate temperature and the suction velocity at the plate vary slightly from the mean value Tw and w0 respectively. 

Equation (4) determines the pressure distribution along the axis of rotation and the absence of 
y
p

  in equation (3) implies that 

there is a net cross flow in y-direction. 
 Considering U = u + iv and equation (8), the momentum equation (2) and (3) can be written as 
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Now, we introduce the following non-dimensional quantities. 
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 With the above non-dimensional quantities (dropping the dashes) equation (9), (5) and (6) can be written as  
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  and the  boundary conditions (7) become  
 at z = 0: U = 0,  T = 1 +  eit,   C = 1+ eit  
 as z   : U   0, T  0, C  0      (13) 
 In view of equations (8) and oscillating plate temperature T, we look for the solutions of the forms 
 U (z, t) = U0 (z) +  eitU1 (z), 
 T (z, t) = T0 (z) +  eit T1 (z),      (14) 
 C(z, t) = C0 (z) +  eit C1 (z), 
which are valid for small amplitude of oscillation. 

Substituting (14) into the system (10) – (12) and equating  the harmonic and non-harmonic terms, we get 
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3. Solution 
Thus, the solutions are given by 
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Equation (22) reveals that, the steady part of the velocity field has three-layer character, while the oscillating part of the velocity 
field exhibits a  multilayer character. 
From equations (23) and (24), we observe that in case of considerably slow motion of the fluid i.e., when viscous dissipation term 
is neglected, the temperature and the concentration profiles are mainly affected by Prandtl number (Pr) and Schmidt number (Sc) 
of the fluid respectively. 
Considering U0 = u0 + iv0 and U1 = u1 + iv1, we write the primary and secondary velocity fields in terms of the fluctuating parts as 

 
0w

u
 (z, t) = u0 (z) +  (u1 cost – v1 sin t)     (25) 
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  and  
0w

v
 (z, t) = v0 (z) +  (u1 sin t + v1 cost)    (26) 
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 ( 1C   and 1D  are used when A = 0). 
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 Knowing the velocity field, we now calculate the skin friction at the plate which is given by. 
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 From equation  (29) the xz and yz components of the  skin friction  at the plate are given by 
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 +  [C1 M21 – D1M22 – C2Pr – C3Sc + C4M41– D4M42 
 - C5M61 + D5M62 – C6M81 + D6M82].       (31) 
Now,  from  equation (23) and (24) we obtain expressions for the transient temperature and species concentration profiles for t = 
/2, as  
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 Also, we obtain the expression for the rate of heat transfer from 
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 The rate of heat transfer q, can also be expressed in terms of the amplitude (Q) and phase angle () as 
 q = -Pr + |Q|cos(t +) 
Where 
 Q = Qr + iQi 
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 The numerical values of |Q| and tan  are entered in Table 2. 
 
4. Results and Discussion 
In order to bring out the effects of rotation parameter,  suction parameter, magnetic parameter,  permeability parameter, mass 
transfer  parameter and oscillation of temperature and concentration, following discussion are carried out.  In course of numerical 
calculation the values of the parameters are so chosen to represent  the fluid of common  interest such as air, water etc. 
Figure 2 shows that modified Grashof number Gc (Curve I, V) and porosity parameter kp (curve I and IV) have no significant 
contribution on   primary velocity.  It is interesting to note that point z = 1 of the flow domain remains unaffected  by Grashof 
number Gr, Modified Grashof number Gc and porosity of the medium as the fine curves I to V pass through a single point 
Further it is to remark that high value of thermal bouyancy  parameter Gr (Gr = 8) enhances the primary velocity  sharply near the 
plate . For high value of rotation  parameter and low value of magnetic parameter flow reversal occurs for Z > 0.5 . Another point 
to note that with low value of rotation, (curve IX) the velocity remains positive throughout. Thus it is inferred that   for the flow 
reversal is  prevented due to low speed rotation and high value of magnetic parameter. 
Figure 3 exhibits the effect of pertinent parameters on secondary velocity. One remarkable  observation is  that all velocity 
profiles  assume negative  values  through out the  flow field. From  Curve III it is  seen that for large value of Gr secondary 
velocity attains the maximum magnitude. This remains also same in case of primary velocity. Larger convection current enhances 
both the components of the velocity. Further, coincidence of  Curves I, IV, V shows that presence of porous matrix and bouyancy  
effect due to concentration difference have no significant role on secondary velocity which is also true in case of primary velocity. 
Magnetic parameter and  rotation parameter increase the secondary velocity. But opposite effect of rotation parameter is marked 
on primary velocity. 
Figure 4 shows the temperature distribution. High value of  prandtl number leads to the decrease the temperature uniformly in all 
the layers. 
Figure 5 shows the concentration variation for different diffusing  species such as CO2, H2O and NH3 having Schmidt number 
0.30, 0.60 and 0.78 respectively. It is concluded that for heavier species the concentration decreases at all the layers of the flow 
domain.  
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Values of skin friction are shown in Table 1. It is to note that all the  values of �xz are positive whereas the value of �yz are 
negative. This contributes to  the stability of flow. For heavier species �xz decreases. Further it is to note that  and increase in the  
values of Gr, Gc and kp contribute to higher values of �xz whereas other component �yz decreases. 
Table 2 enumerates the values of |Q|, the rate of heat transfer and  tan � the phase of heat transfer.  It is seen that magnetic 
parameter, Grashof number and modified Grashof number  increase the rate of heat transfer and no change is marked due to 
porosity parameter. Presence of  bouyancy force and magnetic field accelerate the rate of heat transfer and presence of porous 
matrix have no effect. 

 
5. Conclusion 

 Presence of porous matrix has no significant effect either on velocity or temperature fields. 
 Primary velocity at a certain layer remains unaffected by   the magnetic field or bouyancy effect . 
 Flow reversal is prevented for low rotation and high magnetic field. 
 Secondary velocity remains negative throughout the flow domain. 
 Secondary velocity is not also affected by  porous matrix and modified Grashof number. 
 High  rotation enhances the secondary velocity but reduces the primary one. 
 Fluid with higher prandtl number decreases the temperature at all points. 

Greater skin friction  �xz is experienced for high values  porosity and bouyancy  parameter but other component depicts the 
opposite effect. 

 

Figure 1:  Schematic diagram of the problem 
 

 
Figure 2:  Primary velocity  profiles 
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Figure 3:Secondary velocity profiles 

 

 
Figure 4: Temperature profiles 
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Figure 5: Concentration profiles 

 

Pr Gr Gc R0 M  kp Sc 
A=0.0 A=1.0 

xz yz xz yz 
0.71 2.0 4.0 0.4 0.3 15 1 0.22 5.84651 -0.00717 5.85191 -0.01717 

0.30 5.48905 -0.0069 5.4939 -0.01626 
0.60 4.54429 -0.00627 4.54773 -0.01392 
0.78 4.16287 -0.00602 4.16574 -0.01297 

1.002 3.80438 -0.00578 3.80672 -0.01207 
0.71 2.0 4.0 0.4 0.3 30 1 0.22 5.84434 -0.00499 5.84915 -0.01229 

0.30 5.48699 -0.00481 5.49139 -0.01165 
0.60 4.54251 -0.00437 4.54585 -0.01 
0.78 4.16119 -0.0042 4.1641 -0.00934 

1.002 3.8028 -0.00404 3.80531 -0.00871 
0.71 2.0 4.0 0.8 0.3 15 1 0.22 4.92294 -0.00724 4.92703 -0.0155 

0.30 4.6738 -0.00697 4.67751 -0.01478 
0.60 3.98038 -0.00632 3.98305 -0.01288 
0.78 3.68503 -0.00607 3.68727 -0.01209 

1.002 3.3988 -0.00582 3.40062 -0.01131 
0.71 2.0 4.0 0.4 1.0 15 1 0.22 5.84651 -0.00717 5.85191 -0.01717 

0.30 5.48905 -0.0069 5.4939 -0.01626 
0.60 4.54429 -0.00627 4.54773 -0.01392 
0.78 4.16287 -0.00602 4.16574 -0.01297 

1.002 3.80438 -0.00578 3.80672 -0.01207 
0.71 2.0 8.0 0.4 0.3 15 1 0.22 10.25985 -0.0123 10.26963 -0.0299 

0.30 9.54492 -0.01177 9.55361 -0.02808 
0.60 7.65541 -0.0105 7.66126 -0.02339 
0.78 6.89256 -0.01001 6.89728 -0.0215 

1.002 6.17557 -0.00953 6.17925 -0.0197 
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Pr Gr Gc R0 M  kp Sc 
A=0.0 A=1.0 

xz yz xz yz 
0.71 8.0 4.0 0.4 0.3 15 1 0.22 10.14604 -0.01328 10.15451 -0.03048 

0.30 9.78857 -0.01301 9.7965 -0.02957 
0.60 8.84382 -0.01238 8.85033 -0.02723 
0.78 8.46239 -0.01213 8.46834 -0.02628 

1.002 8.1039 -0.01189 8.10932 -0.02538 
0.71 8.0 4.0 0.4 0.3 15 5 0.22 16.06953 -0.01307 16.08655 -0.04133 

0.30 14.96994 -0.01281 14.9853 -0.03909 
0.60 12.62489 -0.01221 12.63674 -0.03422 
0.78 11.85434 -0.01197 11.86505 -0.03257 

1.002 11.20172 -0.01174 11.21147 -0.03114 
7.0 2.0 4.0 0.4 0.3 15 1 100.0 0.30065 -0.00137 0.30007 -0.00116 

617.0 0.28473 -0.00123 0.28423 -0.00113 
7.0 2.0 4.0 0.4 0.3 30 1 100.0 0.30054 -0.00104 0.30018 -0.00098 

617.0 0.28461 -0.00093 0.28434 -0.00093 
7.0 2.0 4.0 0.8 0.3 15 1 100.0 0.29438 -0.00137 0.2938 -0.00115 

617.0 0.27851 -0.00123 0.27801 -0.00112 
7.0 2.0 4.0 0.8 0.6 15 1 100.0 0.29438 -0.00137 0.2938 -0.00115 

617.0 0.27851 -0.00123 0.27801 -0.00112 
7.0 2.0 8.0 0.8 0.6 15 1 100.0 0.33409 -0.00174 0.3334 -0.00118 

617.0 0.30237 -0.00146 0.30181 -0.00113 
7.0 4.0 4.0 0.8 0.6 15 1 100.0 0.54904 -0.00236 0.54801 -0.00225 

617.0 0.53318 -0.00222 0.53221 -0.00223 
Table  1: Values of skin friction 

 

Pr Gr Gc M R0  Sc 
A=0.0 A=1.0 

Q  tan  Q  tan  
0.71 2.0 2.0 0.3 0.4 15 0.22 

3.5249 0.857151 3.5249 0.79031 
0.60 3.5249 0.857151 3.5249 0.79031 
0.78 3.5249 0.857151 3.5249 0.79031 

0.71 2.0 2.0 0.3 0.4 30 0.22 4.87343 0.896831 4.87343 0.859552 
0.71 2.0 2.0 0.3 0.4 30 0.60 

4.87343 0.896831 4.87343 0.859552 
0.71 2.0 2.0 0.6 0.4 30 0.60 

4.87343 0.896831 4.87343 0.859552 
0.71 2.0 5.0 0.3 0.4 30 0.60 

4.87343 0.896831 4.87343 0.859552 
0.71 5.0 2.0 0.3 0.4 30 0.60 

4.87343 0.896831 4.87343 0.859552 
7.00 2.0 2.0 0.3 0.4 15 100.0 

13.10426 0.611455 13.10426 0.33997 
617.0 13.10426 0.611455 13.10426 0.33997 

7.00 2.0 2.0 0.3 0.4 30 100.0 
17.21794 0.708365 17.21794 0.507415 

617.0 17.21794 0.708365 17.21794 0.507415 
Table 2: The values of Q , the rate of heat transfer and tan �, the phase of rate heat transfer 
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