THE INTERNATIONAL JOURNAL OF SCIENCE & TECHNOLEDGE

The Radon-Nikodym Theorem and its Extension to Signed Measures

Parvinder Singh

Associate Professor, P.G. Department of Mathematics, S.G.G.S. Khalsa College, Mahilpur, Hoshiarpur, Punjab, India

Abstract:

Given two measures v and μ on a measurable space (X, \mathcal{A}) , a natural question that comes out is that if one can represent v in terms of μ via some linear operator. The Radon-Nikodym Theorem states that it is possible, under some hypothesis, to find a representation via the integral operator, that, given a measurable space (X, \mathcal{A}) , if $v \ a \ \sigma$ finite measure which is absolutely continuous with respect to a σ finite measure μ on(X), then there is a non-negative measurable function f on X such that $v(E) = \int_{F} f \ d\mu$ for any measurable set E.

Keywords: Signed measure, Measurable space, Positive set, Negative set, Hahn-Decomposition, Orthogonal measures.

Definition

Let v_1 and v_2 be two non-negative measures such that at least one of them is finite, $v_1 \perp v_2$ and $v = v_1 - v_2$ then the pair (v_1, v_2) is called Jorden-Decomposition for v. The measure v_1 is called the positive variation and v_2 is called negative variation of v and are denoted by v^+ and v^- respectively.

Remark: $v = v^+ - v^-$

Definition: Let v be any signed measure then we define $|v| = v^+ + v^-$ the measure |v| is called the total variation of v.

Note: It should be noted that |v|(E) and |v(E)| are not the same quantities. More precisely $|v|(E) = v^+(E) + v^-(E)$ and $|v(E)| = |v^+(E) - v^-(E)|$

Definition

Let v_1 and v_2 be two signed measures and suppose E be a null set for v_1 , whenever it is a null set for v_2 then we say that v_1 is absolutely continuous with respect to v_2 and we write $v_1 \ll v_2$.

Example: Let N be any measurable set then the following statements are equivalent.

- 1. N is a null set for v.
- 2. N is a null set for v^+ and v^- .
- 3. N is a null set for |v|.

Sol: Let N be a null set for v, Let (P, X-P) be a Hahn-Decomposition for v. Let $E \subset N$ be measurable, then $v^+(E) = v(E \cap P) = 0$ [As $E \cap P \subset N$] \Rightarrow N is a null set for v^+ . *Similaraly* N is a null set for v^- . Hence (1) \Rightarrow (2) **Now suppose** that N is a null set for for v^+ and v^- both. Let Let $E \subset N$ be measurable, then $v^+(E) = 0$ and $v^-(E) = 0$ $\Rightarrow v^+(E) + v^-(E) = 0$ [N is a null set for $v^+ \& v^-$] $\Rightarrow |v|(E) = 0 \Rightarrow N$ is a null set for |v|. Hence (2) \Rightarrow (3). **Further** let N is a null set for |v|. Let $E \subset N$ be measurable, then |v|(E) = 0 $\Rightarrow v^+(E) + v^-(E) = 0 \Rightarrow v^+(E) = 0$ and $v^-(E) = 0 \Rightarrow v^+(E) - v^-(E) = 0$ $\Rightarrow v(E) = 0 \Rightarrow N \text{ is a null set for } v.$ Shows that (3) \Rightarrow (1). Hence proved.

Example: If $v_1 \perp v_2$ and $v_1 \ll v_2$ then $v_1 \equiv 0$. As $v_1 \perp v_2 \Rightarrow$ there exist a measurable set S such that v_1 is supported on S and v_2 is supported on X-S. Let $E \subset X$ be measurable then $E = (E \cap S) \cup (E \cap X - S) \Rightarrow v_1(E)$ $= v_1(E \cap S) + v_1(E \cap X - S) = v_1(E \cap S)$ [As v_1 is supported on S] Also $v_2(E \cap S) = 0$ [As v_2 is supported on X - S] $\Rightarrow v_1(E \cap S) = 0$ [As $v_1 \ll v_2$] $\Rightarrow v_1(E) = 0$ $\forall E \subset X$ be measurable Hence $v_1 = 0$

Lemma (1) Suppose for each *member* α of a set D of real numbers, there is a given set B_{α} . Let for $x \in X$ the set $Dx = \{ \alpha \in D / x \in B_{\alpha} \}$

Define f(x) = Inf Dx. Then for any real number t {f < t} = $\bigcup_{\alpha < t} B_{\alpha}$, { $f \le t$ } = $\bigcap_{\beta > t} \{\bigcup_{\alpha < \beta} B_{\alpha}\}$

Proof: To show $\{f < t\} = \bigcup_{\alpha < t} B_{\alpha}$, Let $x \in \{f < t\}$, then $f(x) < t \Rightarrow \inf Dx < t \Rightarrow$ there exist $\beta \in Dx$ s.t. $\beta < t \Rightarrow x \in B_{\beta}$ and $\beta <$

 $x \in \bigcup B_{\alpha}$ $\Rightarrow \{ \mathbf{f} < t \} \subset \bigcup_{\alpha < t} B_{\alpha}$(1) Now let $\Rightarrow y \in \bigcup_{\alpha < t} B_{\alpha}$, this means $y \in \bigcup_{\gamma < t} B_{\gamma}$ and $\gamma < t \Rightarrow \gamma \in Dy, \gamma < t$ $\Rightarrow \inf Dy \leq \gamma \text{ and } \gamma < t$ $\Rightarrow f(y) < \gamma \text{ and } \gamma < t \Rightarrow f(y) < t \Rightarrow y \in \{f < t\}$ $\Rightarrow \bigcup_{\alpha < t} B_{\alpha} \subset \{ \mathbf{f} < \mathbf{t} \}$(2) Shows that $\{f < t\} = \bigcup_{\alpha < t} B_{\alpha}$. Now to show $\{f \le t\} = \bigcap_{\beta > t} \{\bigcup_{\alpha < \beta} B_{\alpha}\}$ Define $C_{\beta} = \bigcup_{\alpha < \beta} D_{\alpha}$ Thus to show $\{f \le t\} = \bigcap_{\beta > t} \{C_{\beta}\}$ Let any $z \in \{f \le t\}$ and $\beta > t$. Then $f(z) \le t$ and $t < \beta \Rightarrow Inf Dz < \beta$ \Rightarrow There exists $\alpha \in Dz$ s. t. $\alpha < \beta$ $\Rightarrow z\epsilon D\alpha \text{ and } \alpha < \beta \Rightarrow z\epsilon C\beta \ \forall \beta > t \Rightarrow z\epsilon \bigcap_{\beta > t} C\beta$ $\Rightarrow \{ f \le t \} \subset \bigcap_{\beta > t} C\beta$ Now take any $w \in \bigcap_{\beta > t} C\beta \Rightarrow w \in C\beta$ and $\beta > t \Rightarrow \beta \in Dw$ and $\beta > t$ $\Rightarrow \text{Inf } Dw \leq \beta, \beta > t$ $\Rightarrow f(w) \le \beta, \beta > t \Rightarrow f(w) \le t \Rightarrow w \in \{ f \ge t \} \Rightarrow \bigcap_{\beta > t} C\beta \subset \{ f \ge t \} \dots \dots \dots \dots (2)$ From (1) and (2) it shows that $\{f \le t\} = \bigcap_{\beta > t} \{\bigcup_{\alpha \le \beta} B_{\alpha}\}.$

Corollary (1): If $B_{\alpha} < B_{\beta}$ whenever $\alpha < \beta$ then $f \le \alpha$ on B_{α} and $f \ge \alpha$ on X- B_{α} . Let $x \in B_{\alpha}$ then $\alpha \in D_{x} \Rightarrow infD_{x} \le \alpha \Rightarrow f(x) \le \alpha$, shows that $f(x) \le \alpha$ on B_{α} Let $f(y) < \alpha \Rightarrow Inf D_{y} < \alpha \Rightarrow$ there exist $\beta \in D_{y}$ s. t. $\beta < \alpha$ $\Rightarrow y \in B_{\beta} \& \beta < \alpha \Rightarrow y \in B_{\beta}$ and then $B_{\beta} \subset B_{\alpha} \Rightarrow y \in B_{\alpha}$ Hence $y \in X - B_{\alpha}$ then $f(y) \ge \alpha$ Shows that $f \ge \alpha$ on $X - B_{\alpha}$.

Corollary (2): If D is a subset of non negative real numbers then f is non negative.

Corollary (3): If D is countable and B_{α} is a measurable set for each α then f is a measurable function.

Note: Let D be any countable sub set of non negative real numbers. Suppose for each $\alpha \in D$ there is given a measurable set B_{α} s.t. B_{α} is contained in B_{β} whenever $\alpha < \beta$ then there exist a non negative measurable function f on X s. t. $f \ge \alpha$ on B_{α} and $f \le \alpha$ on $X - B_{\alpha}$.

Lemma (2): Suppose D is a countable set of non negative real numbers and for each α in D there is given a measurable set B_{α} of X such that μ (B_{α} - B_{β}) = 0 for $\alpha < \beta$ then there exist a non negative measurable function f on X such that $f \leq \alpha$ a. e. on B_{α} and $f \geq \alpha$ a. e. on X- B_{α} .

Proof: Define $C = \bigcup_{\alpha < \beta} (B_{\alpha} - B_{\beta})$, then C is a countable union of null sets hence C is a null set. Define $B_{\alpha}^* = B_{\alpha} - C$ and $B_{\beta}^* = B_{\beta} - C$ Let $\alpha < \beta$ then $B_{\alpha}^* - B_{\beta}^* = (B_{\alpha} - B_{\beta}) - C = \phi$ [From the definition of C] $\Rightarrow B_{\alpha}^* \subset B_{\beta}^*$. Hence by lemma (1) we can find a non negative measurable function f On X s. t. $f \le \alpha$ on B_{α}^* and $f \ge \alpha$ on X- B_{α}^* As B_{α} and B_{α}^* differs only by null sets it follows that $f \le \alpha$ a. e. on B_{α} and $f \ge \alpha$ a. e. on X- B_{α} .

Preposition: Let v be any signed measure on X and N be any measurable set, then the following statements are equivalent.

- 1. N is a null set for v.
- 2. N is a null set for |v|.
- 3. N is a null set for v^+ and v^- .

Definition

Let μ and v be two signed measures. Suppose v(E) = 0 whenever $\mu(E) = 0$ then we say that v is absolutely continuous $w.r.t.\mu$ and is denoted by $v \ll \mu$.

Remark: $v \ll \mu$ iff $|v| \ll |\mu|$.

Suppose $v \ll \mu$. Let $|\mu|(E) = 0$, this means E is a null set for $|\mu| \Rightarrow E$ is a null set for μ hence it is a null set for $v \Rightarrow E$ is a null set for $|\nu| \Rightarrow |\nu| \ll |\mu|$.

Conversely assume that $|v| \ll |\mu|$. Let F be any null set for μ then F is null set for $|\mu|$

 \Rightarrow F is a null set for |v| as $|v| \ll |\mu| \Rightarrow$ F is a null set for v. Hence $v \ll \mu$.

Radon Nikodym Theorem: Let (X, \mathcal{A}, μ) be a σ -finite measure space. Let ν be any measure on \mathcal{A} such that $\nu \ll \mu$ then there exist a non negative measurable function f on X such that $\nu(E) = \int_{E} f d\mu$ for every measurable set E. More over f is unique a.e. $[\mu]$.

Proof: First suppose that μ is finite.

Let D be the set of non negative rational numbers and for each $\alpha \in D$ define $v_{\alpha} = v - \alpha \mu$. Then v_{α} is a signed measure. Let (A_{α}, B_{α}) be Hahn-Decomposition for v_{α} where we have $A_0 = A$ and $B_0 = \phi$ then $B_{\alpha} - B_{\beta} = B_{\alpha} \cap B_{\beta}^{c} = B_{\alpha} \cap A_{\beta} \Rightarrow v_{\alpha}(B_{\alpha} - B_{\beta}) \leq 0$ [As B_{α} is a negative set for v_{α}] and $v_{\beta}(B_{\alpha} - B_{\beta}) \geq 0$ [As A_{β} is a positive set for v_{β}] $\Rightarrow v_{\alpha}(B_{\alpha} - B_{\beta}) \le 0 \le v_{\beta}(B_{\alpha} - B_{\beta}) \Rightarrow (v - \alpha \mu) (B_{\alpha} - B_{\beta}) \le (v - \beta \mu) (B_{\alpha} - B_{\beta})$ $\Rightarrow v(B_{\alpha} - B_{\beta}) - \alpha \mu (B_{\alpha} - B_{\beta}) \leq v(B_{\alpha} - B_{\beta}) - \beta \mu (B_{\alpha} - B_{\beta})$ $\Rightarrow \beta \mu \left(B_{\alpha} - B_{\beta} \right) \leq \alpha \mu \left(B_{\alpha} - B_{\beta} \right) \Rightarrow \mu \left(B_{\alpha} - B_{\beta} \right) = 0 \,\forall \alpha < \beta$(1) Hence by lemma (2) there exist non negative measurable function f on X such that for any real number t $\{ f < t \} = \bigcup_{\alpha < t} B_{\alpha} , \{ f \le t \} = \bigcap_{\beta < t} \{ \bigcup_{\alpha < \beta} B_{\alpha} \} \Rightarrow f \le \alpha \text{ on } B_{\alpha} \text{ a. e. } [\mu] , f \ge \alpha \text{ on } X - B_{\alpha} \text{ a. e. } [\mu]$ Also B_{α} is a negative set for v_{β} for all $\beta \leq \alpha$ and A_{α} is a positive set for v_{β} for all $\beta \geq \alpha$(2) Define $A_{\infty} = \bigcap A_{\alpha}$, let $x \in A_{\infty}$, then $x \in A_{\alpha}$ for all $\alpha \Rightarrow f(x) \ge \alpha, \forall \alpha \Rightarrow f(x) = \infty$ Shows that $f = \infty$ on A_{∞}(3) Let E be any measurable sub set of A_{∞} then $E \subset A_{\alpha} \forall \alpha \Rightarrow v_{\alpha}(E) \ge 0 \forall \alpha$ $\Rightarrow (v - \alpha \mu)(E) \ge 0 \ \forall \alpha \Rightarrow v (E) \ge \alpha \mu(E) \ \forall \alpha$ $\Rightarrow v(E) = \infty$ whenever $\mu(E) \neq 0$(4) Let $\beta \in D$, $F = \{ f < \beta \}$ and S be any measurable sub set of F, we have $F = \bigcup_{\alpha < \beta} B_{\alpha}$ Since B_{α} is a negative set for v_{β} for every $\alpha < \beta$. F is a negative set for $v_{\beta} \Rightarrow v_{\beta}$ (S) $\leq 0 \Rightarrow (v - \beta \mu)$ (S) ≤ 0 $\Rightarrow v(S) \leq \beta \mu(S)$(5) In the same manner we can show that if T be any measurable sub set of { $f \ge \beta$ } then $v(T) \geq \beta \mu(T) \forall \beta \in D$ let *E* be any measurable set. Then Define $E_0 = E \cap A_{\infty}$ and suppose that $\mu(E_0) \ge 0$ then $\nu(E_0) = \infty$ [From (4)] Also $f = \infty$ on E_0 [From (3)] This gives $\int_E f d\mu \ge \int_{E_0} f d\mu = \int_{E_0} \infty d\mu = \infty \mu(E_0) = \infty$

 $\Rightarrow v (E) \ge v (E_0) \Rightarrow v (E) = \infty \text{ Therefore } v (E) = \int_E f d\mu$ Suppose now $\mu(E_0) = 0$ since $v \ll \mu$ we get $v (E_0) = 0$ Let R and N be any positive integers such that N be fixed for some time then define $E_k = \{x \in E \mid \frac{k-1}{N} \le f(x) \le \frac{k}{N}\}$ From (5) and (6) we get $\frac{k-1}{N} \mu(E_k) \le v(E_k) \le \frac{k}{N} \mu(E_k)$ (7)
It is easy to verify that $E = \bigcup_{k=0}^{\infty} E_k$ and the sets E_k are disjoint and measurable for $k=0, 1, 2, \dots$(8) $v (E) = \sum_{k=1}^{\infty} v(E_k)$ and $\mu(E) = \sum_{k=0}^{\infty} (\mu(E_k))$ (8) $because v (E_0) = 0 = (E_0)$, Further $\int_E f d\mu = \sum_{k=0}^{\infty} \int_{E_k} f d\mu \Rightarrow \int_E f d\mu = \sum_{k=1}^{\infty} \int_{E_k} f d\mu$ [As $\mu(E_0) = 0$](9)
On the set E_k we have $\frac{k-1}{N} \le f(x) \le \frac{k}{N}$, it gives $\int_{E_k} \frac{k-1}{N} d\mu \le \int_{E_k} f d\mu \le \int_{E_k} \frac{k}{N} d\mu \Rightarrow \frac{k-1}{N} (\mu(E_k) \le \int_{E_k} f d\mu \le \frac{k}{N} (\mu(E_k))$(10)
From (10) and (11) we get $-\frac{1}{N} (\mu(E_k) \le \int_{E_k} f d\mu - v(E_k) \le \frac{1}{N} \sum_{k=1}^{\infty} \mu(E_k)$ $\Rightarrow -\frac{1}{N} \mu(E) \le \int_E f d\mu - v(E) \le \frac{1}{N} \mu(E)$ from (8) and (9) taking limits as $n \to \infty$ we get $\int_E f d\mu = v(E)$

Further now suppose that μ is σ finite then there exist a disjoint sequence of measurable sets {Xn} such that $\mu(Xn) < \infty \forall n$ and X = $\bigcup_{n=1}^{\infty} X_n$.

Let v_n be the restriction of v to Xn and μ_n is a finite measure on X, v_n is a measure on Xn s.t. $v_n \ll \mu_n$ by what has been proved above there exist a non negative measurable function f_n on Xn such that $v_n(E) = \int_E f_n d\mu_n \forall$ measurable sub sets E of Xn.

Define f on X by $f = f_n$ on Xn. Since Xn are disjoint it is clear that f is well defined on X. For any real number α we have $\{f \le \alpha\} = \{f \le \alpha\} \cap X = \{f \le \alpha\} \cap \{\bigcup_{n=1}^{\infty} X_n\}$

 $= \bigcup_{n=1}^{\infty} \{ f \le \alpha \} \cap Xn \} = \bigcup_{n=1}^{\infty} \{ f_n \le \alpha \} \text{ [Because } f = f_n \text{ on } Xn \text{]}$ $\Rightarrow \{ f \le \alpha \} \text{ is measurable} \Rightarrow f \text{ is measurable.}$

Let E be any measurable sub set of X then $E = E \cap X = E \cap \{\bigcup_{n=1}^{\infty} X_n\} = \bigcup(E \cap Xn)$ $\Rightarrow v(E) = \sum_{n=1}^{\infty} v(E \cap Xn) = \sum_{n=1}^{\infty} v_n(E \cap Xn) = \sum_{n=1}^{\infty} \int_{E \cap X_n} f_n d^{\mu} n = \sum_{n=1}^{\infty} \int_{E \cap X_n} f d^{\mu} n = \int_{\bigcup(E \cap X_n)} f d^{\mu} n = \int_{E} f d^{\mu} n d^{\mu} n d^{\mu} n = \sum_{n=1}^{\infty} \int_{E \cap X_n} f d^{\mu} n d^{\mu} n = \int_{U} \int_{E \cap X_n} f d^{\mu} n d^{\mu} n d^{\mu} n d^{\mu} n = \int_{U} \int_{E \cap X_n} f d^{\mu} n d$

Uniqueness: Suppose that f & g be two non negative measurable functions on X such that $v(E) = \int_E f \, d\mu$ and $v(E) = \int_E g \, d\mu$ for every measurable set E. Which gives that $\int_E f \, d\mu = \int_E g \, d\mu$ on $E \Rightarrow \int_E f \, d\mu - \int_E g \, d\mu = 0$ $0 \Rightarrow \int_E (f - g) \, d\mu = 0 \Rightarrow f - g = 0$ $\Rightarrow f = g$ a. e. $[\mu]$.

Radon Nikodym Theorem for signed measures: Let (X, \mathcal{A}, μ) be a σ -finite measure space. Let v be any finite signed measure on \mathcal{A} such that $v \ll \mu$ then there exist an integrable function h on X such that $v(E) = \int_E h d\mu$ for every measurable set E of X. Moreover h is unique a.e.(almost everywhere) $[\mu]$.

Proof: Consider v^+ and v^- these both are finite measures and $v^+ \ll \mu$ and $v^- \ll \mu$. Hence there exist integrable function f and g on X such that v^+ (E) = $\int_E f \, d\mu$ and v^- (E) = $\int_E f \, d\mu$ for every measurable set E of X. Take h = f - g then h is integrable and for measurable set E $v(E) = (v^+ - v^-)$ (E) = $v^+(E) - v^-$ (E) = $\int_E f \, d\mu - \int_E g \, d\mu = \int_E (f - g) \, d\mu = \int_E h \, d\mu$ [As f & g are integrable]

Uniqueness: Suppose h and h^* be two integerable functions on X such that

 $v(E) = \int_E h \, d\mu$ and $v(E) = \int_E h^* \, d\mu$ for every measurable set E of X.

Then we have $\int_E h \, d\mu = \int_E h^* \, d\mu$ on E $\Rightarrow \int_E (h - h^*) \, d\mu = 0$ on E $\Rightarrow h - h^* = 0$ a. e. $[\mu] \Rightarrow h = h^*$ a. e. $[\mu]$. Proved.

Remark: If the condition of σ - finiteness is dropped Radon Nikodym Theorem may not hold. Consider the following example. Take X = [0, 1] and \mathcal{A} be the σ -algebra of Lebesuge measurable sets contained in X. Let μ be the counting measure and ϑ be the restriction of Lebesgue measure on X.

If $\mu(E) = 0$ then $E = \phi \Rightarrow \vartheta(E) = 0$. Which shows that $\ll \mu$.

Assume that Radon Nikodym Theorem holds.

Let f be non negative measurable function s. t. $v(E) = \int_E f d\mu \forall E$ measurable sub set of X.

Consider any $x \in X$ and let $E = \{x\}$ then $\vartheta(E) = 0 \Rightarrow \int_{E} f d\mu = 0 \Rightarrow \int_{\{x\}} f d\mu = 0 \Rightarrow f(x)\mu(x) = 0 \Rightarrow f(x) = 0 \forall x \in X$

We also have $v(X) = \int_X f d\mu \Rightarrow 1 = 0$ which is absurd, thus our assumption is wrong. Thus Radon Nikodym Theorem does not hold in this case.

References

- i. Halmos. P.R., Measure Theory (Springer, New York, 1974).
- ii. Qiang. G, Further discussion on the Hann decomposition theorem for signed fuzzy measure, Fuzzy Sets and Systems 70 (1995) 89-95.
- Kumar. A. & Rao. J.V. (2010) Jordan Decomposition and its Uniqueness of Signed Lattice Measure. Int. J. Contemp. Math. Sciences, Vol. 6, 2011, no. 9, 431 – 438.