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1. Introduction 

The ancient Greeks know that how to construct a regular polygon of 3,4,5,6,8,10 and 15 sides with the help of straightedge and 

compass and gives a construction of a regular n-gon. They also attempted to construct the polygons of 7, 9, 11, 13, 17, sides but failed. 

More than 2200 years passed before Gauss, at the age of 19 proved that a regular 17-gon was constructible and short after he solved 

the problem and said that n-gons are constructible. By this discovery he dedicate his life to mathematics.  He was so proud of this 

accomplishment that he requested that a regular 17-sided polygonbe engraved on his tombstone. 

As we know that the complex roots of	�� − 1  = 0 are 1,	�, ��, �	, ……… ,����where� = 	 cos( ��� 	) + � sin(��� ). Thus the splitting 

field of 	�� − 1 over Q is Q (�),  and is called  the nth Cyclotomic Extension of Q also the irreducible factors of 	�� − 1 over Q  are  

called  the Cyclotomic Polynomials. 

As � = 	 cos( ��� 	) + � sin(��� ) generates a cyclic group oforder n under multiplication, the generators of <	� > are of the form 

��where 1≤ �	 ≤ � and (n,k) =1.  These generators are called the Primitive nth roots of unity. Let �(�) denote the number of positive 

integers less than or equal to n and relatively prime to n.  

 

2. Definition 

For any positive integer n, let ��, ��,…….., ��(�) denote the  primitive nth  roots of unity. The nth Cyclostomes Polynomial over Q 

is the polynomialΦ�(x) = (� − ��)	(� − ��)… . (� − ��(�)). 
 
2.1. Example 1 

Let Φ�(x) = � -1, Since 1 is the only zero of the equation � -1= 0 and let Φ�(x) = � +1 then zeroes of �� -1 =0 are 1 and -1 and -1  is 

the only  primitive root.  

If Φ	(x) = (� –	�)(� − ��) where � = 	 cos( ��� 	) + � sin(��� ) = (-1 +�√3)/2 and by direct calculations we can show that Φ	(x) = ��+ x 

+1. Also the roots of �" -1 = 0 are	±	1	$�%	 ± �. Also ±� are primitive roots,Φ"(x) =(� − �)(� + �) = 	 ��+ 1. 

 

3. Theorem 

For every positive integer n, �� -1 = ∏ Φ"(x)(\�  where the product runs over all positive divisors d of n. 

 

3.1. Proof 

As both of the polynomials in the statement are monic so it is suffices to prove that they have the same zeros and all zeros have the 

multiplicity 1. Let� =	 cos( ��� 	) + � sin(��� ). Then <	� > is a cycle group order n and contains all n nth roots of unity. Then for each j 

the order �* is denoted by |�*| divides n so that (� − �*) appears as a factor inΦ|,-|(x). Conversely if (� − .) is a factor of Φ((x) for 

some divisor d of n then ./ = 1 and hence .0 = 1. Hence(� − .) is a factor of �� 	− 1.		Finally since no root of �� 	− 1 = 0 can be a 

root of  Φ((x) for two different values of d which provestheresult. 
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4. Theorem 

For every positive integer n,Φ�(x) has integral coefficients. 

 

4.1. Proof 

If n = 1 the case is trivial hence by induction principle we may assume that 2(�) = 	∏ Φ((x)(\�
(3�

 has integral coefficients, then  by 

theorem 1.3 we have �� 	− 1 = Φ�(x)2(�) and , as 2(�) is monic we may carry out the division in Z[x] and can say that Φ�(x) ∈ 

Z[x] Hence proved the Φ�(x) has integral coefficients. 

 

5. Theorem 

The Cyclotomic Polynomial Φ�(x)is irreducible over the ring of integers Z. 

 

5.1. Proof 

Let 5(�) ∈ Z[x] be a monic irreducible factor of	Φ�(x). As Φ�(x) is monic and has no multiple zeros is suffices to show that every 

root of Φ�(x) is a root of 5(�). As Φ�(x) divides �� 	− 1 in Z[x], we can  write �� 	− 1 = f(x)2(�)where 2(�) ∈Z[x].  Let � be a 

primitive nth root of unity that is a root of 5(�).Then 5(�) is a minimal polynomial over Q. Let p be any prime number that does not 

divide n. Then �7 is also the primitive nth root of unity and hence (�7)� - 1 =	5(�7)	2(�7) = 0 so that 5(�7) = 0	89	2(�7) = 0	. 
suppose that (�7) ≠ 0, then 2(�7) = 0 therefore � is a root of 2(�7) = 0, hence 5(x) divides 2(�7) in Z[x]. Since 5(x) is monic 

5(x)actually divides 2(�7) in Z[x], so 2(�7) = 5(x)h(x) where h(x) ∈ ZAxB. Now let 2/(�), 5/(�) and ℎ/(�) denote the polynomials 

in E7A�B obtained from 2(x),	5(x)and ℎ(x)respectively, by reducing  each  coefficient modulo p. This reduction is a ring 

homomophism from Z[x] to E7A�B, we have 2/(�7)	= 5/(�)ℎ/(�) in E7A�B then we have (2/(�))7= 2/(�7)= 5/(�)ℎ/(�)and since 

E7A�B is a unique factorization domain  then it  follows that 2/(�) is a factor of 5/(�) in E7A�B.Hence we may write 5/(�) = k(x) 

2/(�) where k(x) ∈ E7A�B.Then keeping �� 	− 1 as a member of E7A�B. We have �� 	− 1= 5/(�)2/(�)	= k(x)(2/(�))�. In particular, 

�7 is a multiple root of  �� 	− 1 in E7A�B. As p does not divide n, the derivative n���� of  �� 	− 1 is not 0 and so n����  and   �� 	− 1 

do not have a common factor of positive degree in	E7A�B.  Which contradicts criterion for multiple roots so we must have 5(�7)= 

0.Now we reformulate what we have thus far  proved as follows: If F is any primitive  nth root of unity that is a root  of f(x) and p is 

any  prime that  does not divide n, then F7 is a root of f(x) . Let k be any integer between 1 and n that is relatively prime to n.  Then 

we can write k = G�G�… . . GH  where GI  is a prime that does not divide n. Then it follows that each 

of�,�7J,(�7J)7K,………, (�7J7K……7LMJ)7N = �O is a root of f(x). Since every root of Φ�(x) has the form �O where k is between 1 

and n and is relatively prime to n, we proved that every root of Φ�(x) is a root of f(x). This completes the proof. 

Further we have to determine the Galois group of the Cyclotomic extensions of Q. 

 

6. Theorem 

 Let � be a primitive nth root of unity then Gal (Q(�)/Q) 	≈ S(�). 
 

6.1. Proof 

Since 1,	�, ��,…..���� are all the n nth roots of unity, Q(�) is the  splitting field of ��-1 over Q. For each k in U(n), �O is primitive  

nth root of unity then there is a field automorphism  of Q(�), which is denoted by ��  that carries �to �� and act as the identity  on 

Q. Moreover these are all the automorphisms of Q(�), since any automorphism maps  a primitive nth  root of unity  to a primitive nth 

root of unity.  Observe that for every r, s ∈ U(n), (�U�V)(�) =	�U(�V) = (�U(�))V = (�U)V= �UV= �UV(�). Which shows that  the 

mapping  from U(n) onto Gal(Q(�)/Q) given by k →	�� is a  group homomorphism. Clearly the mapping is an isomorphism since 

�U 	≠ �V  when r, s ∈ U(n), and  r	≠ s , Hence the proof. 

→ Example 2 : Let $ = 	 cos ��X  + i sin ��X  and  b  = cos ����Y  + i sin ����Y   then  Gal(Q($)/Q) 	≈ S(9) ≈ 	 [\And Gal(Q(])/Q) 	≈
S(15) ≈ 	["⨁[�.  

→ Construction of Regular n-Gons: Byapplying both the of Cyclotomic Extensions and Galios Theory we can determine that 

regular n-Gons are constructible with a straightedge and    compass. This can be proved as under: 

 

7. Lemma 

Let n be a positive integer and let � = 	 cos ���  + i sin ��� .  

Then Q (cos ��� ) 	⊆ Q(�). 
 

7.1. Proof 

It can be observed that (cos ���  + i sin ��� )(cos ���  - i sin ��� ) =  cos� ���  + sin� ���  = 1 then we have (cos ���  - i sin ��� 	)	= 
�
, , Moreover 

(� + �
,) / 2 = (2 cos ��� ) /2 = cos ��� . Hencecos ��� ∈ 	Q(�). 
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8. Theorem 
The necessary and sufficient condition that it is possible to construct the regular n-gon with a straightedge and compass if nis of the 

form 2�G�G�… . GH  where k ≥ 0 and GI  are all distinct primes of the form 2d+ 1. 

 

8.1. Proof: The Condition is Necessary 

If it is possible to construct a regular n-gon then we can construct the angle  2e/� and therefore the number	cos ��� . As we know that 

cos ���  is constructible only if [Q(cos( ��� )): Q] is a power of 2. To determine when this is so we will use Galois theory as:  

Let � = 	 cos ���  + i sin ��� . Then |Gal(Q(�)/Q| = [Q(�): QB = �(�). Then by the above lemma Q(cos( ��� )) ⊆ Q(�) and we know that  

[Q(cos( ��� )): Q] = |Gal(Q(�)/Q|/|Gal(Q(�)/Q (cos( ��� )) )| = �(�)/Gal(Q(�)/	Q (cos( ��� ))|. 
Here the element g of Gal(Q(�)/	Q) have the property that g(�) = �� for 1≤ �	 ≤ �. That is g((cos ���  + i sin ��� ) = (cos ����  + i 

sin ���� ). If such a g belongs to Gal((Q(�)/	Q(cos ��� )), then we must have  cos( ���� ) = cos( ��� ). Clearly this holds only when k = 1 

and k = n-1. So  

| Gal((Q(�)/	Q(cos ��� ))| = 2  and therefore [Q(cos( ��� ) ∶ QB = �(�)/2. Thus if  an n-gon is constructible then �(�)/2 must be a 

power of 2. Of course this implies that �(�) is a power of 2. Hence write n = 2�G��JG��K … . . GH�i where k	≥ 0, theGI  are distinct odd 

primes and the �I> 0. Then �(�) = |U(n)| = |U(2�)|| U(G��J)||U(G��K)|……… |U(GH�i)| = 2���G��J��(G� − 1)G��K��(G� −
1)… . . GH�i��(GH − 1) must be a power of 2. This implies that each  �I =1 and each GI − 1 is a power of 2. This completes the proof 

that the condition is necessary. 

 

8.2. The Condition is Sufficient 

Suppose that n is of the form	2�G�G�… . GH  where k ≥ 0 and GI  are all distinct primes of the form 2d+ 1 and let � = 	 cos ���  + i sin ���  . 

Then Q (�) is a splitting  field of an irreducible polynomial over Q and therefore , by Fundamental Theorem of Galois Theory, �(�)= 

[(Q(�):	QB = |Gal(Q(�)/	Q|. Since �(�) is a power of 2 and Gal(Q(�)/	Q is an Abelian group, it follows that by the Principle of 

Induction there exist a series of subgroups jk ⊂ 	j� 	⊂ ⋯ ⊂ 	jH  = Gal(Q(�)/	Q where jk is the identity of  the group and j� is the 

subgroup of Gal(Q(�)/	Q of order 2 that fixes (cos( ��� )), and |jIn�:jI | = 2 for i = 0,1,2,……,t-1. By Fundamental Theorem of Galois 

Theory we have a series of subfields of the real numbers Q =opN ⊂ 	opNMJ ⊂ ⋯… ⊂ opJ=Q (cos ��� )qℎr9r		[opsMJ:opt]= 2. So for 

each i we   can chose FI ∈ optso that opt= optMJ(ut).	Then FI is the root of the polynomial �� + ]Ix + vI ∈ optMJAxB and it follows 

that	opt = optMJ(w]I� − 4vI). Hence it follows that every element of Q(cos ��� ) is constructible. 
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