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Abstract:

Given two measures v and u on a measurable space (X, <A ), a natural question that comes out is that if one can represent
vin terms of u via some linear operator. The Radon-Nikodym Theorem states that it is possible, under some hypothesis, to
find a representation via the integral operator, that, given a measurable space (X, A), if v a o finite measure which is
absolutely continuous with respect to a o finite measure u on(X), then there is a non-negative measurable function f on X
such that v (E) = fEf du for any measurable set E.
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Definition

Let v, and v, be two non-negative measures such that at least one of them is finite, v, L v, and v = v; —wv,then the pair (v, ,v,) is
called Jorden-Decomposition for v. The measure v, is called the positive variation and v, is called negative variation of v and are
denoted by v* and v~ respectively.

Remark: v=v*-v~
Definition: Let v be any signed measure then we define |v|= v*+ v~ the measure |v| is called the total variation of v.

Note: It should be noted that |v|(E)and |v(E)] are not the same quantities.
More precisely |v|(E) =v* (E) + v~ (E)
and [v(E)| = [v*(E) — v~ (E)|

Definition
Let v, and v, be two signed measures and suppose E be a null set for v,, whenever it is a null set for v, then we say that v, is
absolutely continuous with respect to v, and we write v; <« v,,.

Example: Let N be any measurable set then the following statements are equivalent.
1. Nisanull set for v.
2. Nisanull setfor v* and v~.
3. Nisanull set for |v].

Sol: Let N be a null set for v,
Let (P, X-P) be a Hahn-Decomposition for v. Let E ¢ N be measurable, then
v*(E)=v(ENP)=0 [ASENPcN]
= Nis anull set for v.
Similaraly N is a null set for v~. Hence (1) = (2)
Now suppose that N is a null set for for v* and v~ both.
Let Let E c N be measurable, then v*(E) = 0and v=(E) =0
= v'(E) + v (E)= 0 [ Nisanull setfor vt & v7]
= |v|(E) = 0 = Nisanull set for [v]. Hence (2) = (3).
Further let N is a null set for |v]. Let E c N be measurable, then |v|(E)
> vH(E)+v(E)=0= v*(E)=0andv=(E) =0= v*(E) — v (E)

0
0
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=>v(E) = 0 = Nisanull set for v.
Shows that (3) = (1). Hence proved.

Example: If v; L v,andv; < v,thenv, =0.
As v, 1 v, = there exist a measurable set S such that v, is supported on S and v, is supported on X-S.

Let Ec X be measurable then E=(EnS) U(ENX —S) = v,(E)
=vENS)+ vy ENX-95=v,(ENS) [ As v, is supported on S]
Also v,(ENS)=0 [ As v, issupported on X — S]

= v, (ENnS)=0 [Asv, K v,]
= v,(E)=0 Vv E c X be measurable
Hence v,=0

Lemma (1) Suppose for each member a of a set D of real numbers, there is a given set B,,. Let for x € X the set Dx={ a € D /
X € B,}
Define f(x)= Inf Dx. Then for any real number t

{r<tp= UB. {f=t=0{YUB}

Proof: To show {f <t} = UB,, Let x € {f < t}, then f(x) <t= InfDx <t = thereexist f € Dxst. f <t=>x€EBzandf <t =
a<t

x € UB,

a<t
>{f<t}c UtBa ..................... 1)

a<
Nowlet= y € UB,, thismeansy € UB,andy <t=y €Dy,y <t
a<t y<t

> InfDy<yandy <t

>fy)<yandy <t =f(y)<t= ye{f<t}

= UtB“ c{f<t} 2)
a<

Shows that {f <t} = UtBa.
a<
Nowtoshow{f<t}= N{ U B, }
B>t a<p
i = < =
Define Cg aL<JBDa Thustoshow {f <t} BQt{C‘B}

Letanyze{f<t}andpg >t.Thenf(z) <tandt<f = InfDz<p
= Thereexistsae Dz s.t.a< f
=> zeDa anda< B> zeCA VB>t > zeﬁﬂtCﬁ

>

=>{f<t} c Bﬂt cs 1)
>
Now take any W%QCﬁ => welCf andf >t = BeDw and § >t
>

> InfDw < B, B>t
=fwW) <p f>t=fw) St welf2th > N CF c{f2t} @)

From (1) and (2) it shows that{f<t}=N{ U B, }.
B>t “a<f

Corollary (1): If B, < Bz whenever a < thenf<aon B, and f>a on X-B,.
Let x€B,thena € D, = infD, < a = f(x) < a, shows thatf(x) < a on B,
Letfly) <a=Inf D, <a = thereexist €D, s.t. f < «

= YEBy; &B< a=> y€EBgandthenB; c B, = y € B,

Hence y € X — B, then f(y) = «a

Shows that f> aon X —B,.

Corollary (2): If D is a subset of non negative real numbers then f is non negative.
Corollary (3): If D is countable and B, is a measurable set for each « then f is a measurable function.

Note: Let D be any countable sub set of non negative real numbers. Suppose for each @ € D there is given a measurable set B, s.t. B,
is contained in B; whenever a < 8 then there exist a non negative measurable function fon Xs.t. f>a on B, andf< aon X —B,.
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Lemma (2): Suppose D is a countable set of non negative real numbers and for each « in D there is given a measurable set B, of X
such that u (B,- Bg) = 0 for a < f then there exist a non negative measurable function fon X'such thatf< aa.e.on B, andf= «
a.e.on X- B,.

Proof: Define C = UB(B“ - Bg), then C is a countable union of null sets hence C is anull set. Define B; =B, —Cand B; =Bz —C
a<

Leta < B then By — Bg= (B, — Bg) —C=¢ [From the definition of C]
= B; © Bp. Hence by lemma (1) we can find a non negative measurable function f

OnXs.t.f< a onB;andf> aon X-B;
As B, and B, differs only by null sets it follows that f < @ a.e.on B, andf> «a a.e.on X- B,.

Preposition: Let v be any signed measure on X and N be any measurable set, then the following statements are equivalent.
1. Nisanull set for v.
2. Nisanull set for | v].
3. Nisanull setfor vt andv.

Definition
Let u© and v be two signed measures. Suppose v(E) = Owhenever u(E)=0 then we say that
v is absolutely continuous w.r.t.yand is denoted by v < u.

Remark: v « piff [v] <] ul.

Suppose v < pu . Let | u|(E) = 0, this means E is a null set for| u|. = E is a null set for u hence it is a null set for v = E is a null set for
vl = [v| < ul.

Conversely assume that |v| «| p|. Let F be any null set for p then F is null set for |u|

= Fisanull set for |v| as |v| «| u| = Fisanull set for v. Hence v < p.

Radon Nikodym Theorem: Let (X,A, 1) be a ¢ —finite measure space. Let v be any measure on A such that v « u then there exist
a non negative measurable function f on X such that v(E) = fEf du for every measurable set E. More over f is unique a.e. [u].

Proof: First suppose that u is finite.

Let D be the set of non negative rational numbers and for each a € D define v, = v- ap.
Then v, is a signed measure.

Let (A,, B,) be Hahn-Decomposition for v, where we have A, = A and B, = ¢ then

B, — By =B, NB§ =B, N Ay = v,(B, — By) <0 [As B, is a negative set for v,]
and vg(B, — Bg) =0 [As Ag is a positive set for v;]

= v,(B, — BB) <0< vB(Ba - BB) = (v-ap) (B, — BB) < (- (B, - BB)

= v(B, — Bg)-au (B, — Bg) <v(B, — Bg) — pu (B, — Bp)

= Bu(By— Bg) < au(By— Bg) = (By— Bp)=0Va<f .o )
Hence by lemma (2) there exist non negative measurable function f on X such that for any real number t
{f<t}=a9t8“ ,{fst}zﬁgt{agﬁBa }=f< aonBya.e [u],f= aon X-B,a. e [u]

Also By, is a negative set for v for all f < aand

Ay isapositive set for vg forall g =z 2

Define A,=NA, ,letx€ A, ,thenx e A, foralla = f(x) = a,Va = f(x) = «
a

Showsthatf=c0cOn4d, 3)

Let E be any measurable sub set of 4., thenEc 4, Va = v,(E) = 0Va

> @W-au)(E) =0Va=v (E) = au(E) Va

> v (E)=cowhenever u(E) #0 4)

Let g €D, F={f <} and S be any measurable sub set of F, we have F = L<JBBa
a

Since B, is a negative set for v, for every a < .
Fis anegative set for vy = v5 (S)<0= (v —pu)(S) <0

v )< pulS) (5)
In the same manner we can show that if T be any measurable sub set of { f > § } then
v(M=puMVYB eD (6)

let E be any measurable set, Then Define E, = E NA, and suppose that u(E,) = 0 then v (E,) = oo [From (4)] Also f = 0 on E,
[From (3)]
This gives [, f du> [, fdu= [, codu=oco u(Eg) = oo
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= v (E) 2 v (Ey) = v (E) = oo Therefore v (E) = [, f du
Suppose now u(E,) =0 since v « p we get v (E,) =0
Let R and N be any positive integers such that N be fixed for some time then define

Ec={x€E /=T < 1}

From (5)and (6) we get % u(Ey) < v(E) < %u(Ek) ................... 7
It is easy to verify that

E= k(;joE" and the sets E,, are disjoint and measurable for k=0, 1, 2, ............

Therefore v (E) = X5, v(Ey) and u(E) = Y. " (u(Ey))

v(E) =X, vEDanduE) = X7 (UED) i (8)
because v (Eo) = 0 = (E,) , Further [, f du =Z Jo fdu= [ fdu =Z Ji fdu
k=0 "k k=1""k
YA EL ) )
On the set E;, we have % <f(x) < % , it gives
f %dustkfdusf “du = (u(E) < fEkfdusg(y(Ek) ........... (10)
From (7T)we have '%(ﬂ(Ek) < —v(E) <- %(y(Ek) ..................... (11)

From (10) and (11) we get '%(ﬂ(Ek) < fEkfdu -v(E,) < %(M(Ek)

(B Y S fdSE v < 3 2, )
= % u(E) < fEfdu -v(E) < % u(E) from (8) and (9) taking limits as n — oo we get
J; fdu=v(E)

Further now suppose that u is o finite then there exist a disjoint sequence of measurable sets {Xn} such that u(Xn) <co v nand X =
LIJXn.

Let v,, be the restriction of v to Xn and p,, is a finite measure on X, v, is a measure on Xn s.t. v, < p,, by what has been proved
above there exist a non negative measurable function f,, on Xn such that v, (E) = fE frn du,, ¥ measurable sub sets E of Xn.

Define f on X by f = f,, on Xn. Since Xn are disjoint it is clear that f is well defined on X. For any real number a we have {f < a}
={f < a}nX={f < a}ln{UX,}
1

= L_J1 {f < a}nXn}= L_Jl{ fn < a} [Because f = f, on Xn]

= {f < a}ismeasurable = f is measurable.

Let E be any measurable sub set of X thenE=En X =E n {U X,,} = U(E N Xn)
1 n=1

s v(E) =X, v(EN Xn)=X*, v,(En Xn) =Z Jong fodEn =Z Jong fdu= fU(EnX Jfdu= Ji.f du . Hence Proved.
n=1 n n=1 n n

Uniqueness: Suppose that f& g be two non negative measurable functions on X such that

v(E) = [, fduand v(E) = [_g dufor every measurable set E. Which gives that [ fdu= [ gduonE= [ fdu— [ gdu =
0=f(f-9)du=0=f—-g=0

=>f=ga.e[u]

Radon Nikodym Theorem for signed measures: Let (X, A, u) be a ¢ —finite measure space. Let v be any finite signed measure on
A such that v « u then there exist an integrable function h on X such that v(E) = fE h du for every measurable set E of X.

Moreover h is unique a.e.( almost everywhere) [u].

Proof: Consider vt and v~ these both are finite measures and v* « pand v~ « u. Hence there exist integrable function f and g
on X such that v* (E) = fEfdu and v~ (E) = fEfdu for every measurable set E of X. Take h = f — g then h is integerable and for
measurable set E

v(E)= (vt = v)E)=v*(E)— v (BE)= [ fdu— [,gdu=[(f —g)du=[ hdu [Asf &g are integerable]

Uniqueness: Suppose h and h* be two integerable functions on X such that
v(E) = [ hdu andv(E) = [_h*du for every measurable set E of X.

373 Vol 3 Issue 8 August, 2015


http://www.theijst.com

The International Journal Of Science & Technoledge (ISSN 2321 —919X) www.theijst.com

Then we have [ hdu= [ h*duonE
:fE(h—h*)du=00nE: h—h*=0a.e.[u] = h= h*a.e.[u]. Proved.

Remark: If the condition of o- finiteness is dropped Radon Nikodym Theorem may not hold. Consider the following example.

Take X = [0, 1] and A be the g-algebra of Lebesuge measurable sets contained in X. Let u be the counting measure and 9 be the
restriction of Lebesgue measure on X.

If u(E) =0then E=¢ = 9(E) = 0. Which shows that < u .

Assume that Radon Nikodym Theorem holds.

Let f be non negative measurable function s. t. v(E) = fEf du vV E measurable sub set of X.

Consider any x € X and let E = {x} then 9(E) =0= [ fdu=0= f{x}fdu =0=f(ux)= 0> f(x) = 0VxXEX
We also have v(X) = fodu = 1 = 0 which is absurd, thus our assumption is wrong. Thus Radon Nikodym Theorem does not
hold in this case.
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