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1. Introduction 
Fractional calculus is a field of applied mathematics that deals with derivatives and integrals of arbitrary orders. In recent years, 
considerable amount of research in fractional calculus was published in engineering and mathematical physics literature. Indeed, 
recent advances of fractional calculus are dominated by modern examples of applications in turbulence and fluid dynamics, 
stochastic dynamical system, plasma physics and electrostatics, fluid flow, steady state, heat conduction and many other topics in 
both pure and applied mathematics [1]. 
In this paper, a new approach is proposed to use Fourier Sine Sumudu Transform Method (FSSTM), which is combined between 
Fourier Sine Integral Transform and Fractional Sumudu Transform to derive the exact solution of the Stokes` first equation and 
energy equation. Exact solution of these equations will be investigated. The Fourier sine transform and fractional Sumudu 
transform are used for getting exact solution for these equations. The fractional terms in energy equation and Stokes´ equation are 
considered as Caputo fractional derivative [2]. 
 
2. Basic Definitions   

 Definition 1: The Caputo fractional derivative [3] of order nn  1  
is defined as: 
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 Definition 2: In early 90's [4] Watauga introduced a new integral transform, named the Sumudu transform and applied it 
to the solution of ordinary differential equation in control engineering problems. The Sumudu transform is defined over 
the set of functions: 
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By the following formula: 
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For further details, we will present some special properties of the Sumudu transform are as follows: 
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2.1.4  )]([)]([)]()([ tgbStfaStbgtafS                                                                        (6)    
Other properties of the Sumudu transform can be found in [5]. 

 Definition 3: The Sumudu transform of the Caputo fractional derivative is defined as follows [6]: 

)1(),0()]([)]([ )(
1

0
nnfutfSutfDS k

n

k

k
t  





   where )].([)( tfSuG    (7) 

For further details and properties of fractional Sumudu transform; we will establish the following results which are directly 
applicable in the analysis of 
fractional energy equation and Stokes´ First equation: 
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where [.]1S denote the inverse Sumudu transform and )(,


 utE k  is generalized Mittage-leffler function [7]. 

 Definition 4: The Mittag-Leffler function )(zE with 0  is defined by the following series representation, valid in 
the whole complex plane [8]: 
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A generalization of the Mittag-Leffler function ([9], [10])
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was introduced by Wiman [10] in the general form:
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The main results of these functions are available in the handbook of Erdelyi, Magnus, Oberhettinger, and Tricomi [11] and the 
monographs By Dzherbashyan ([12], [13]). Prabhakar [14] introduced a generalization of (13) in the form: 
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where nk)(  is the Pochhammer’s symbol (Rainville [15]) is defined by the equations:
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which is generalization of factorial function? If  k  is neither zero nor a negative integer,  
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     The ordinary binomial expression (Rainville [15]), defined as: 
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 Definition 5: The Fourier sine integral transform [16, 17, 18] of the function 
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  ( )(xf ) is defined as: 
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3. Fractional Stokes’ First Equation 
Consider the Fractional Stokes’ first Equation for a heated flat plate in dimensionless form as follows:- 
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3.1. The Solution  
Making use of the Fourier sine integral trans form of (19), (20) and boundary conditions (21), (22), then we get: 
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 Hence Sumudu transform of Eq.(25) is; 
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Taking the inverse Sumudu transform of Eq.(27)we have: 
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following relation: 
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By substituting from (28) into (29) we get:- 
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Where 
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Now considering the inverse Fourier sine integral transform of Eq. (30) we get: 
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This is the exact solution of (19). 
 
3.2. Special Case   
When 1,0)(0  B , then Eq. (31) becomes: 
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where )( 121
2,1


  

  tE k
k  is Mittag-Leffler function that has the following generalized form: 
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Since the Pochhammer symbol nk )(  satisfies the following identities: 
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By substituting from (33) into (32) we have: 
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which is the result obtained by (Fetacau et al [20]) and (Salim et al [21]). 
 
4.  Solution of a Time- Fractional Energy Equation 
We consider the non dimensional Energy Fractional Equation when the Fourier’s law of heat conduction is considered as follows: 






t

txU
x

txv
x

txU











 ),(]),([),(
Pr
1 2

2

2

, 10                                                               (35) 

0)()0,( 0  forxxaxU ,                                                                                                         (36) 

01),0(  forxtU ,                                                                                                                 (37) 




 forx
x

txUtxU 0),(),,( .                                                                                            (38) 

Letting  2]),([),(
x

txvtxf



  ,then Eq.(35)can be rewritten as: 
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where ),( txr is the radiant heating, which is neglected in this paper, c  is  

the specific heat and k  is the conductivity which is assumed to be constant and 
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4.1. The Solution  
Applying Fourier integral sine transform to Eq. (39) and (36), we get: 
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Using initial condition (41) for getting fractional Sumudu transform of Eq. (40) as  
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where ),( uF  is Sumudu transform of ),( tF  . 
       Taking the inverse Sumudu transform of Eq. (42) and using the relation: 
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Applying the inverse Fourier integral sine transform to Esq. (43), we get 
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This is the exact solution of (35). 
 
4.2. Special Case 
When 1,0),(,0)(0   txfA , then Eq.(44) becomes: 
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Then Eq. (45) becomes: 
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which is the result obtained also by Fetacau and Corina [20]. 
 
5. Conclusion  
In this paper, we have introduced a combination of the Fourier sine transform and the Sumudu transform method for time 
fractional problems. This combination builds a strong method called the Fourier Sine Sumudu Transform Method (FSSTM). This 
method has been successfully applied to solve Stokes’ first problem and energy equation .The FSSTM is an analytical method and 
runs by using the initial and boundary conditions. The Caputo fractional derivative is considered in both Stokes’ first problem and 
energy problem as time derivatives, where the order of the fractional derivative is considered as 10  . Special cases have 
been considered in the case at 1 . An important advantage of the new approach is its low computational load. 
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