THE INTERNATIONAL JOURNAL OF SCIENCE & TECHNOLEDGE

Acoustical Study of Chalcone in Dmso – Water Mixture in Different Concentriions

Unnati Ashok Pathare

Student, Department of Chemistry, R.D.I.K. & N.K.D. College, Badnera (RLy), Amravati, Maharashtra, India S. D. Thakur

Assistant Professor, Department of Chemistry, R.D.I.K. & N.K.D. College, Badnera (RLy), Amravati, Maharashtra, India

Abstract:

Ultrasonic velocity and density measurement of chalcone - 3-bromo-2-hydroxy-5-methyl-4-chloro chalcone (3B2H5M4C1C) in dmso-water mixture have been carried out in the concentration range $1x10^{-2}$ - $5x10^{-2}$ mole dm⁻³ and in different percentages of dmso-water mixtures. The experimental data have been used to calculate various acoustical parameters, such as adiabatic compressibility (β_s), apparent molal volume(ϕ_v), apparent molal compressibility($\phi_{k(s)}$), intermolecular free length (L_f), specific acoustic impedence (Z_s) and relative association (R_A). The results have been interpreted in terms of solute-solvent and solute-solute interactions.

1. Introduction

The study of molecular interactions on liquids provide valuable information regarding internal structure, molecular association, complex formation, internal pressure etc. Various techniques are there to study them such as NMR, microwave, ultraviolet, and infrared spectroscopy, neutron and X-ray scattering and ultrasonic investigation. Ultrasonic investigation has been the subject of exhaistive research and it finds extensive application in characterizing physico-chemical behaviour and solute-solvent interactions¹. Recently², apparent molal volume, adabatic compressibility, intermolecular free length, specific acoustic impedence and relative association of substituted azoles in N,N-dimethylformaldehide in different concentrations and at different temperatures have been investigated. The present attempt is made to determine the densities and ultrasonic velocities of above ligand in 70% dmso-water mixtures at fixed concentrations of solute (1x 10^{-2} M) for predicting the solution properties.

2. Experimental

All the chemical used were of A.R. grade. The solvents were purified by standard procedures. The solute was synthesized by standard methods. Density measurements were made by bicapillary pyknometer. The accuracy in density measurement was found to be ± 0.001 g/ml. The velocity of ultrasonic wave was determined by variable path single crystal interferometer (Mittal Enterprise, Model Mx-3) of 1 MHz with accuracy of $\pm 0.03\%$. The temperature was maintained at 305K with an accuracy of 0.1.The apparent molal volume (ϕ_v) and apparent molal adiabatic compressibility ($\phi_{k(s)}$) have been determined respectively from density (ds) and adiabatic compressibility (β_s) of solution by using eqs. (1) and (2) respectively.

$$\phi \mathbf{v} = \frac{\mathbf{M}}{\mathbf{ds}} + \frac{[\mathbf{do} - \mathbf{ds}] \times \mathbf{10} \mathbf{3}}{\mathbf{m} \cdot \mathbf{do} \cdot \mathbf{ds}}$$

where d_o and d_s represent densities of solvent and solution respectively, m is the molality of solution and M is molecular weight of solute.

$$\emptyset k(s) = \frac{[\beta s do - \beta o ds] \times 103}{m do ds} + \frac{\beta s M}{ds}$$

where β_0 and β_s are adiabatic compressibilities of solvent and solution respectively and are calculated by,

$$\beta s = \frac{1}{U_2 o. do}, \beta s = \frac{1}{U_2 s. ds}$$

where Uo and Us are ultrasonic velocities of solvent and solution respectively. The ultrasonic velocity (U) is given by $U = \lambda x$ Frequency, where λ is wave length of ultrasonic wave.

Specific acoustic impedance (Z_s), relative association (R_A) and intermolecular free length (L_f) are the functions of ultrasonic velocity are given by³:

Vol 3 Issue 4

Lf = K x $\sqrt{\beta_s}$, where K is Jacobson's constant.

3. Results and Discussion

In the present investigation different acoustic parameters such as adiabatic compressibility (β s), apparent molal volume (ϕ_v), apparent molal compressibility ($\phi_{k(s)}$) and acoustic impedance (Z_s), relative association (R_A) and intermolecular free length (L_f) of the solutions in different dioxane-water mixture and at different concentrations of solute are determined at 305 K and presented in Table 1. It is observed from the table that the values of β_s decrease with decrease in percentage of dmso in different percentages of dmso-water mixture at fixed concentrations of solute (1×10^{-2} M) and with increase in concentrations in dmso water mixture. The decrease of β_s with increase in concentration of solute may be due to aggregation of solvent molecules around the ions, supporting strong ion-solvent interactions⁴.

Dioxane (%)	Ultrasonic velocity Us	Density d _s (g.m ⁻³)	Adiabatic compressibilit	Intermolecul ar free	Apparent molal volume	Apparent molal compressibility	Relative association	Specific acoustic impedance Z _s (kg m ⁻² s
	(m/sec) x 10 ³	x10 ⁶	$\begin{array}{c} \mathbf{y}\\ \boldsymbol{\beta}_{s}(\mathbf{bar}^{-1})\mathbf{x}10^{-10} \end{array}$	$length \\ L_{f}(A^{o})x10^{2}$	Ø _v (m ³ /mole)x1 0 ⁻⁶	${ { $	(R _A)	¹)x10 ⁶
100	1.3361	1.0372	5.400	44.2274	5190.13	14.1700	1.3005	1.3858
90	1.3481	1.0364	5.300	43.8160	5694.68	17.2400	1.3950	1.3971
80	1.3681	1.0351	5.160	43.2334	6156.97	20.1700	1.4656	1.4162
75	1.4081	1.0337	4.872	42.0096	6597.78	23.5700	1.6043	1.4555
70	1.4281	1.0323	4.750	41.4803	7074.77	24.0040	1.6417	1.4742
60	1.4401	1.0308	4.680	41.1735	8354.98	28.4812	1.6505	1.4844

Table 1: Acoustic Parameters of (3B2H5M4CIC) in different percentage of dmso-water mixture

Concentration of ligand(m)(mole/ dm ³)	Ultrasonic Velocity Us (m/sec) x 10 ³	Density d _s (g.m ⁻³) x 10 ⁶	Adiabatic compressibility β_s (bar ⁻¹) x 10 ⁻¹⁰	Intermolecular free length L _f (A _o) x 10 ²	Apparent molal volume $\phi_v (m^3 \text{ mol}^{-1} \text{ bar}^{-1}) \ge 10^{-6}$	$\begin{array}{c} Apparent\\ molal\\ compressibili\\ ty \ \phi_{k(s)}\\ (m^{3}mol^{-1}bar^{-1}) \ x \ 10^{-10} \end{array}$	Relative association (R _A)	Specific acoustic impedanc e Z _s (kgm ⁻² s ⁻¹) x 10 ⁶
1 x 10 ⁻²	1.4722	1.4722	1.0634	39.040	2169.50	12.5945	1.2577	1.5655
2 x 10 ⁻²	1.4801	1.4801	1.0646	39.1440	1167.56	5.5671	1.2586	1.5757
3 x 10 ⁻²	1.5001	1.5001	1.0666	38.8188	809.85	3.3347	1.2618	1.6000
4 x 10 ⁻²	1.5201	1.5201	1.0681	38.3021	641.57	2.2641	1.2649	1.6236
5 x 10 ⁻²	1.5281	1.5281	1.0692	38.1125	547.78	1.7491	1.2659	1.6339

Table 2: Acoustic Parameters of (3B2H5M4C1C) in different concentrations of solutein 70% dmso-water mixture

The positive values of $(\phi_{k(s)})$ at all composition may be due to gain of compressibility of solute due to weak electrostrictive solvation of ions. The values of $(\phi_{k(s)})$ increases with decreases in concentrations of solute indicating decrease in solute-solvent interactions and increase in electrostrictive solvation of ions. The positive values of ϕ_v at all compositions and percentage of dmso are showing that the interactions are insensitive to solvent. It is seen that intermolecular free length (L_f) increases with increase in percentage of dmso indicating weak interaction between ion and solvent molecules. This also implies increase in number of free ions showing ionic dissociation but weak ion-ion interactions. The specific acoustic impedance (Z_s) values decreases with increase in percentage of dioxane. It also supports weak ion-solvent interaction and electrostictive solvation of ion, also the acoustic impedance increases with increase in concentration of solute.

The R_A values decreases with decrease in concentration of dmso.

The values of ϕ_v , L_f decreases with increase in concentrations of solute. This may be due to decreasing intermolecular interactions with addition of solute forming aggregate of solvent.

4. Acknowledgement

The authors are very much thankful to the Principal, R.D.I.K. & N.K.D. Mahavidyalaya, Badnera (Rly), Amravati for providing necessary facilities.

5. References

- R. P. Verma and Surendra Kumar: Indian J. Pure Appl. Phys., 2000,28,96; A. Ali, N. Tiwari, A.K. Nain and V. Chakravort:, Indian J. Phys., 2000,78B, 351; V.K. Syal, S. Chauhan and Uma Kumari,: Indian J. Pure Appl. Phys., 2005, 43, 844; A.G. Aswar, P.G. Rohankar and V.R. Choudhar:, Indian J. Chem., Sec.A, 2001,40,860.
- Deepali P. Gulawade, M.L. Narwade and K.N. Wadodkar,: Indian J. Chem. Sect. A, 2004,43,2102; Deepali P. Gulwade, M.L. Narwade and S.A. Wadal,: Indian J. Chem. Sect. A, 2005,44,1183; S.D.Thakur, D.T. Mahajan and M.L. Narwade,: Indian J. Chem. Soc., 2007,84,480-482.
- iii. V. Rajendran,: J.Pure Appl. Ultrason., 1995,17,65.
- iv. J. D. Pandey, A. Shukla, R.D. Rai and K.J. Mishra,: J. Chem.Engg. Data, 1989,34,29; S.D. Thakur, D.T. Mahajan and M.L. Narwade,: Indian J. Chem.Soc., 2007,84,480-482.