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Definition 
퐿푒푡	푣  and 푣  be two non-negative measures such that at least one of them is finite, 	푣  ⊥ 푣  and 푣 =	푣  −푣 then the pair (	푣  , 푣 ) is 
called Jorden-Decomposition for 푣. The measure 푣  is called the positive variation and 푣  is called negative variation of 푣 and are 
denoted by 푣  and 푣  respectively. 
 
Remark: 푣	= 푣 - 푣  
 
Definition: Let 푣	be any signed measure then we define |푣|= 푣 + 푣  the measure |푣| is called the total variation of 푣. 
 
Note: It should be noted that |푣|(E)and	|푣(퐸)| are not the same quantities. 
More precisely |푣|(E) =	푣 (E) + 푣 (E) 
and	|푣(퐸)| = |푣 (E) − 푣 (E)| 
 
Definition 
 퐿푒푡	푣  and 푣  be two signed measures and suppose E be a null set for	푣 , whenever it is a null set for 푣  then we say that 푣  is 
absolutely continuous with respect to 푣  and we write	푣 	≪ 푣 . 
 
Example: Let N be any measurable set then the following statements are equivalent. 

1. N is a null set for 푣. 
2. N is a null set for 푣  and 푣 . 
3. N is a null set for |푣|. 

 
Sol: Let  N be a null set for 푣, 
Let (P, X-P) be a Hahn-Decomposition for	푣. Let E ⊂ N be measurable, then  
푣 (E) = 푣(퐸 ∩ P) = 	0	      [As E∩ P ⊂ N] 
⇒ N is a null set for 푣 . 
	푆푖푚푖푙푎푟푎푙푦	N is a null set for 푣 . Hence (1) ⇒	(2) 
퐍퐨퐰	퐬퐮퐩퐩퐨퐬퐞	푡ℎ푎푡	N is a null set for for 푣  and 푣  both. 
퐿푒푡	Let E ⊂ N be measurable, then 푣 (E) = 0 and 푣 (E) = 0 
		⇒ 			 푣 (E) 	+ 	푣 (E) = 	0		[  N is a null set for 푣  & 푣 ] 
⇒	 |푣|(E) = 	0	 ⇒ N is a null set for |푣|. Hence (2) ⇒	(3). 
	퐅퐮퐫퐭퐡퐞퐫	let N is a null set for |푣|. Let E ⊂ N be measurable, then	|푣|(E) = 	0 
⇒	푣 (E) + 푣 (E) = 0 ⇒	푣 (E) = 0 and 푣 (E) = 0	⇒	푣 (E)− 푣 (E) = 0 
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Abstract: 
Given two measures 푣	and 휇 on a measurable space (X,	풜 ), a natural question that comes out is that if one can represent 
푣	in terms of 휇 via some linear operator. The Radon-Nikodym Theorem states that it is possible, under some hypothesis, to 
find a representation via the integral operator, that, given a measurable space (X,	풜), if 푣 a 휎 finite measure which is 
absolutely continuous with respect to a 휎 finite measure 휇 on(X), then there is a non-negative measurable function f on X 
such that  푣 (E) = ∫ 푓 푑휇	for any measurable set E. 
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⇒ 푣(퐸) = 	0		 ⇒		N is a null set for 푣. 
Shows that (3) ⇒ (1). Hence proved. 
 
Example: If 	푣  ⊥ 푣  and 푣 	≪ 푣  then 푣 ≡ 0. 
 As 	푣  ⊥ 푣 	⇒ there exist a measurable set S such that 	푣  is supported on S and 푣  is supported on X-S. 
Let E⊂ X be measurable then E = (E∩ S) 	∪ (E ∩ 푋 − 푆) ⇒ 	푣 (E) 
= 	푣 (E∩ S) + 	 	푣 (E∩ 푋 − 푆)	= 	푣 (E∩ S)        [ As 	푣  is supported on S] 
Also 	푣 (E ∩ S)	= 0         [ As 	푣  is supported on 푋 − 푆] 
⇒ 	푣 (E∩ S)	= 0             [As 푣 	≪ 푣 ] 
⇒ 	푣 (E)	= 0              ∀ E	⊂ X be measurable 
Hence 	푣 = 0               
 
Lemma (1) Suppose for each 푚푒푚푏푒푟	훼 of a set D of real numbers, there is a given set 퐵 . Let for 푥 ∈ X the set 퐷푥={ 훼 ∈ D ∕ 
푥 ∈ 퐵 }	 
Define f(x)= Inf	퐷푥. Then for any real number t  
{f	< 푡} = 	 ⋃ 퐵  , {f	≤ t} = ⋂ { ⋃ 퐵  } 

 
Proof: To show {f	< 푡} = 	⋃퐵 , Let 푥 ∈ {f < 푡}, then f(x) < t ⇒ Inf	퐷푥	< t ⇒ there exist 훽 ∈ 	퐷푥 s.t. 훽 < 푡 ⇒ 푥 ∈ 퐵  and 훽 < 푡 ⇒

	푥 ∈ ⋃퐵  

⇒	{f	< 푡} ⊂	 ⋃ 퐵                                …………………(1) 
Now let ⇒ 	푦 ∈ ⋃ 퐵 , this means 푦 ∈ ⋃ 퐵  and 훾 < t ⇒ 훾 ∈ 퐷푦, 훾 < 푡  

⇒ Inf 퐷푦 ≤ 훾	푎푛푑	훾 < 푡	 
⇒ f(y) < 훾 and 훾 < 푡	 ⇒ f(y) < t ⇒ 	푦 ∈ {f < t} 
⇒ ⋃ 퐵 ⊂{f < t}                                   ………………….(2) 
Shows that {f < t } = ⋃ 퐵 . 

Now to show {f ≤ t } = ⋂ { ⋃ 퐵  } 

Define C  = ⋃ 퐷   Thus to show {f ≤ t } = ⋂ {퐶 } 

Let any z ∈	{f ≤ t } and 훽 > t . Then f(z) ≤ t and t < 훽 ⇒ Inf 퐷푧 < 훽	 
⇒ There exists 훼	휖	퐷푧  s. t. 훼 < 	훽 
⇒ 	푧휖	퐷훼  and 훼 < 	훽 ⇒ 	푧휖	퐶훽  ∀ 훽 > 푡	 ⇒  푧휖 ⋂  퐶훽   

⇒	{f ≤ t} 	⊂ ⋂  퐶훽                                           …………..(1) 

 Now take any  w	휖	⋂ 퐶훽  ⇒ 	푤	휖	퐶훽  and 훽 > 푡	 ⇒ 훽휖	퐷푤  and 	훽 > t  

⇒ Inf 퐷푤  ≤ 		훽, 훽 > t	 
⇒ f(w) ≤ 훽, 훽 > t ⇒ f(w) ≤ t ⇒ 		푤	휖 { f	≥ t	} 	⇒  ⋂  퐶훽  ⊂ { f	≥ t	} …………..(2) 

From (1) and (2) it shows that {f ≤ t } = ⋂ { ⋃ 퐵  }. 

 
Corollary (1): If 퐵 	< 	퐵   whenever 훼 < 훽 then f ≤ 훼	on 퐵   and f	≥ 훼	on X-퐵 . 
Let 	x ∈ 퐵  then 훼 ∈ 	 	퐷   ⇒ 	푖푛푓퐷  ≤ 	훼	 ⇒ f(x) ≤ 	훼, shows that f(x) ≤ 	훼 on  퐵    
Let f(y) < 훼 ⇒ Inf		퐷  < 훼 ⇒ there exist 	훽 ∈ 퐷  s. t. 훽 < 	훼 
⇒ 	y ∈ 퐵  & 훽 < 	훼 ⇒ 	y ∈ 퐵  and then 퐵 	⊂ 퐵 	⇒ 	y ∈ 퐵  
Hence 	y ∈ X − 퐵  then f(y) ≥ 훼 
 Shows that f ≥ 	훼	on 	X −퐵 . 
 
Corollary (2): If D is a subset of non negative real numbers then f is non negative. 
 
Corollary (3): If D is countable and 	퐵  is a measurable set for each 훼 then f is a measurable function. 
 
Note: Let D be any countable sub set of non negative real numbers. Suppose for each 훼 ∈ D there is given a measurable set 퐵   s.t. 퐵   
is contained in 퐵   whenever 훼 < 훽 then there exist a non negative measurable function f on X s. t. f	≥ 훼 on 퐵  and f ≤ 	훼	on 	X −퐵 . 
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Lemma (2): Suppose D is a countable set of non negative real numbers and for each 훼 in D there is given a measurable set 퐵 	of X 
such that 휇 (퐵 -	퐵 ) = 0 for 훼 < 	훽 then there exist a non negative measurable function f on X such that f ≤ 	훼 a. e. on 	퐵   and f ≥ 	훼 
a. e. on X- 	퐵 . 
 
Proof: Define C = ⋃ (퐵  -	퐵 ),	then C is a countable union of null sets hence C is a null set.    Define 	퐵∗ =퐵 − C and 	퐵∗ =퐵 − C  

Let 훼 < 	훽 then 퐵∗ −퐵∗= (퐵 − 퐵 )− C =	휙	  [ From the definition of C] 
⇒ 퐵∗ ⊂ 	퐵∗ . Hence by lemma (1) we can find a non negative measurable function f  
On X s. t. f ≤ 	훼  on 퐵∗ 	and f ≥ 	훼 on X- 퐵∗  
As 퐵  and  퐵∗ differs only by null sets it follows that f ≤ 	훼 a. e. on 	퐵   and f ≥ 	훼 a. e. on X- 	퐵 . 
 
Preposition: Let 푣 be any signed measure on X and N be any measurable set, then the following statements are equivalent. 

1. N is a null set for 푣. 
2. N is a null set for |	푣|. 
3. N is a null set for 푣  and 푣 . 

 
Definition 
Let 휇 and 푣 be two signed measures. Suppose 푣(퐸) = 	0	whenever 휇(퐸) =	0 then we say that 
푣	푖푠	푎푏푠표푙푢푡푒푙푦	푐표푛푡푖푛푢표푢푠	푤. 푟. 푡. 휇	and is denoted by		푣 ≪ 휇. 
 
Remark: 푣 ≪ 휇 iff |푣| ≪| 휇|.  
Suppose 푣 ≪ 휇 . Let |	휇|(E) = 0, this means E is a null set for| 휇|. ⇒ E is a null set for 휇 hence it is a null set for 푣 ⇒ E is a null set for 
|푣| ⇒	 |푣| ≪| 휇|. 
Conversely assume that |푣| ≪| 휇|. Let F be any null set for 휇 then F is null set for |휇|  
⇒ F is a null set for |푣| as |푣| ≪| 휇| ⇒ F is a null set for 푣. Hence 푣 ≪ 휇.  
 
Radon Nikodym Theorem: Let (X,풜,휇) be a 휎 −finite measure space. Let 푣 be any measure on 풜 such that 푣 ≪ 휇 then there exist 
a non negative measurable function f on X such that 푣(퐸) = 	 ∫ 푓 d휇 for every measurable set E. More over f is unique a.e. [휇]. 
 
Proof: First suppose that 휇 is finite. 
Let D be the set of non negative rational numbers and for each 훼 ∈ D define 푣  = 푣-	훼휇. 
Then 푣  is a signed measure. 
 Let (퐴 ,퐵 ) be Hahn-Decomposition for 푣  where we have 퐴  = A and 퐵  = 휙 then 
퐵 −	퐵  = 퐵 ∩ 퐵  =	퐵 	∩	퐴  ⇒ 푣 퐵 −	퐵 ≤ 0 [As 퐵  is a negative set for 푣 ] 
푎푛푑	푣 퐵 −	퐵 ≥ 0																											  [As 퐴  is a positive set for 푣 ] 
⇒	푣 퐵 −	퐵 ≤ 0 ≤	푣 퐵 −	퐵 ⇒ (푣-	훼휇)	 퐵 −	퐵 ≤ (푣 − 훽휇)	 퐵 −	퐵  
⇒ 푣 퐵 −	퐵 -	훼휇	 퐵 −	퐵 ≤ 푣 퐵 −	퐵 − 	훽휇	 퐵 −	퐵   
⇒ 훽휇	 퐵 −	퐵 	≤ 	훼휇	 퐵 −	퐵 	⇒ 휇	 퐵 −	퐵 = 0 ∀훼 < 훽						…………..(1) 
Hence by lemma (2) there exist non negative measurable function f on X such that for any real number t  
{ f< t} = ⋃ 퐵  , {f ≤ t } = ⋂ { ⋃ 퐵  }⇒ f ≤ 	훼 on 퐵 	a. e. [휇] , f ≥ 	훼 on  X-퐵 	a. e. [휇] 

 Also 퐵  is a negative set for 푣  for all 훽	 ≤ 	훼	and  
 퐴  is a positive set for 푣 	for all 훽 ≥ 훼                            …………(2) 
Define 퐴 = ⋂퐴  , let x ∈ 	퐴  , then x ∈ 	퐴  for all 훼	 ⇒ f(x) ≥ 훼,∀훼	 ⇒ f(x) = 	∞ 
 Shows that f =	∞ on 퐴 																																																													……………(3) 
 Let E be any measurable sub set of 퐴  then E ⊂ 퐴 	∀훼	 ⇒	푣 (E) ≥ 0	∀훼 
⇒ (푣 –훼휇)(퐸) ≥ 0	∀훼 ⇒ 푣 (E) ≥ 	훼	휇(퐸) ∀훼 
⇒ 푣 (E) = ∞	whenever 휇(퐸) ≠	0                             ...……………(4) 
Let 훽 ∈	D, F = { f < 훽} and S be any measurable sub set of F, we have F = ⋃ 퐵  

 Since 퐵  is a negative set for 푣  for every 훼 < 훽. 
 F is a negative set for 푣  ⇒ 푣  (S) ≤	0 ⇒	 (푣 − 훽휇)(S) ≤ 0  
⇒ 푣 (S) ≤ 	훽	휇(푆)                                          ……………..(5) 
In the same manner we can show that if T be any measurable sub set of { f	≥ 훽 } then  
푣 (T) ≥ 	훽	휇(푇) ∀	훽	 ∈ D                                 ……………….(6) 
푙푒푡	퐸	푏푒	푎푛푦	푚푒푎푠푢푟푎푏푙푒	푠푒푡,	 Then Define 퐸 = E	⋂퐴  and suppose that 휇(퐸 ) ≥ 0 then 푣 (퐸 ) = ∞ [From (4)] Also f = ∞ on 퐸  
[From (3)] 
푇ℎ푖푠	푔푖푣푒푠	 ∫ 푓 d휇 ≥ ∫ 푓 d휇 = ∫ ∞ d휇 = ∞ 휇(퐸 ) = ∞ 
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⇒ 푣 (E) ≥ 	푣 (퐸 ) ⇒ 	푣 (E) = ∞ Therefore 푣 (E) = ∫ 푓 d휇 
Suppose now 휇(퐸 ) = 0  since 푣 ≪ 휇 we get 푣 (퐸 ) = 0  
 Let R and N be any positive integers such that N be fixed for some time then define  
퐸  = {x ∈ E	 ∕ 	  ≤ f(x) ≤	  } 

	퐹푟표푚	(5)푎푛푑	(6) we get 	휇(퐸 ) ≤ 	푣(퐸 ) 	≤ 	  휇(퐸 )       ……………….(7) 
   퐼푡	푖푠	푒푎푠푦	푡표	푣푒푟푖푓푦	푡ℎ푎푡	 
	E = ⋃ 퐸  and the sets 퐸  are disjoint and measurable for k= 0, 1, 2, ………… 

Therefore 푣 (E) =	∑ 푣(퐸 ) and 휇(퐸) = (휇(퐸 )) 
푣 (E) =	∑ 푣(퐸 ) and 휇(퐸) = (휇(퐸 ))                ………………….(8) 

푏푒푐푎푢푠푒	푣 (퐸 ) = 0 = (퐸 ) , Further ∫ 푓 d휇 = ∫ 푓 d휇 ⇒	∫ 푓 d휇 = ∫ 푓 d휇                                    

                                          [ As 휇(퐸 ) = 0 ] …………….. (9) 
On the set 퐸  we have  ≤ f(x) ≤	  , it gives  

d휇 ≤ ∫ 푓 d휇 ≤ d휇  ⇒ (휇(퐸 ) ≤	∫ 푓 d휇 ≤ (휇(퐸 )………..(10) 

퐹푟표푚	(7)푤푒	ℎ푎푣푒	 -	 (휇(퐸 ) ≤	−	푣(퐸 ) ≤	- (휇(퐸 )    …………………(11) 

From (10) and (11) we get -	 (휇(퐸 ) ≤ ∫ 푓 d휇 - 푣(퐸 ) ≤	 (휇(퐸 ) 

-	 휇(퐸  ≤	 ∫ 푓 d휇 -∑ 푣(퐸 )	 ≤	 휇(퐸 )  

⇒	-	 	휇(E)  ≤	∫ 푓 d휇 - 푣(E) ≤	 	휇(E)  from (8) and (9) taking limits as n → ∞ we get  
∫ 푓 d휇 = 푣(E)  
 
Further now suppose that 휇 is 휎 finite then there exist a disjoint sequence of measurable sets {Xn} such that 휇(푋푛) < ∞ ∀ n and X = 

⋃푋 . 
 Let 푣  be the restriction of 푣 to Xn and 휇  is a finite measure on X, 푣  is a measure on Xn s.t. 푣 ≪ 휇  by what has been proved 
above there exist a non negative measurable function 푓  on Xn such that 푣 (퐸) = ∫ 푓 d휇  ∀ measurable sub sets E of Xn.  
Define 푓 on X by 푓 = 	 푓  on Xn. Since Xn are disjoint it is clear that 푓 is well defined on X. For any real number 훼 we have {푓	 ≤ 	훼} 
= { 푓	 ≤ 	훼}	∩X = { 푓	 ≤ 	훼}∩ {	⋃푋 }  

= ⋃  { 푓	 ≤ 	훼}∩ Xn} = ⋃ { 푓 ≤ 	훼} [Because 푓 = 푓  on Xn]  
⇒ { 푓	 ≤ 	훼} is measurable ⇒ 푓 is measurable.  

Let E be any measurable sub set of X then E = E	∩ X = E	∩ {⋃푋 } = ⋃(E ∩ Xn)		 

⇒ 푣(E) = ∑ 푣(E ∩ 	Xn)	= ∑ 	푣 (E ∩ 	Xn) = 	∫ 푓 d 푛∩  = ∫ 푓d∩ 휇 = ∫ 푓d∪( ∩ ) 휇 = ∫ 푓 d휇 . Hence Proved.	 

 
Uniqueness:  Suppose that 푓&	푔 be two non negative measurable functions on X such that  
 푣(퐸) = 	 ∫ 푓 d휇 and 푣(퐸) = 	 ∫ 푔	d휇	for every measurable set E. Which gives that ∫ 푓 d휇 = 	 ∫ 푔 d휇 on E ⇒ ∫ 푓 d휇 −	∫ 푔 d휇 	=
0	 ⇒ ∫ (푓 − 푔) d휇 = 0 ⇒ 	푓 − 푔 = 0	 
⇒ 푓 = 	푔 a. e. [휇]. 
 
Radon Nikodym Theorem for signed measures: Let (X,	풜, 휇) be a 휎 −finite measure space. Let 푣 be any finite signed measure on 
풜 such that 푣 ≪ 휇 then there exist an integrable function h on X such that 푣(퐸) = ∫ ℎ d휇 for every measurable set E of X. 
 Moreover h is unique a.e.( almost everywhere) [휇]. 
 
Proof: 	퐶표푛푠푖푑푒푟	푣 	and	푣  these both are finite measures and 	푣 	≪ 	μ	and	푣  ≪ 휇. Hence there exist integrable function f and g 
on X such that 	푣  (E) = ∫ 푓 d휇 and 	푣  (E) = ∫ 푓 d휇 for every measurable set E of X. Take h =	푓 − 푔 then h is integerable and for 
measurable set E 
푣(E) = (	푣 −	푣 ) (E) = 	푣 (E)−	푣  (E) = ∫ 푓 d휇 −	∫ 푔 d휇 = ∫ (푓 − 푔) d휇 = ∫ ℎ d휇  [As 푓	&푔 are integerable] 
 
Uniqueness: Suppose ℎ	푎푛푑	ℎ∗ be two integerable functions on X such that  
푣(퐸) = 	 ∫ ℎ d휇  and 푣(퐸) = 	 ∫ ℎ∗ d휇 for every measurable set E of X.  
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Then we have ∫ ℎ d휇 = 	 ∫ ℎ∗ d휇 on E  
⇒ ∫ (ℎ − ℎ∗) d휇 = 0 on E ⇒	ℎ − ℎ∗ = 0 a. e. [휇] 	⇒ 	ℎ = 	ℎ∗ a. e. [휇]. Proved. 
 
Remark: If the condition of 휎- finiteness is dropped Radon Nikodym Theorem may not hold. Consider the following example. 
Take X = [0, 1] and 풜 be the 휎-algebra of Lebesuge measurable sets contained in X. Let 휇 be the counting measure and 휗 be the 
restriction of Lebesgue measure on X. 
If 휇(퐸) = 0	then E = 휙	 ⇒ 휗(퐸) = 0. Which shows that ≪ 	휇 . 
Assume that Radon Nikodym Theorem holds. 
Let f be non negative measurable function s. t. 푣(퐸) = ∫ 푓 d휇 ∀ E measurable sub set of X. 
Consider any x ∈ X and let E = {x} then 휗(퐸) = 0	⇒ 	∫ 푓 d휇 = 0 ⇒ ∫ 푓 d휇{ }  = 0 ⇒ 푓	(푥)휇(푥) = 	0 ⇒ 푓(푥) = 	0		∀ x ∈ X 
 We also have 푣(푋) = ∫ 푓 d휇 	⇒ 	1 = 0	which is absurd, thus our assumption is wrong. Thus Radon Nikodym Theorem does not 
hold in this case. 
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