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1 Introduction 

Stream time-series data management has become a hot research topic due to its wide range of applications such as sweep frequency 

response analysis, Coal mine surveillance, Thermal power stations (used in control and instrumentation) and multimedia data retrieval 

which require continuously monitoring stream time series 

Compared to achieved data, stream time series have their own characteristic: 

1. Data are frequently updated in stream time series. 

2. Due to the frequent updates, it is very difficult to store all the data in memory or on disk, thus, data summarization and one 

pass algorithms are usually required to achieve a fast time response. 

In this work we propose a novel approach to efficiently perform the pattern matching over stream time series. In order to save the 

computational cost and offer a fast response, we present a novel multi scale representation for time series, namely multi scale segment 

median of image (MSMI). 

Most importantly, we propose a multi step filtering approach, with respect to the MSMI representation, to prune false candidates 

before computing the real distances between patterns and stream time series. 

 

2. Related Work 
This section overviews previous work on similarity search over archived time-series data and monitoring over stream time series. 

In the research literature, many approaches have been proposed for the similarity search on the archived time series. The pioneering 

work by Agrawal [4] proposed the whole matching, which finds data sequences of the same length that are similar to a query 

sequence. Later, Faloutsos [5] extended this work to allow the subsequence matching, which finds subsequences in the archived time 
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Abstract: 

In real time application such as sweep frequency response analysis, Coal mine surveillance, Thermal power stations, 

multimedia data retrieval and privacy preserving data streams arrive at a rate higher than in traditional sensing 

applications. The processing of these raw data must be as fast as stream speed. These applications convert the raw data into 

a specified pattern and these patterns vary from application to application. It is then subjected to sophisticated query 

processing to extract high level information. Uncertainty in stream time series may occur for two reasons such as the 

inherent imprecision of sensor readings or privacy preserving conversion. Representation of uncertain data over stream 

time-series, uncertain data management and designing of a data mining algorithm on considering the uncertainty affects the 

data mining process. The processing of data in the real time application is difficult as it is naturally incomplete and noisy 

and the observed data pattern is different from the actual pattern required for further processing. A major challenge in 

processing the stream time-series data with uncertainty is to capture uncertainty as data propagates through query operators 

until the final result and to process the data at stream speed. The modeling of uncertain time-series without affecting the 

precision of the system still remains a difficult task. More importantly, it should avoid increased false positives. In this paper, 

a survey of time series data management for pattern matching is provided. The similarity search over uncertain data will be 

explored. The issues in existing research, limitations and methodology for pattern matching on uncertain time series stream 

data are examined in this paper. 
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series that are similar to a given query series. In these two works, Euclidean distance is used to measure the similarity between (sub) 

sequences. In order to perform an efficient similarity search, the GEMINI framework [5] is proposed to index time series and answer 

similarity queries without false dismissals. Since the dimensionality of time series is usually high (e.g., 1,024), the similarity search 

over high-dimensional index usually encounters a serious problem, known as the “curse of dimensionality.” That is, the query 

performance of the similarity search over indexes degrades dramatically with the increasing dimensionality. In order to break such 

curse, various dimensionality reduction techniques have been proposed to reduce the dimensionality of time series before indexing 

them. But only DFT and DWT have been used in the scenario of stream time series, however, with the limitation that only one pattern 

is considered. Similarity measures. In addition to Euclidean distance (L2-norm)[4] [5] several other distance functions have been 

proposed to measure the similarity between two time series in different applications such as Dynamic Time Warping, longest 

Common Subsequence 

, and Edit Distance with Real Penalty Specifically, Euclidean distance requires the time series to have the same length, which may 

restrict its applications. On the other hand, DTW can handle sequences with different lengths and local time shifting; however, it does 

not follow the triangle inequality, which is one of the most important properties of a metric distance function. A recent work makes 

DTW index able by approximating time series with bounding envelopes. The resulting R-tree index[6] is clearly inefficient for query 

processing on stream time series, in terms of both update and search cost. ERP can support local time shifting and is a metric distance 

function. LCSS[7] is proposed to handle noise in data; however, it ignores various gaps in between similar subsequences, which leads 

to inaccuracy. In contrast, our work focuses on Lp-norm, which covers a wide range of applications. Formally, the Lp-norm distance 

between two series X(X[0],X[1],….X[n-1]) and Y(Y[0],Y[1],…,Y[n-1]) of length n is defined as 

          n-1 

Lp(X,Y)=√ (Σ|X[i]-Y[i]
p
) 

          i=0 

 

where p>= 1. Note that L1-norm is also called Manhattan distance, whereas L2-norm is Euclidean distance.  

 
2.1. Monitoring in Stream Time Series 

Not much previous work has been published for monitoring stream time-series data. Zhu and Shasha[9] proposed a method to monitor 

the correlation among any pair of stream time series within a sliding window, in which DFT was used as a summary of the data. Later, 

they introduced a shift wavelet tree (SWT) based on DWT to monitor bursts over stream time-series data. Bulut and Singh[8] 

improved the technique by using multi scale DWT trees to represent data. Gao and Wang[3] proposed a prediction model to save the 

computational cost during the matching between a single stream time series and multiple static patterns. Recently, Papadimitriou[10] 

proposed a method for capturing correlations among multiple stream time-series data with the help of an incremental PCA 

computation method. With respect to data estimation, estimated the current values of a co-evolving time series through a multivariate 

linear regression. These approaches, however, are different from our similarity match problem, in the sense that they do not assume 

any patterns available. Instead, they aim at detecting either patterns in a stream time series or changes in correlation pattern over 

multiple stream time series. Moreover, Wu[11] proposed an online matching algorithm for detecting subsequences of financial data 

over a dynamic database. However, their segmentation and pruning methods are designed for financial data only and cannot be 

applied to detect general patterns in stream time series. 

 

3. Issues in the Existing Research Work 

Most of the time-series representation methods do not reduce the dimensionality of the original data. The distance measures defined in 

the symbolic representation method have little correlation with that of in the original time-series. Among the dimensionality reduction 

techniques mentioned above, only DWT and DFT deals with the stream time-series. The existing similarity measures do not support 

online monitoring applications as these are designed for full sequence matching. The existing pattern matching algorithms are 

susceptible to noise, offset translation, and amplitude scaling with various degrees.  

The existing approaches for modeling uncertain time-series are based on only two different approaches. The first approach estimates 

the probability density function over uncertain values based on the prior knowledge. The second approach summarizes the distribution 

of uncertain data as a result of frequent measurements. These approaches offer results with increased false positives. The real 

challenge is achieving tradeoff between accuracy and efficiency in uncertain time series data streams. 

 

3.1. Limitations 

The previous works on pattern matching on archived time series are not suitable for stream time series as they cannot deal with the 

frequent updates. Concerned with the data streams, the efficiency of the computation process is the key issue as the data can be 

processed only once during the entire computation in the presence of uncertain data. Generally, processing of raw uncertain data is 

difficult because of its mass volume and stringent time schedule. Raw uncertain data generally comprise of noise that interrupts the 

pattern matching process and produces false positives. All the time series dependent applications require immediate responses and 

cannot prefer any post processing. Striking solution between the accuracy and efficiency is highly challenging in the presence of 

uncertainty.  
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4. Methodology 
The design and development of a pattern matching system of the data stream that captures data uncertainty from data collection to 

query processing to obtain final pattern that matches the query pattern. The incoming patterns are initially transformed into streams 

with uncertain data to model the core data generation process. The data of interest can be inferred from this model. The inference 

process computes a distribution of values for the uncertain data required in later processing. The uncertain data are then eliminated to 

prune off large search space using any of the lower bound distance measures.  The size of the search space varies exponentially with 

the number of features in the query pattern. Therefore, it becomes necessary to depend on effective search techniques. The sensor data 

are generally updated in a periodic manner. This necessitates the use of indexing system to update the current attribute value. Each 

part of the query is associated with a range of possible values and probability density function, which quantifies the behavior of the 

data over that range. The obtained resultant pattern is compared with the time-series database to provide the final pattern that matches 

with the query pattern. Table 1 shows the previous works on time series data.  

 

5. Conclusion 

The area of uncertain data management in stream time series application has been treated as an unsolved issue. This work presented an 

overview of pattern matching methods over uncertain time series stream data. This work also presented the commonly used similarity 

measures, similarity searches on stream time series and uncertain data along with the representational issues in uncertain data 

management. The accuracy of the pattern matching algorithm is measured in terms of precision and recall. If the uncertainty is 

perfectly mined out, stream time series data can be extended to numerous applications 
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