THE INTERNATIONAL JOURNAL OF SCIENCE \& TECHNOLEDGE

Galois Theory and Cyclotomic Extensions

Parvinder Singh
Associate Professor, P. G. Department of Mathematics, S.G.G.S. Khalsa College, Mahilpur (Hoshiarpur), Punjab, India

Abstract

: Gauss was led to his discovery of constructible polygons from $x^{n}-1$ over the set Q of rational numbers. Inthis paper we examine that the factors of $x^{n}-1$ and to show that how the Galois Theory can be used to determine that regular n-gons are constructible with a straightedge and compass. The irreducible factors of $x^{n}-1$ are very important in number theory and in combinatorics.

1. Introduction

The ancient Greeks know that how to construct a regular polygon of $3,4,5,6,8,10$ and 15 sides with the help of straightedge and compass and gives a construction of a regular n-gon. They also attempted to construct the polygons of $7,9,11,13,17$, sides but failed. More than 2200 years passed before Gauss, at the age of 19 proved that a regular 17-gon was constructible and short after he solved the problem and said that n-gons are constructible. By this discovery he dedicate his life to mathematics. He was so proud of this accomplishment that he requested that a regular 17 -sided polygonbe engraved on his tombstone.
As we know that the complex roots of $x^{n}-1=0$ are $1, \omega, \omega^{2}, \omega^{3}, \ldots \ldots \ldots, \omega^{n-1}$ where $\omega=\cos \left(\frac{2 \pi}{n}\right)+i \sin \left(\frac{2 \pi}{n}\right)$. Thus the splitting field of $x^{n}-1$ over Q is $\mathrm{Q}(\omega)$, and is called the nth Cyclotomic Extension of Q also the irreducible factors of $x^{n}-1$ over Q are called the Cyclotomic Polynomials.
As $\omega=\cos \left(\frac{2 \pi}{n}\right)+i \sin \left(\frac{2 \pi}{n}\right)$ generates a cyclic group oforder n under multiplication, the generators of $<\omega>$ are of the form ω^{k} where $1 \leq k \leq n$ and $(\mathrm{n}, \mathrm{k})=1$. These generators are called the Primitive nth roots of unity. Let $\phi(n)$ denote the number of positive integers less than or equal to n and relatively prime to n .

2. Definition

For any positive integer n , let $\omega_{1}, \omega_{2}, \ldots \ldots \ldots, \omega_{\phi(n)}$ denote the primitive nth roots of unity. The nth Cyclostomes Polynomial over Q is the polynomial $\Phi_{n}(\mathrm{x})=\left(x-\omega_{1}\right)\left(x-\omega_{2}\right) \ldots\left(x-\omega_{\phi(n)}\right)$.

2.1. Example 1

Let $\Phi_{1}(\mathrm{x})=x-1$, Since 1 is the only zero of the equation $x-1=0$ and let $\Phi_{2}(\mathrm{x})=x+1$ then zeroes of $x^{2}-1=0$ are 1 and -1 and -1 is the only primitive root.
If $\Phi_{3}(\mathrm{x})=(x-\omega)\left(x-\omega^{2}\right)$ where $\omega=\cos \left(\frac{2 \pi}{n}\right)+i \sin \left(\frac{2 \pi}{n}\right)=(-1+i \sqrt{3}) / 2$ and by direct calculations we can show that $\Phi_{3}(\mathrm{x})=x^{2}+\mathrm{x}$ +1 . Also the roots of $x^{4}-1=0$ are ± 1 and $\pm i$. Also $\pm i$ are primitive roots, $\Phi_{4}(\mathrm{x})=(x-i)(x+i)=x^{2}+1$.

3. Theorem

For every positive integer $\mathrm{n}, x^{n}-1=\prod_{d \backslash n} \Phi_{4}(\mathrm{x})$ where the product runs over all positive divisors d of n .

3.1. Proof

As both of the polynomials in the statement are monic so it is suffices to prove that they have the same zeros and all zeros have the multiplicity 1 . Let $\omega=\cos \left(\frac{2 \pi}{n}\right)+i \sin \left(\frac{2 \pi}{n}\right)$. Then $<\omega>$ is a cycle group order n and contains all n nth roots of unity. Then for each j the order ω^{j} is denoted by $\left|\omega^{j}\right|$ divides n so that $\left(x-\omega^{j}\right)$ appears as a factor $\operatorname{in} \Phi_{\left|\omega^{j}\right|}(\mathrm{x})$. Conversely if $(x-\alpha)$ is a factor of $\Phi_{d}(\mathrm{x})$ for some divisor d of n then $\alpha^{\mathrm{d}}=1$ and hence $\alpha^{\mathrm{n}}=1$. Hence $(x-\alpha)$ is a factor of $x^{n}-1$. Finally since no root of $x^{n}-1=0$ can be a root of $\Phi_{d}(\mathrm{x})$ for two different values of d which provestheresult.

4. Theorem

For every positive integer $\mathrm{n}, \Phi_{n}(\mathrm{x})$ has integral coefficients.

4.1. Proof

If $\mathrm{n}=1$ the case is trivial hence by induction principle we may assume that $g(x)=\prod_{d \backslash n} \Phi_{d}(\mathrm{x})$ has integral coefficients, then by theorem 1.3 we have $x^{n}-1=\Phi_{n}(\mathrm{x}) g(x)$ and, as $g(x)$ is monic we may carry out the division in $\mathrm{Z}[\mathrm{x}]$ and can say that $\Phi_{n}(\mathrm{x}) \in$ $\mathrm{Z}[\mathrm{x}]$ Hence proved the $\Phi_{n}(\mathrm{x})$ has integral coefficients.

5. Theorem

The Cyclotomic Polynomial $\Phi_{n}(\mathrm{x})$ is irreducible over the ring of integers Z .

5.1. Proof

Let $f(x) \in \mathrm{Z}[\mathrm{x}]$ be a monic irreducible factor of $\Phi_{n}(\mathrm{x})$. As $\Phi_{n}(\mathrm{x})$ is monic and has no multiple zeros is suffices to show that every root of $\Phi_{n}(\mathrm{x})$ is a root of $f(x)$. As $\Phi_{n}(\mathrm{x})$ divides $x^{n}-1$ in $\mathrm{Z}[\mathrm{x}]$, we can write $x^{n}-1=\mathrm{f}(\mathrm{x}) g(x)$ where $g(x) \in \mathrm{Z}[\mathrm{x}]$. Let ω be a primitive nth root of unity that is a root of $f(x)$.Then $f(x)$ is a minimal polynomial over Q . Let p be any prime number that does not divide n . Then ω^{p} is also the primitive nth root of unity and hence $\left(\omega^{p}\right)^{n}-1=f\left(\omega^{p}\right) g\left(\omega^{p}\right)=0$ so that $f\left(\omega^{p}\right)=0$ or $g\left(\omega^{p}\right)=0$. suppose that $\left(\omega^{p}\right) \neq 0$, then $g\left(\omega^{p}\right)=0$ therefore ω is a root of $g\left(x^{p}\right)=0$, hence $f(\mathrm{x})$ divides $g\left(x^{p}\right)$ in $\mathrm{Z}[\mathrm{x}]$. Since $f(\mathrm{x})$ is monic $f(\mathrm{x})$ actually divides $g\left(x^{p}\right)$ in $\mathrm{Z}[\mathrm{x}]$, so $g\left(x^{p}\right)=f(\mathrm{x}) \mathrm{h}(\mathrm{x})$ where $\mathrm{h}(\mathrm{x}) \in \mathrm{Z}[\mathrm{x}]$. Now let $g^{\prime}(x), f^{\prime}(x)$ and $h^{\prime}(x)$ denote the polynomials in $Z_{p}[x]$ obtained from $g(\mathrm{x}), f(\mathrm{x})$ and $h(\mathrm{x})$ respectively, by reducing each coefficient modulo p . This reduction is a ring homomophism from $Z[x]$ to $Z_{p}[x]$, we have $g^{\prime}\left(x^{p}\right)=f^{\prime}(x) h^{\prime}(x)$ in $Z_{p}[x]$ then we have $\left(g^{\prime}(x)\right)^{p}=g^{\prime}\left(x^{p}\right)=f^{\prime}(x) h^{\prime}(x)$ and since $Z_{p}[x]$ is a unique factorization domain then it follows that $g^{\prime}(x)$ is a factor of $f^{\prime}(x)$ in $Z_{p}[x]$.Hence we may write $f^{\prime}(x)=\mathrm{k}(\mathrm{x})$ $g^{\prime}(x)$ where $\mathrm{k}(\mathrm{x}) \in Z_{p}[x]$.Then keeping $x^{n}-1$ as a member of $Z_{p}[x]$. We have $x^{n}-1=f^{\prime}(x) g^{\prime}(x)=\mathrm{k}(\mathrm{x})\left(g^{\prime}(x)\right)^{2}$. In particular, ω^{p} is a multiple root of $x^{n}-1$ in $Z_{p}[x]$. As p does not divide n , the derivative $\mathrm{n} x^{n-1}$ of $x^{n}-1$ is not 0 and so $\mathrm{n} x^{n-1}$ and $x^{n}-1$ do not have a common factor of positive degree in $Z_{p}[x]$. Which contradicts criterion for multiple roots so we must have $f\left(\omega^{p}\right)=$ 0 .Now we reformulate what we have thus far proved as follows: If β is any primitive nth root of unity that is a root of $\mathrm{f}(\mathrm{x})$ and p is any prime that does not divide n , then β^{p} is a root of $\mathrm{f}(\mathrm{x})$. Let k be any integer between 1 and n that is relatively prime to n . Then we can write $\mathrm{k}=p_{1} p_{2} \ldots . p_{t}$ where p_{i} is a prime that does not divide n. Then it follows that each of $\omega, \omega^{p_{1}},\left(\omega^{p_{1}}\right)^{p_{2}}, \ldots \ldots \ldots,\left(\omega^{p_{1} p_{2} \ldots \ldots . p_{\mathrm{k}-1}}\right)^{p_{t}}=\omega^{\mathrm{k}}$ is a root of $\mathrm{f}(\mathrm{x})$. Since every root of $\Phi_{n}(\mathrm{x})$ has the form ω^{k} where k is between 1 and n and is relatively prime to n, we proved that every root of $\Phi_{n}(x)$ is a root of $f(x)$. This completes the proof.
Further we have to determine the Galois group of the Cyclotomic extensions of Q .

6. Theorem

Let ω be a primitive nth root of unity then $\operatorname{Gal}(\mathrm{Q}(\omega) / Q) \approx U(n)$.

6.1. Proof

Since $1, \omega, \omega^{2}, \ldots . . \omega^{n-1}$ are all the n nth roots of unity, $\mathrm{Q}(\omega)$ is the splitting field of $x^{n}-1$ over Q . For each k in $\mathrm{U}(\mathrm{n})$, ω^{k} is primitive nth root of unity then there is a field automorphism of $\mathrm{Q}(\omega)$, which is denoted by ϕ_{k} that carries ω to ω^{k} and act as the identity on Q . Moreover these are all the automorphisms of $\mathrm{Q}(\omega)$, since any automorphism maps a primitive nth root of unity to a primitive nth root of unity. Observe that for every $\mathrm{r}, \mathrm{s} \in \mathrm{U}(\mathrm{n}),\left(\phi_{r} \phi_{s}\right)(\omega)=\phi_{r}\left(\omega^{s}\right)=\left(\phi_{r}(\omega)\right)^{s}=\left(\omega^{r}\right)^{s}=\omega^{r s}=\phi_{r s}(\omega)$. Which shows that the mapping from $\mathrm{U}(\mathrm{n})$ onto $\operatorname{Gal}(\mathrm{Q}(\omega) / Q)$ given by $\mathrm{k} \rightarrow \phi_{k}$ is a group homomorphism. Clearly the mapping is an isomorphism since $\omega^{r} \neq \omega^{s}$ when $r, s \in U(n)$, and $r \neq s$, Hence the proof.
\rightarrow Example 2: Let $a=\cos \frac{2 \pi}{9}+\mathrm{i} \sin \frac{2 \pi}{9}$ and $\mathrm{b}=\cos \frac{12 \pi}{15}+\mathrm{i} \sin \frac{12 \pi}{15}$ then $\operatorname{Gal}(\mathrm{Q}(a) / Q) \approx U(9) \approx z_{6} \operatorname{And} \operatorname{Gal}(\mathrm{Q}(b) / Q) \approx$ $U(15) \approx z_{4} \oplus z_{2}$.
\rightarrow Construction of Regular n-Gons: Byapplying both the of Cyclotomic Extensions and Galios Theory we can determine that regular n-Gons are constructible with a straightedge and compass. This can be proved as under:

7. Lemma

Let n be a positive integer and let $\omega=\cos \frac{2 \pi}{n}+\mathrm{i} \sin \frac{2 \pi}{n}$.
Then $\mathrm{Q}\left(\cos \frac{2 \pi}{n}\right) \subseteq \mathrm{Q}(\omega)$.

7.1. Proof

It can be observed that $\left(\cos \frac{2 \pi}{n}+i \sin \frac{2 \pi}{n}\right)\left(\cos \frac{2 \pi}{n}-\mathrm{i} \sin \frac{2 \pi}{n}\right)=\cos ^{2} \frac{2 \pi}{n}+\sin ^{2} \frac{2 \pi}{n}=1$ then we have $\left(\cos \frac{2 \pi}{n}-\mathrm{i} \sin \frac{2 \pi}{n}\right)=\frac{1}{\omega}$, Moreover $\left(\omega+\frac{1}{\omega}\right) / 2=\left(2 \cos \frac{2 \pi}{n}\right) / 2=\cos \frac{2 \pi}{n}$. Hencecos $\frac{2 \pi}{n} \in Q(\omega)$.

8. Theorem

The necessary and sufficient condition that it is possible to construct the regular n-gon with a straightedge and compass if nis of the form $2^{k} p_{1} p_{2} \ldots . p_{t}$ where $\mathrm{k} \geq 0$ and p_{i} are all distinct primes of the form $2^{m}+1$.

8.1. Proof: The Condition is Necessary

If it is possible to construct a regular n-gon then we can construct the angle $2 \pi / n$ and therefore the number $\cos \frac{2 \pi}{n}$. As we know that $\cos \frac{2 \pi}{n}$ is constructible only if $\left[\mathrm{Q}\left(\cos \left(\frac{2 \pi}{n}\right)\right)\right.$: Q$]$ is a power of 2 . To determine when this is so we will use Galois theory as:
Let $\omega=\cos \frac{2 \pi}{n}+\mathrm{i} \sin \frac{2 \pi}{n}$. Then $\left\lvert\, \operatorname{Gal}\left(\mathrm{Q}(\omega) / \mathrm{Q} \mid=[\mathrm{Q}(\omega): Q]=\phi(n)\right.$. Then by the above lemma $\mathrm{Q}\left(\cos \left(\frac{2 \pi}{n}\right)\right) \subseteq \mathrm{Q}(\omega)$ and we know that \right. $\left[\mathrm{Q}\left(\cos \left(\frac{2 \pi}{n}\right)\right): \mathrm{Q}\right]=\left\lvert\, \operatorname{Gal}\left(\mathrm{Q}(\omega) / \mathrm{Q}\left|/\left|\operatorname{Gal}\left(\mathrm{Q}(\omega) / Q\left(\cos \left(\frac{2 \pi}{n}\right)\right)\right)\right|=\phi(n) / \operatorname{Gal}\left(\left.\mathrm{Q}(\omega) / Q\left(\cos \left(\frac{2 \pi}{n}\right)\right) \right\rvert\,\right.\right.\right.\right.$.
Here the element σ of $\operatorname{Gal}(\mathrm{Q}(\omega) / Q)$ have the property that $\sigma(\omega)=\omega^{k}$ for $1 \leq k \leq n$. That is $\sigma\left(\left(\cos \frac{2 \pi}{n}+\mathrm{i} \sin \frac{2 \pi}{n}\right)=\left(\cos \frac{2 \pi k}{n}+\mathrm{i}\right.\right.$ $\left.\sin \frac{2 \pi k}{n}\right)$. If such a σ belongs to $\operatorname{Gal}\left(\left(\mathrm{Q}(\omega) / Q\left(\cos \frac{2 \pi}{n}\right)\right)\right.$, then we must have $\cos \left(\frac{2 \pi k}{n}\right)=\cos \left(\frac{2 \pi}{n}\right)$. Clearly this holds only when $\mathrm{k}=1$ and $k=n-1$. So
$\left\lvert\, \operatorname{Gal}\left(\left.\left(\mathrm{Q}(\omega) / Q\left(\cos \frac{2 \pi}{n}\right)\right) \right\rvert\,=2\right.$ and therefore $\left[Q\left(\cos \left(\frac{2 \pi}{n}\right): Q\right]=\phi(n) / 2\right.$. Thus if an n-gon is constructible then $\phi(n) / 2$ must be a \right. power of 2 . Of course this implies that $\phi(n)$ is a power of 2 . Hence write $\mathrm{n}=2^{k} p_{1}^{n_{1}} p_{2}^{n_{2}} \ldots \ldots p_{t}^{n_{\mathrm{t}}}$ where $\mathrm{k} \geq 0$, the p_{i} are distinct odd primes and the $n_{i}>0$. Then $\phi(n)=|\mathrm{U}(\mathrm{n})|=\left|\mathrm{U}\left(2^{k}\right)\right|\left|\mathrm{U}\left(p_{1}^{n_{1}}\right)\right|\left|\mathrm{U}\left(p_{2}^{n_{2}}\right)\right| \ldots \ldots . .\left|\mathrm{U}\left(p_{t}^{n_{\mathrm{t}}}\right)\right|=2^{k-1} p_{1}^{n_{1}-1}\left(p_{1}-1\right) p_{2}^{n_{2}-1}\left(p_{2}-\right.$ 1) $\ldots . . p_{t}^{n_{\mathrm{t}}-1}\left(p_{t}-1\right)$ must be a power of 2 . This implies that each $n_{i}=1$ and each $p_{i}-1$ is a power of 2 . This completes the proof that the condition is necessary.

8.2. The Condition is Sufficient

Suppose that n is of the form $2^{k} p_{1} p_{2} \ldots p_{t}$ where $\mathrm{k} \geq 0$ and p_{i} are all distinct primes of the form $2^{m}+1$ and let $\omega=\cos \frac{2 \pi}{n}+\mathrm{i} \sin \frac{2 \pi}{n}$. Then $\mathrm{Q}(\omega)$ is a splitting field of an irreducible polynomial over Q and therefore, by Fundamental Theorem of Galois Theory, $\phi(n)=$ $[(\mathrm{Q}(\omega): Q]=\mid \operatorname{Gal}(\mathrm{Q}(\omega) / Q \mid$. Since $\phi(n)$ is a power of 2 and $\operatorname{Gal}(\mathrm{Q}(\omega) / Q$ is an Abelian group, it follows that by the Principle of Induction there exist a series of subgroups $H_{0} \subset H_{1} \subset \cdots \subset H_{t}=\operatorname{Gal}\left(\mathrm{Q}(\omega) / Q\right.$ where H_{0} is the identity of the group and H_{1} is the subgroup of $\operatorname{Gal}\left(\mathrm{Q}(\omega) / Q\right.$ of order 2 that fixes $\left(\cos \left(\frac{2 \pi}{n}\right)\right)$, and $\left|H_{i+1}: H_{i}\right|=2$ for $\mathrm{i}=0,1,2, \ldots \ldots, \mathrm{t}-1$. By Fundamental Theorem of Galois Theory we have a series of subfields of the real numbers $\mathrm{Q}=E_{H_{t}} \subset E_{H_{t-1}} \subset \ldots \ldots \subset E_{H_{1}}=\mathrm{Q}\left(\cos \frac{2 \pi}{n}\right) w h e r e\left[E_{H_{\mathrm{i}-1}}: E_{H_{i}}\right]=2$. So for each i we can chose $\beta_{i} \in E_{H_{i}}$ so that $E_{H_{i}}=E_{H_{i-1}\left(\beta_{i}\right)}$. Then β_{i} is the root of the polynomial $x^{2}+b_{i} \mathrm{x}+c_{i} \in E_{H_{i-1}}[\mathrm{x}]$ and it follows that $E_{H_{i}}=E_{H_{i-1}}\left(\sqrt{{b_{i}}^{2}}-4 c_{i}\right)$. Hence it follows that every element of $\mathrm{Q}\left(\cos \frac{2 \pi}{n}\right)$ is constructible.

9. References

i. Bryan, B. (1973). Cyclotomic fields and Kummer extensions, in Cassels, J.W.S. and Frohlich, A. (edd), Algebraic number theory, Academic Press, Chap.III, pp. 45-93.
ii. Daniel A. M. (1977).Number Fields, third edition, Springer-Verlag.
iii. Lam, T.Y. (1991). A First Course in Non commutative Rings, Springer-Verlag, New York.
iv. Lam, T. Y., \& Cheung, K. H. (1996).On the cyclotomic polynomialpq (T), Amer. Math. Monthly.
v. Lang,S.(1990). Cyclotomic Fields I and II, Combined second edition. With an appendix by Karl Rubin. Graduate Texts in Mathematics, 121. Springer-Verlag, New York.
vi. Lawrence, W.C. (1997), Introduction to Cyclotomic Fields, Graduate Texts in Mathematics, 83 (2ed.), New York: SpringerVerlag.

