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Definition 
⊥ ଵݒ	 ,ଶ be two non-negative measures such that at least one of them is finiteݒ ଵ andݒ	ݐ݁ܮ , ଵݒ	) ଶthen the pairݒ− ଵݒ	= ݒ ଶ andݒ  ଶ) isݒ
called Jorden-Decomposition for ݒ. The measure ݒଵ is called the positive variation and ݒଶ is called negative variation of ݒ and are 
denoted by ݒା and ିݒ respectively. 
 
Remark: ݒ	ݒ =ା- ିݒ 
 
Definition: Let ݒ	be any signed measure then we define |ݒ =|ݒା+ ିݒ the measure |ݒ| is called the total variation of ݒ. 
 
Note: It should be noted that |ݒ|(E)and	|(ܧ)ݒ| are not the same quantities. 
More precisely |ݒ|(E) =	ݒା(E) +  (E)ିݒ
and	|ݒ| = |(ܧ)ݒା(E) −  |(E)ିݒ
 
Definition 
 ଵ isݒ ଶ then we say thatݒ ଵ, whenever it is a null set forݒ	ଶ be two signed measures and suppose E be a null set forݒ ଵ andݒ	ݐ݁ܮ 
absolutely continuous with respect to ݒଶ and we write	ݒଵ 	≪  .ଶݒ
 
Example: Let N be any measurable set then the following statements are equivalent. 

1. N is a null set for ݒ. 
2. N is a null set for ݒା and ିݒ. 
3. N is a null set for |ݒ|. 

 
Sol: Let  N be a null set for ݒ, 
Let (P, X-P) be a Hahn-Decomposition for	ݒ. Let E ⊂ N be measurable, then  
ା(E)ݒ = ܧ)ݒ ∩ P) = 	0	      [As E∩ P ⊂ N] 
⇒ N is a null set for ݒା. 
 (2)	Hence (1) ⇒ .ିݒ N is a null set for	ݕ݈ܽݎ݈ܽ݅݉݅ܵ	
 .both ିݒ ା andݒ N is a null set for for	ݐℎܽݐ	܍ܛܗܘܘܝܛ	ܟܗۼ
⊃ Let E	ݐ݁ܮ N be measurable, then ݒା(E) = 0 and ିݒ(E) = 0 
		⇒ 			 ା(E)ݒ 	+ (E)ିݒ	 = 	0		[  N is a null set for ݒା & ିݒ] 
⇒	 (E)|ݒ| = 	0	 ⇒ N is a null set for |ݒ|. Hence (2) ⇒	(3). 
⊃ Let E .|ݒ| let N is a null set for	ܚ܍ܐܜܚܝ۴	 N be measurable, then	|ݒ|(E) = 	0 
ା(E)ݒ	⇒ + (E)ିݒ ା(E)ݒ	⇒ 0 = = 0 and ିݒ(E) (E)ିݒ −ା(E)ݒ	⇒	0 = = 0 
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Abstract: 
Given two measures ݒ	and ߤ on a measurable space (X,	ࣛ ), a natural question that comes out is that if one can represent 
 via some linear operator. The Radon-Nikodym Theorem states that it is possible, under some hypothesis, to ߤ in terms of	ݒ
find a representation via the integral operator, that, given a measurable space (X,	ࣛ), if ݒ a ߪ finite measure which is 
absolutely continuous with respect to a ߪ finite measure ߤ on(X), then there is a non-negative measurable function f on X 
such that  ݒ (E) = ∫ ݂ ாߤ݀ 	for any measurable set E. 
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(ܧ)ݒ ⇒ = 	0		 ⇒		N is a null set for ݒ. 
Shows that (3) ⇒ (1). Hence proved. 
 
Example: If 	ݒଵ ⊥ ଵݒ ଶ andݒ 	≪ ଵݒ ଶ thenݒ ≡ 0. 
 As 	ݒଵ ⊥ ଶݒ 	⇒ there exist a measurable set S such that 	ݒଵ is supported on S and ݒଶ is supported on X-S. 
Let E⊂ X be measurable then E = (E∩ S) 	∪ (E ∩ ܺ − ܵ)

ି
 ଵ(E)ݒ	 ⇒

= ∩ଵ(Eݒ	 S) + 	 ∩ଵ(Eݒ	 ܺ − ܵ)
ି

∩ଵ(Eݒ	 =	 S)        [ As 	ݒଵ is supported on S] 
Also 	ݒଶ(E ∩ S)	= 0         [ As 	ݒଶ is supported on ܺ − ܵ]

ି
 

∩ଵ(Eݒ	 ⇒ S)	= 0             [As ݒଵ 	≪  [ଶݒ
⊃	= 0              ∀ E	ଵ(E)ݒ	 ⇒ X be measurable 
Hence 	ݒଵ= 0               
 
Lemma (1) Suppose for each ܾ݉݁݉݁ݎ	ߙ of a set D of real numbers, there is a given set ܤఈ. Let for ݔ ∈ X the set ߙ }=ݔܦ ∈ D ∕ 
ݔ ∈  	{ఈܤ
Define f(x)= Inf	ݔܦ. Then for any real number t  
{f	< {ݐ = 	 ⋃

ఈழ௧
≥	ఈ , {fܤ t} = ⋂

ఉவ௧
{ ⋃
ఈழఉ

 { ఈܤ

 
Proof: To show {f	< {ݐ = ఈܤ⋃	

ఈழ௧
, Let ݔ ∈ {f < then f(x) ,{ݐ < t ⇒ Inf	ݔܦ	< t ⇒ there exist ߚ ∈ ߚ .s.t ݔܦ	 < ݐ ݔ ⇒ ∈ ߚ ఉ andܤ < ݐ ⇒

ݔ	 ∈ ఈܤ⋃
ఈழ௧

 

⇒	{f	< {ݐ ⊂	 ⋃
ఈழ௧

 ఈ                               …………………(1)ܤ
Now let ⇒ ݕ	 ∈ ⋃

ఈழ௧
ݕ ఈ, this meansܤ ∈ ⋃

ఊழ௧
∋ ߛ ⇒ t > ߛ ఊ andܤ ,ݕܦ ߛ <   ݐ

⇒ Inf ݕܦ ≤ ߛ	݀݊ܽ	ߛ <  	ݐ
⇒ f(y) < ߛ and ߛ < 	ݐ ⇒ f(y) < t ⇒ ݕ	 ∈ {f < t} 
⇒ ⋃

ఈழ௧
ఈܤ ⊂{f < t}                                   ………………….(2) 

Shows that {f < t } = ⋃
ఈழ௧

 .ఈܤ

Now to show {f ≤ t } = ⋂
ఉவ௧

{ ⋃
ఈழఉ

 { ఈܤ

Define Cఉ = ⋃
ఈழఉ

⋂ = ఈ  Thus to show {f ≤ t }ܦ
ఉவ௧

 {ఉܥ}

Let any z ∈	{f ≤ t } and ߚ > t . Then f(z) ≤ t and t < ߚ ⇒ Inf ߚ > ݖܦ	 
⇒ There exists ߙ	߳	ݖܦ  s. t. ߙ <  ߚ	
⇒ ߙ and  ߙܦ	߳ݖ	 < ⇒ ߚ	 ߚ ∀  ߚܥ	߳ݖ	 > 	ݐ ⋂ ߳ݖ  ⇒

ఉவ௧
   ߚܥ 

⇒	{f ≤ t} 	⊂ ⋂
ఉவ௧

 (1)..…………                                           ߚܥ 

 Now take any  w	߳	⋂
ఉவ௧

⇒  ߚܥ  ߚ and  ߚܥ	߳	ݓ	 > 	ݐ   t < ߚ	 and  ݓܦ	߳ߚ ⇒

⇒ Inf ݓܦ  ≤  	t < ߚ ,ߚ		
⇒ f(w) ≤ ߚ ,ߚ > t ⇒ f(w) ≤ t ⇒ ≤	f } ߳	ݓ		 t	} 	⇒  ⋂

ఉவ௧
≤	f } ⊃  ߚܥ  t	} …………..(2) 

From (1) and (2) it shows that {f ≤ t } = ⋂
ఉவ௧

{ ⋃
ఈழఉ

 .{ ఈܤ

 
Corollary (1): If ܤఈ 	< ߙ ఉ  wheneverܤ	 <  .ఈܤ-on X	ߙ ≤	ఈ  and fܤ on	ߙ ≥ then f ߚ
Let 	x ∈ ߙ ఈ thenܤ ∈ 	 ≥ ௫ܦ݂݊݅	 ⇒  ௫ܦ	 	ߙ	 ⇒ f(x) ≤ shows that f(x) ,ߙ	 ≤    ఈܤ  on ߙ	
Let f(y) < ߙ ⇒ Inf		ܦ௬ < ߙ ⇒ there exist 	ߚ ∈ ߚ .௬ s. tܦ <  ߙ	
⇒ 	y ∈ ߚ & ఉܤ < y	 ⇒ ߙ	 ∈ ఉܤ ఉ and thenܤ 	⊂ ఈܤ 	⇒ 	y ∈  ఈܤ
Hence 	y ∈ X − ≤ ఈ then f(y)ܤ  ߙ
 Shows that f ≥ X	 on	ߙ	  .ఈܤ−
 
Corollary (2): If D is a subset of non negative real numbers then f is non negative. 
 
Corollary (3): If D is countable and 	ܤఈ is a measurable set for each ߙ then f is a measurable function. 
 
Note: Let D be any countable sub set of non negative real numbers. Suppose for each ߙ ∈ D there is given a measurable set ܤఈ  s.t. ܤఈ  
is contained in ܤఉ  whenever ߚ > ߙ then there exist a non negative measurable function f on X s. t. f	≥ ≥ ఈ and fܤ on ߙ X	 on	ߙ	  .ఈܤ−
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Lemma (2): Suppose D is a countable set of non negative real numbers and for each ߙ in D there is given a measurable set ܤఈ	of X 
such that ߤ (ܤఈ-	ܤఉ) = 0 for ߙ < ≥ then there exist a non negative measurable function f on X such that f ߚ	 ≤ ఈ  and fܤ	 a. e. on ߙ	  ߙ	
a. e. on X- 	ܤఈ. 
 
Proof: Define C = ⋃

ఈழఉ
ఈܤ= ∗ఈܤ	 then C is a countable union of null sets hence C is a null set.    Define	,(ఉܤ	- ఈܤ) − C and 	ܤఉ∗ =ܤఉ − C  

Let ߙ < ∗ఈܤ then ߚ	 ఈܤ) =∗ఉܤ− −(ఉܤ− C =	߶	  [ From the definition of C] 
∗ఈܤ ⇒ ⊂ ∗ఉܤ	 . Hence by lemma (1) we can find a non negative measurable function f  
On X s. t. f ≤ ∗ఈܤ on  ߙ	 	and f ≥   ∗ఈܤ -on X ߙ	
As ܤఈ and  ܤఈ∗ differs only by null sets it follows that f ≤ ≤ ఈ  and fܤ	 a. e. on ߙ	  .ఈܤ	 -a. e. on X ߙ	
 
Preposition: Let ݒ be any signed measure on X and N be any measurable set, then the following statements are equivalent. 

1. N is a null set for ݒ. 
2. N is a null set for |	ݒ|. 
3. N is a null set for ݒା and ିݒ. 

 
Definition 
Let ߤ and ݒ be two signed measures. Suppose (ܧ)ݒ = 	0	whenever (ܧ)ߤ =	0 then we say that 
.ݓ	ݏݑ݋ݑ݊݅ݐ݊݋ܿ	ݕ݈݁ݐݑ݈݋ݏܾܽ	ݏ݅	ݒ .ݎ .ݐ  .ߤ ≫ ݒ		and is denoted by	ߤ
 
Remark: ݒ |ݒ| iff ߤ ≫   .|ߤ |≫
Suppose ݒ  E is a null set for ⇒ ݒ hence it is a null set for ߤ E is a null set for ⇒ .|ߤ |0, this means E is a null set for = (E)|ߤ	| Let . ߤ ≫
	⇒ |ݒ| |ݒ|  .|ߤ |≫
Conversely assume that |ݒ|   |ߤ| then F is null set for ߤ Let F be any null set for .|ߤ |≫
⇒ F is a null set for |ݒ| as |ݒ| ݒ Hence .ݒ F is a null set for ⇒ |ߤ |≫   .ߤ ≫
 
Radon Nikodym Theorem: Let (X,ࣛ,ߤ) be a ߪ −finite measure space. Let ݒ be any measure on ࣛ such that ݒ  then there exist ߤ ≫
a non negative measurable function f on X such that (ܧ)ݒ = 	 ∫ ݂ dߤா  for every measurable set E. More over f is unique a.e. [ߤ]. 
 
Proof: First suppose that ߤ is finite. 
Let D be the set of non negative rational numbers and for each ߙ ∈ D define ݒఈ = -ݒ	ߤߙ. 
Then ݒఈ is a signed measure. 
 Let (ܣఈ  ଴ = ߶ thenܤ ଴ = A andܣ ఈ where we haveݒ ఈ) be Hahn-Decomposition forܤ,
ఈܤ ఈܤ = ఉܤ	− ∩ ఈܤ	= ఉ௖ܤ 	∩ ఈܤఈ൫ݒ ⇒ ఉܣ	 ఉ൯ܤ	− ≤ 0 [As ܤఈ is a negative set for ݒఈ] 
ఈܤఉ൫ݒ	݀݊ܽ ఉ൯ܤ	− ≥ 0																											  [As ܣఉ is a positive set for ݒఉ] 
ఈܤఈ൫ݒ	⇒ ఉ൯ܤ	− ≤ ఈܤఉ൫ݒ	≥ 0 ఉ൯ܤ	− ⇒ ఈܤ൫	(ߤߙ	-ݒ) ఉ൯ܤ	− ≤ ݒ) − ఈܤ൫	(ߤߚ  ఉ൯ܤ	−
⇒ ఈܤ൫ݒ ఈܤ൫	ߤߙ	-ఉ൯ܤ	− ఉ൯ܤ	− ≤ ఈܤ൫ݒ ఉ൯ܤ	− − ఈܤ൫	ߤߚ	   ఉ൯ܤ	−
ఈܤ൫	ߤߚ ⇒ ఉ൯ܤ	− 	≤ ఈܤ൫	ߤߙ	 ఉ൯ܤ	− ఈܤ൫	ߤ ⇒	 ߙ∀ ఉ൯= 0ܤ	− <  (1)..…………						ߚ
Hence by lemma (2) there exist non negative measurable function f on X such that for any real number t  
{ f< t} = ⋃

ఈழ௧
⋂ = ఈ , {f ≤ t }ܤ

ఉழ௧
{ ⋃
ఈழఉ

≥ ఈ }⇒ fܤ ≤ f , [ߤ] .a. e	ఈܤ on ߙ	  [ߤ] .a. e	ఈܤ-on  X ߙ	

 Also ܤఈ is a negative set for ݒఉ for all ߚ	 ≤   and	ߙ	
ఉݒ ఈ is a positive set forܣ  	for all ߚ ≥  (2)…………                            ߙ
Define ܣஶ= ⋂

ఈ
∋ ఈ , let xܣ ∋ ஶ , then xܣ	 	ߙ ఈ for allܣ	 ⇒ f(x) ≥ 	ߙ∀,ߙ ⇒ f(x) = 	∞ 

 Shows that f =	∞ on ܣஶ																																																													……………(3) 
 Let E be any measurable sub set of ܣஶ then E ⊂ ܣఈ	∀ߙ	 ఈ(E)ݒ	⇒ ≥  ߙ∀	0
(ܧ)(ߤߙ– ݒ) ⇒ ≥ ⇒ ߙ∀	0 ≤ (E) ݒ  ߙ∀ (ܧ)ߤ	ߙ	
 (4)……………...                             0	≠ (ܧ)ߤ whenever	∞ = (E) ݒ ⇒
Let ߚ ∈	D, F = { f < ߚ} and S be any measurable sub set of F, we have F = ⋃

ఈழఉ
 ఈܤ

 Since ܤఈ is a negative set for ݒఉ for every ߙ <  .ߚ
 F is a negative set for ݒఉ ⇒ 	⇒ 0	ఉ (S) ≤ݒ ݒ) − ≥ (S)(ߤߚ 0  
≥ (S) ݒ ⇒  (5)..……………                                          (ܵ)ߤ	ߚ	
In the same manner we can show that if T be any measurable sub set of { f	≥   then { ߚ
≤ (T) ݒ 	ߚ	∀ (ܶ)ߤ	ߚ	 ∈ D                                 ……………….(6) 
଴ܧ Then Define 	,ݐ݁ݏ	݈ܾ݁ܽݎݑݏܽ݁݉	ݕ݊ܽ	ܾ݁	ܧ	ݐ݈݁ = E	⋂ܣஶ and suppose that ߤ(ܧ଴) ≥ 0 then ݒ (ܧ଴) = ∞ [From (4)] Also f = ∞ on ܧ଴ 
[From (3)] 
ܶℎ݅ݏ	ݏ݁ݒ݅݃	 ∫ ݂ dߤா ≥ ∫ ݂ dߤாబ

 = ∫ ∞ dߤாబ
 ∞ = (଴ܧ)ߤ ∞ = 
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≤ (E) ݒ ⇒ ⇒ (଴ܧ) ݒ	 ∫ = (E) ݒ Therefore ∞ = (E) ݒ	 ݂ dߤா  
Suppose now ߤ(ܧ଴) = 0  since ݒ   0 = (଴ܧ) ݒ we get ߤ ≫
 Let R and N be any positive integers such that N be fixed for some time then define  
∋ ௞ = {xܧ E	 ∕ 	௞ିଵ

ே
 ≤ f(x) ≤	 ௞

ே
 } 

we get ௞ିଵ (6)	݀݊ܽ(5)	݉݋ݎܨ	
ே
(௞ܧ)ߤ	 ≤ (௞ܧ)ݒ	 	≤ 	 ௞

ே
 (7).………………       (௞ܧ)ߤ 

 	ݐℎܽݐ	ݕ݂݅ݎ݁ݒ	݋ݐ	ݕݏܽ݁	ݏ݅	ݐܫ   
	E = ⋃

௞ୀ଴

ஶ
 ………… ,௞ are disjoint and measurable for k= 0, 1, 2ܧ ௞ and the setsܧ

Therefore ݒ (E) =	∑ ஶ(௞ܧ)ݒ
௞ୀ଴  and (ܧ)ߤ = ෌ ஶ(௞ܧ)ߤ)

௞ୀ଴ ) 
∑	= (E) ݒ ஶ(௞ܧ)ݒ

௞ୀଵ  and (ܧ)ߤ = ෌ ஶ(௞ܧ)ߤ)
௞ୀଵ )                ………………….(8) 

∫ Further , (଴ܧ) = 0 = (଴ܧ) ݒ	݁ݏݑܾܽܿ݁ ݂ dߤா  = ෍ ∫ ݂ dߤாౡ

ஶ

௞ୀ଴
 ⇒	∫ ݂ dߤா  = ෍ ∫ ݂ dߤாౡ

ஶ

௞ୀଵ
                                    

                                          [ As ߤ(ܧ଴) = 0 ] …………….. (9) 
On the set ܧ௞ we have ௞ିଵ

ே
 ≤ f(x) ≤	 ௞

ே
 , it gives  

න ௞ିଵ
ே

d
ாೖ

∫ ≥ ߤ ݂ dߤாೖ
 ≤ න ௞

ே
d

ாೖ
⇒  ߤ ௞ିଵ

ே
∫	≥ (௞ܧ)ߤ) ݂ dߤாೖ

 ≤ ௞
ே

 (10)..………(௞ܧ)ߤ)

௞	- 	݁ݒℎܽ	݁ݓ(7)	݉݋ݎܨ
ே

௞ିଵ -	≥ (௞ܧ)ݒ	−	≥ (௞ܧ)ߤ)
ே

 (11)…………………    (௞ܧ)ߤ)

From (10) and (11) we get -	ଵ
ே

≥ (௞ܧ)ߤ) ∫ ݂ dߤாೖ
	≥ (௞ܧ)ݒ -  ଵ

ே
 (௞ܧ)ߤ)

-	ଵ
ே
൫෌ ௞ܧ)ߤ

ஶ
௞ୀଵ ൯ ≤	෍ ∫ ݂ dߤாೖ

ஶ

௞ୀଵ
 -∑ ஶ	(௞ܧ)ݒ

௞ୀଵ  ≤	 ଵ
ே
෌ ஶ(௞ܧ)ߤ

௞ୀଵ   

⇒	-	ଵ
ே
∫	≥  (E)ߤ	 ݂ dߤா 	≥ (E)ݒ -  ଵ

ே
→ from (8) and (9) taking limits as n  (E)ߤ	 ∞ we get  

∫ ݂ dߤா   (E)ݒ = 
 
Further now suppose that ߤ is ߪ finite then there exist a disjoint sequence of measurable sets {Xn} such that ߤ(ܺ݊) < ∞ ∀ n and X = 

⋃
ଵ

ஶ
ܺ௡. 

 Let ݒ௡ be the restriction of ݒ to Xn and ߤ௡ is a finite measure on X, ݒ௡ is a measure on Xn s.t. ݒ௡ ≪ ௡ߤ  by what has been proved 
above there exist a non negative measurable function ௡݂ on Xn such that ݒ௡(ܧ) = ∫ ௡݂ா dߤ௡ ∀ measurable sub sets E of Xn.  
Define ݂ on X by ݂ = 	 ௡݂ on Xn. Since Xn are disjoint it is clear that ݂ is well defined on X. For any real number ߙ we have {݂	 ≤  {ߙ	
= { ݂	 ≤ 	݂ } = X∩	{ߙ	 ≤ ∩{ߙ	 {	⋃ܺ௡

ଵ

ஶ
}  

= ⋃
௡ୀଵ

ஶ
 { ݂	 ≤ ⋃ = {Xn ∩{ߙ	

௡ୀଵ

ஶ
{ ௡݂ ≤ ݂ Because] {ߙ	 = ௡݂ on Xn]  

⇒ { ݂	 ≤ ⇒ is measurable {ߙ	 ݂ is measurable.  

Let E be any measurable sub set of X then E = E	∩ X = E	∩ {⋃ܺ௡
ଵ

ஶ
} = ⋃(E ∩ Xn)	

௡ୀଵ

ஶ
	 

∑ = (E)ݒ ⇒ E)ݒ ∩ 	Xn)ஶ
௡ୀଵ 	= ∑ ௡(Eݒ	 ∩ 	Xn)ஶ

௡ୀଵ  = ෍ 	∫ ௡݂ dఓ݊ா∩௑೙

ஶ

௡ୀଵ
 = ෍ ∫ ݂dா∩௑೙

ஶ

௡ୀଵ
∫ = ߤ ݂d∪(ா∩௑೙) ∫ = ߤ ݂ dா  	.Hence Proved . ߤ

 
Uniqueness:  Suppose that ݂&	݃ be two non negative measurable functions on X such that  
(ܧ)ݒ  = 	 ∫ ݂ dߤா  and (ܧ)ݒ = 	 ∫ ݃	dߤா 	for every measurable set E. Which gives that ∫ ݂ dߤா = 	 ∫ ݃ dߤா  on E ⇒ ∫ ݂ dߤா −	∫ ݃ dߤா 	=
0	 ⇒ ∫ (݂ − ݃) dߤா  = 0 ⇒ 	݂ − ݃ = 0	 
⇒ ݂ = 	݃ a. e. [ߤ]. 
 
Radon Nikodym Theorem for signed measures: Let (X,	ࣛ, ߪ be a (ߤ −finite measure space. Let ݒ be any finite signed measure on 
ࣛ such that ݒ (ܧ)ݒ then there exist an integrable function h on X such that ߤ ≫ = ∫ ℎ dߤா  for every measurable set E of X. 
 Moreover h is unique a.e.( almost everywhere) [ߤ]. 
 
Proof: 	ݎ݁݀݅ݏ݊݋ܥ	ݒା	and	ିݒ these both are finite measures and 	ݒା 	≪ 	μ	and	ିݒ ≪  Hence there exist integrable function f and g .ߤ
on X such that 	ݒା (E) = ∫ ݂ dா ∫ = (E) ିݒ	 and ߤ ݂ dா ݂	= for every measurable set E of X. Take h ߤ − ݃ then h is integerable and for 
measurable set E 
ାݒ	) = (E)ݒ ∫ = (E) ିݒ	−ା(E)ݒ	 = (E) (ିݒ	− ݂ dߤா −	∫ ݃ dߤா  = ∫ (݂ − ݃) dߤா  = ∫ ℎ dߤா   [As ݂	&݃ are integerable] 
 
Uniqueness: Suppose ℎ	ܽ݊݀	ℎ∗ be two integerable functions on X such that  
(ܧ)ݒ = 	 ∫ ℎ dߤா   and (ܧ)ݒ = 	 ∫ ℎ∗ dߤா  for every measurable set E of X.  
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Then we have ∫ ℎ dߤா = 	 ∫ ℎ∗ dߤா  on E  
⇒ ∫ (ℎ − ℎ∗) dߤா  = 0 on E ⇒	ℎ − ℎ∗ = 0 a. e. [ߤ] 	⇒ 	ℎ = 	ℎ∗ a. e. [ߤ]. Proved. 
 
Remark: If the condition of ߪ- finiteness is dropped Radon Nikodym Theorem may not hold. Consider the following example. 
Take X = [0, 1] and ࣛ be the ߪ-algebra of Lebesuge measurable sets contained in X. Let ߤ be the counting measure and ߴ be the 
restriction of Lebesgue measure on X. 
If (ܧ)ߤ = 0	then E = ߶	 ≫ Which shows that .0 = (ܧ)ߴ ⇒  . ߤ	
Assume that Radon Nikodym Theorem holds. 
Let f be non negative measurable function s. t. (ܧ)ݒ = ∫ ݂ dߤா  ∀ E measurable sub set of X. 
Consider any x ∈ X and let E = {x} then 0 = (ܧ)ߴ	⇒ 	∫ ݂ dߤா = 0 ⇒ ∫ ݂ dߤ{௫}  = 0 ⇒ (ݔ)ߤ(ݔ)	݂ = 	0 ⇒ (ݔ)݂ = 	0		∀ x ∈ X 
 We also have ݒ(ܺ) = ∫ ݂ dߤ௑ 	⇒ 	1 = 0	which is absurd, thus our assumption is wrong. Thus Radon Nikodym Theorem does not 
hold in this case. 
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