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1. Introduction 
Kronig-Penney(KP) model has then been used for the calculations of surface electronic states by several authors (Statz, 1950; Tamm, 
1932; Schockley, 1939; Davison  and Levine, 1970; Thapa, 1993). Schaich and Ashcroft (1971) have calculated numerically the photo 
yield by using the modified form of the K-P model. Steslicka(1974)  had done detailed calculations of the surface states using the 
Kronig-Penney model both for the semi-infinite and infinite crystals. Eldib et al.(1987) has also applied the K-P model to one 
dimensional crystal.  They calculated only the electronic energy bands for mono and poly-atomic crystals and compared the data with 
the one computed using Linear combination of atomic orbitals (LCAO) method. Thapa and Kar  (1988, 1995) have also developed i  
by using Kronig-Penny model, and used it for photo-emission calculations. 
It has been seen that most of the authors (Das et al., 1991; Thapa et al.,1994; Pachuau et al.,1999; Thapa and Kar, 1995) have not 
taken into consideration the effect of relativity while applying the Kronig-Penney (KP) model to the band structure studies in metals 
like W, Si, Al, Pd, etc. In their studies, the relativistic effect on the motion of the electron in the potential well was not taken into 
consideration while deriving the initial state wave function  i  of the electron. A detailed energy band calculations using relativistic 
Kronig-Penney(RKP) have been done by Davison and Steslicka (DS) (1969) by solving the Dirac equation for bulk spinors for which 
the surface state calculations were also given. In this paper, we are discussing a simple relativistic approach to photo-emission study by 
using the wave function as deduced by DS.  
In this paper, we will discuss the crystal potential of the solid which is represented by the Kronig-Penney potential and Dirac equation 
will be solved to obtain the initial wave functions. We have considered the variations of the dielectric functions for the calculations of 
the photon fields, but adopted the wave functions for the initial state of the electrons as developed by Davison and Steslicka (DS). We 
have introduced the surface of width‘d’ into the potential model and used the wave functions for the evaluation of the matrix elements 
for photocurrent calculations. 
 
2. Formalism  
In three-dimensional Dirac theory, the particle is found to have intrinsic spin, which is fundamentally connected to the orbital angular 
momentum of the particle. In one-dimension, there is no analogue to orbital angular momentum; hence, there need be no intrinsic spin. In 
the following, we will deal only with the one-dimensional Dirac equation neglecting the spin-orbit interaction term, for simplicity. 
For a linear crystal with a clean surface, the potential field is assumed to be of the form shown in figure 1. The periodicity of the lattice 
is n(a+b), n being integer and (a+b) the lattice constant. The potential inside the crystal is represented by a periodic array of rectangular 
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wells of depth V3, which is subsequently taken to infinity, in such away that  
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 , where b is the width of the potential 

barrier and 0a is a positive arbitrary constant. The crystal surface potential is 1 0V  where 0 is the kinetic energy related to the 

energy (E) of the electron by the relation 2
0 0E m c  , mo being the rest mass of the electron. In the K-region of constant potential 

kV , the two component form of the one-dimensional time-independent Dirac equation can be written as, 
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c is the velocity of light.  
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Figure 1:  Schematic representation of a semi-infinite one-dimensional crystal potential field with a surface   potential of 1 0V   

(modified form of Davison and Stelicska, 1969). 
 
The plane wave solution of Eq. (2) for bulk and vacuum regions can be written as: 
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where   1 1il   > 0 and  is real. The constants in Eq. (4) are defined as  
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 µ is the wave number and is given by   i
a

n
  where  is real and   > 0. 

To compute the photon field, we have used the simple model of Bagchi and Kar (1978). With simple modification the photon field 
used in our calculation can be written as  
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where A1 is a constant depending on the dielectric function )( , photon energy ω and angle of incidence i. 
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The final state wave function f  is the scattering state (Bagchi and Kar, 1978) of the step potential defined by 0( ) ( )V x V x   , 

where ( )x is unit function which is encountered by the electron, and is given by (in atomic units) 
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The factor  
xe 

  is included on the bulk and surface side to take into account the inelastic scattering of the electrons.   
Using the final state wave function f  as the scattering state of the step potential at x = 0 and photon field vector of Eq. (6), the 
photocurrent density is calculated by using the Fermi golden rule formula (Penn, 1972) as 
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Here the perturbation IH  is given by  
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where p is a one-electron momentum operator and A is the vector potential. A is assumed to be a constant in the bulk and vacuum 
regions, but in the surface region, it is a function of x being the solution of Maxwell's equation for dielectric function є(x).  
The matrix element /

f iH 
 
involved in Eq. (9) can be  written as  the following for calculating the photocurrent: 
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Since the integrals in the matrix element cannot be solved analytically, FORTRAN programs are developed to evaluate for computing 
photocurrent as a function of photon energy. 
Photocurrent was calculated as a function of photon energy (ћω) by evaluating the integrals in Eq. (10). The formalism was then 
applied to the case of magnetic solids like Cr, Fe, Ni and W. For these metals, we have used the experimentally determined dielectric 
functions ( )   (Lide, 2004; Palik, 1991) and our generated data (using WIEN2k code developed by Blaha et al., 2008). Since our 
calculation is purely a model type, we used the same value of the following data (in atomic units):  
 Fermi energy ( FE ) = 0.3768,  Potential strength (Vo) = 0.5514,  

 Work function ( ) = 0.1746,  Potential width (a) = 6 oa  ( oa = Bohr radius) 
 Velocity of light(c) = 137,   Surface width (d) = 10 
The relativistic parameters used in the calculations are given by : 
 1 0.59093i  ,   2 0.868106  ,   1 0.590930l    

 1
0.000753i   ,  2 0.002388  ,  46x10                

The values of RKP parameters like 1 21 2
,  ,   and ,      were calculated for band index number n=10. These values were substituted 

into the matrix element I for the evaluation of photocurrent.  
 
3. Results and Discussion 
We discuss here the results of photocurrent in the case of magnetic solids using the experimentally measured dielectric constants and 
generated data for the calculation of photocurrent against the incident photon energy (ħω). The angle of incidence was 045i  for  p-
polarised light under consideration in all the cases.  
 
3.1. Molybdenum and Tungsten 
Photocurrent was calculated for these metals using surface widths a = 10 a.u. for the same values of surface state energy (10.24 eV), 
same potential barrier height (14.99 eV) and 045i  . Figure 2 shows the plot of photocurrent as a function of photon energy (ħω) in 
the case of Mo, using experimental data (Lide, 2004) and calculated data of dielectric constants. In the case of experimental data 
(figure 2a), we find that a maxima in the value of photocurrent occurred at ħω = 12 eV. With further increase of the photon energy, the 
photocurrent decreased to a minimum value at ħω  = 20 eV and then showed another peak of larger amplitude at ħω = 27 eV.  
Figure 2(b) shows the plot of variation of photocurrent as a function of photon energy in the case of Mo using Generated data. Here we 
have almost the same nature as in the case of experimental data, having a small peak at ħω = 12.1eV and decreased to minimum at 
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photon energy ħω = 20.5 eV. A second peak is also seen ħω = 27.6 eV which is having minimum at 34 eV. In both the cases, we have 
peaks below plasmon energy and above which is larger in height. Plasmon energy of Mo is 25.2 eV (Egerton, 2011). The occurrence 
of peaks for ħω < ħωp 

in the photoemission (low frequency regime) is basically a phenomenon occurring due to the spatial variation of 
the photon field vector, which has already been established experimentally by Levinson et al. (1979) and Weng et al. (1978). 
Figure 3 shows the plot of photocurrent as a function of photon energy (ħω) in the case of W using experimental data (Lide, 2004) and 
generated data of dielectric constants. In the case of experimental data (figure 3a), we find that a maxima in the value of photocurrent 
occurred at ħω = 13.2 eV. With further increase in the photon energy, the photocurrent decreased to a minimum value at ħω = 20.8 eV 
and then showed another peak of larger amplitude at  ħω = 28 eV. 
Figure 3(b) shows the plot of variation of photocurrent as a function of photon energy in the case of W using generated data. Here we 
have almost the same nature as in the case of experimental data, having small peak at ħω = 13.5 eV and decreased to minimum at 21.6 
eV photon energy. A second peak is also seen ħω = 27.6 eV which is having minimum at around 38 eV, the magnitude of second peak 
is almost four times the first. In both the cases, we have peaks below plasmon energy and above which is larger in height. Plasmon 
energy of W is 25.2 eV (Oleshko et al., 2002). The occurrence of peaks for ħω < ħωp in the photoemission(low frequency regime) is 
basically a phenomenon occurring due to the spatial variation of the photon field vector, which has already been established 
experimentally by Levinson et al. (1979) and Weng et al. (1978). 
We find that both metals Mo and W have shown at least the qualitative features with the behavior of photocurrent as indicated also by 
other metals like Pd (Thapa, 1993), W (Thapa and Kar, 1994), etc. in which the Kronig-Penney potential model was used. It is obvious 
that the variation of the vector potential which mainly monitors the  matrix element, thereby bringing in the changes in photocurrent. 
This fact had also been discussed by Weng et al. (1978) that the causes in the occurrence of peak in photoemission intensity for Mo is 
due to excitation of electrons by Az  component of the vector potential perpendicular to surface plane. He further pointed out that the 
initial states with 1  symmetry can only be photo excited by Az  component of the incident photon field.   
 

 
Figure 2: Plot of photocurrent against the photon energy ħω for Mo, using relativistic KP model.  

(a) Experimental data and (b) Generated data 
 

 
Figure 3: Plot of photocurrent against the photon energy ħω for W using relativistic KP model.  

(a) Experimental data and (b) Generated data 
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3.2. Iron and Nickel 
Photocurrent was calculated for these metals for the values of the surface widths a = 10 a.u. for the same values of surface state energy 
(10.24 eV), potential barrier height (14.99 eV) and 045i  . Figure 4 shows the plot of photocurrent as a function of photon energy 
(ħω) in the case of Fe using experimental data (Lide, 2004) and generated data of dielectric constants. In the case of experimental data 
(figure 4a), we find that a maxima in the value of photocurrent occurred at ħω = 11 eV. With further increase of the photon energy, the 
photocurrent decreased to a minimum value at ħω = 16 eV and then increase to a maximum peak of larger amplitude at  ħω = 24.5 eV.  
Figure 4(b) shows the plot of variation of photocurrent as a function of photon energy in the case of Fe using calculate data. Here we 
have almost the same nature as in the case of experimental data, having small peak at ħω = 1.6 eV and decreased to minimum at 16 eV 
photon energy. A second peak is also seen ħω = 19.6 eV which is having minimum at 25.4 eV which is closed to the plasmon energy  
25.2 eV (Oleshko et al., 2002). Third peak having a magnitude much lager than the first two peak is observed at 32.5 eV. 
Nickel is an interesting transition metal to study with spin- and angle-resolved photoemission because the electronic structure part of 
the calculation causes the calculate results to differ drastically from the experimental ones (Himpsel et al., 1979).  
Figure 5 shows the plot of photocurrent as a function of photon energy (ħω) in the case of Ni using experimental data (Lide, 2004) and 
generated data of dielectric constants. In the case of experimental data (figure 5a), we find that a maxima in the value of photocurrent 
occurred at photon energy ħω = 12 eV. With further increase in the photon energy, the photocurrent decreased to 16 eV and then it 
increases again showing peak of larger amplitude at  around ħω = 23 eV.  
 

 
Figure 4: Plot of photocurrent against the photon energy ħω for Fe using the relativistic KP model.  

(a) Experimental data and (b) Generated data 
 
Figure 5(b) shows the plot of variation of photocurrent as a function of photon energy in the case of Ni using calculate data. Here the 
nature of the graph is same below photon energy 25 eV. The first minimum is observer at 17.5 eV, whereas the second minimum is at 
27.5 eV. A third peak having a larger amplitude with compare to the first two is observed around 34 eV, but showed no clear 
minimum. In the case of experimental data and generated data peaks are observed around plasmon energy ħω = 25 eV (Moneta and 
Pawlowski, 2005; Oleshko et al., 2002). 
 

 
Figure 5: Plot of photocurrent against the photon energy ħω for Ni using the relativistic KP model.  

(a) Experimental data and (b) Generated data 
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4. Conclusion 
Though the model used is simple, this type of calculations gives first hand information with regard to photoemission. However, there 
are shortcomings in the formalism developed. For example, we have used the same wavefunction both for the surface and the bulk 
region of the solids. Also, it is the spatial variation of the photon fields which is monitoring the changed in photocurrent. For more 
accurate results, it would be appropriated if one can extend such type of calculation by incorporating relativistic wavefunctions as well 
as for the vector potential. 
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