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1. Introduction 
As the year goes by, candidates seeking admission into tertiary institutions in Nigeria increased drastically more than the tertiary 

institutions can absorb and as a result candidates are doing all sort of things such as examination malpractices just to pass JAMB. 

Even before the JAMB examinations are conducted, some candidates make arrangements on ways of cheating. They even bring 

impersonators and expo into the examination halls. A frightening dimension is the involvement of parents, guardians and examination 

officials in this unwholesome act. 

The spate of misconduct during JAMB examination in Nigeria coupled with the fact that most of the students who had spurious JAMB 

scores could not cope with their undergraduate courses occasioned calls by the University of Lagos in the year 2005 for a Post 

Universities Matriculation Examination (Post UME). The essence of the post UME (now Post UTME) is to screen potential students 

before admission using aptitude test, oral interviews etc. 

The Federal Polytechnic Nekede officially began its Post UTME in the year 2008. To allow prospective candidates apply, those who 

earlier applied to JAMB, wrote the 2008 JAMB for Polytechnics, and attained the prescribed national minimum score were invited to 

apply to Federal Polytechnic Nekede, provided they meet the minimum entry requirements. The Post-Jamb screening test conducted 

that year revealed that many candidates who scored very high in JAMB examination performed badly in the Post Jamb test. The 

results of the two examinations were averaged to determine the eligible candidates for admissions. The most challenging problem was 

that those candidates admitted under this guideline performed poorly at their respective undergraduate courses and this prompted the 

institution to rely solely on the Post Jamb tests for admissions provided the candidates obtained the national minimum JAMB 

requirement for Polytechnics. 

 

2. The Admission Problem 
According to Nze (2013), every year, the Federal Polytechnic Nekede conducts a Post Jamb screening test for admitting candidates 

into various programmes available in her institution. Usually, a large number of candidates pass the screening test than the Polytechnic 

can absorb. The task of selecting the best candidates on the basis of the screening test scores is not always easy. It has been observing 

that some of the qualified candidates are shifted into departments they did not apply for so that they are not denied admission. One 
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This paper demonstrates the use of linear discriminant analysis (LDA) in the admission processes of a higher education in 

Nigeria. Joint Admission and Matriculation Board (JAMB) and Post Unified Tertiary Matriculation Examination (PUTME) 

scores of candidates applying for admissions into Science and Laboratory Technology (SLT) and Statistics (STA) 

departments, since the two departments has the same admission requirements, in 2013/2014 from Federal Polytechnic 

Nekede, Nigeria was used to derive the linear classification rule after assumption justifications corroborate the case of 

multivariate normality and equal covariance matrices. Based on this LDA rule, an Apparent Error Rate (APER) of 32% was 

obtained. This suggests a relatively high rate of misclassification in the admission procedure as could be depicted from a 

partition plot and a predicted classification scores plot. A possible reason for the high APER could be that JAMB and 

PUTME may not be the only factors needed to discriminate and classify a student into SLT or STA departments. Other factors 

like the student’s choice may be valuable. Meanwhile, the set rules were used to classify a sample of five new entrants into 

their appropriate course of study.  
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consequence of this shifting is that those candidates may or may not graduate successfully from those departments. It is against this 

backdrop that this study was initiated with a view to statistically derive a rule that will best allocate candidates into their appropriate 

course of study. The above problems present us with two indicative problems: 1) to find discriminants whose numerical values or 

scores are such that the collections are separated as much as possible and 2) to sort objects (student’s post UTME scores) into two 

groups or more labeled classes. In the latter case, the emphasis would be on deriving a rule that can be used to optimally assign new 

objects to the labeled classes.  

Thus, this study would aim at first, discriminating or separating the candidates into specific courses and then, predicting and allocating 

the suitable course of study for the candidates applying for admission on the basis of their scores at JAMB and Post-UTME using the 

Discriminant Analysis approach as summarized by Johnson and Wichern (2007). 

This is not far from what is obtainable in the literature. Okpara (2001) applied the method of discriminant analysis in analyzing the 

scores of candidates admitted in the school of physical sciences, Nnamdi Azikiwe University Awka in 2000/2001 session and 

constructed a discriminant function that successfully discrimates between those admitted and those not admitted. 

Mahbub (2011) carried out a study on an application of discriminant analysis on university Matriculation Examination scores for 

candidates admitted into Anambra State University. The study focused on the candidates admitted in the Department of Industrial 

Chemistry for 2009/2010 session with the aim of using discriminate function to achieve a sharper discrimination between those 

“Accepted” and those “Not Accepted”. The data for the study were collected at the admissions office of Anambra State University and 

were analyzed using average scores, Hotelling’s  distribution and discriminant analysis. The result of the analysis showed that the 

average scores of those candidates accepted is higher compared to the average scores of not accepted candidates. Hotelling’s  

distribution used showed that the population mean vectors of the two groups (accepted and not accepted candidates) are different. 

Finally, discrinimant function found for “Accepted” and “Not Accepted” candidates and classification rule also showed that some 

candidates were wrongly classified or misclassified.  

Audu and Usman (2013) derived an expression for the discriminant rule in the situation of two groups. The derived expression was 

used to identify the relative contributions of the subjects to the separation of the groups. Group dependent Fisher discriminant analysis 

was employed in classifying students into various departments on the basis of their cumulative results for one-year foundation 

programme (Preliminary Degree Programme in Federal University of Technology, Minna). The discriminant scores for each 

department was predicted with probability of correct classification of 0.796 and apparent error rate of 0.204.  

 

3. Methodology 
 

3.1. Data Collection 

Data for this study is from a secondary source. The data were collected from Admissions Department of the Federal Polytechnic 

Nekede, Owerri. The data are scores obtained by each candidate who sat for the 2013/2014 Jamb and Post UTME for Science 

Laboratory Technology (SLT) and Statistics (STA) departments respectively. A simple random sample of 60 candidates was selected 

from the Department of Statistics (STA) while a simple random sample of 100 candidates was selected from Department of Science 

Laboratory Technology (SLT), both in School of Industrial and Applied Sciences (SIAS) of the Polytechnic. Since the method of 

analysis assumes that research data must come from a normal distribution, we made a choice of sample size that is at least 30, which is 

usually the case for normal population. The R software (R-3.2.1, 2015) will be used throughout this work.  

 

3.2. Statistical Approach - Discriminant Analysis 

Discriminant Analysis is a multivariate technique that is concerned with separating distinct set of objects and with allocating new 

objects into previously defined groups (Johnson & Wichern, 2007). Discriminant Analysis is a powerful statistical tool that is 

concerned with the problem of classification. This problem of classification arises when an investigator makes a number of 

measurements on an individual and wishes to classify the individual into one of the several population groups on the basis of these 

measurements (Morrison, 1967.)  

Either Linear or Quadratic rules may be used to derive classification equations in discriminant analysis for the purpose of predicting 

group membership. Generally, the decision about which rule to use is governed by the degree to which the separate group covariance 

matrices are unequal (Young, 1993).  

  

3.3. Assumptions 

Once a Discriminant Analysis is contemplated, it may be important to check whether the research data satisfy the assumptions of a 

Discriminant Analysis. Some of the assumptions to be examined include no outliers, normality assumption and equality of variance 

covariance matrices. 

 

3.4. Multivariate Normality and Outlier Detection 

Discriminant Analysis assumes that data for the independent variables represent a sample from a multivariate normal distribution. 

Many statistical tests and graphical approaches are available to check the multivariate normality assumption. Burdenski (2000) 

reviewed several statistical and practical approaches, including the Q-Q plot, box-plot, stem and leaf plot, Shapiro-Wilk and 

Kolmogorov-Smirnov tests to evaluate the univariate normality, contour and perspective plots for assessing bivariate normality, and 

the chi-square Q-Q plot to check the multivariate normality. In addition, Mardia (1970), Henze and Zirkler (1990), and Royston 
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(1992) proposed various tests for multivariate normality. Holgersson (2006) stated the importance of graphical procedures and 

presented a simple graphical tool, which is based on the scatter plot of two correlated variables to assess whether the data belong to a 

multivariate normal distribution or not. For a bivariate data (although could also be used for all ), a somewhat more formal way 

for judging the joint normality of a data set is based on the squared generalized distances 

 

Specifically, the values of  are compared with the quantiles with degrees of freedom. In the decision, -

variate normality is indicated if roughly half of the are less than or equal to  where  is the 

 quantile of the chi-square  distribution. Likewise, with the  ordered, the graphical 

approach also graphs the pairs , producing a straight line that passes through the origin with slope 1. Figure 1 

(left and right panel) shows the chi-square plot of the students groups 1 and 2 respectively. 

 

 
Figure 1:Chi-Square Q-Q Plot for Group 1 (Left panel) and Group 2 (Right panel) 

 

>  for Student Group1 (Upper panel) 

[1] 2.94316084 1.00753301 0.35469720 5.01474634 0.80526443 3.12528520 1.42493004 

[8] 0.14114643 0.07587800 1.73991450 1.72998339 1.41312967 1.01650990 1.16994545 

 [15] 2.25959033 0.99180315 1.15445754 5.22614465 0.30212056 0.27029446 0.76456697 

 [22] 1.48623723 2.02656887 9.54163151 0.43214834 1.09561264 0.17804256 0.29581068 

 [29] 0.02711121 0.20919287 9.21365448 4.87834399 2.60432815 0.54410298 4.24593458 

 [36] 0.26745683 1.10379633 3.16755840 0.39876061 1.22747853 0.77883352 0.01626887 

 [43] 0.46707772 4.21148332 1.87084978 2.36865835 1.61636713 1.16104311 2.70231632 

 [50] 1.88452275 1.74548558 3.94427013 5.47111112 0.85658014 1.93175265 1.39787944 

 [57] 0.11541065 0.40072533 1.08620452 4.40960122 1.17450873 2.25056357 5.72428582 

 [64] 0.32721649 0.74050916 0.45126114 0.36545804 1.01354575 3.64950600 1.03890555 

 [71] 0.08879884 4.40254563 2.80705043 1.83128115 1.87985906 1.31095852 2.73548436 

 [78] 2.94444462 3.82329411 1.65212912 1.67800880 5.50113034 0.54648305 3.15174071 

 [85] 0.82870087 2.81350864 3.76707771 2.61556523 0.28639127 5.25710321 2.56779584 

 [92] 3.08224436 1.12008261 2.55884999 1.31483833 0.42047757 4.47005567 1.18554009 

 [99] 0.12602251 0.18546262 

>  for Student Group2 (lower panel) 

 [1]0.8490002 11.08820980.40315830.72129687.22555503.10543361.5567779 

 [8]0.93909152.69234410.47205380.73837820.36330101.07024143.9322894 

[15]0.03580462.41968980.87288161.22653404.74635220.86796830.4327291 

[22]0.66849591.03696961.11608372.60044640.66153311.44627802.1454229 

[29]1.04022412.49386891.24680490.73338410.76929021.36808380.5352963 

[36]1.40728013.14949384.32372850.2777354 11.73442942.57621360.8950785 

[43]3.19201260.35854591.30575370.61105011.83914202.19217591.6407195 

[50]1.34504712.59873371.87090490.82344081.53088890.23499730.5767845 

[57]0.83649440.38583602.75309795.9191432 

Table 1: Squared distances ( ) for the student’s jamb and putme scores 
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While the left panel of Figure 1 suggests a multivariate normality (validated by the Mardia’s MVN test with non-significant Skewness 

and Kurturses p-values of 0.142 and 0.492 respectively at 5% significant levels), the right panel seems to suggest otherwise. A 

possible reason could be the presence of outliers. Multivariate outliers are the common reason for violating multivariate normality 

assumption. In other words, multivariate normality assumption requires the absence of multivariate outliers. Depending upon the 

nature of the outlier and the objectives of the investigators, outliers may be deleted or appropriately “weighted” in a subsequent 

analysis. To check for the existence of outliers, a scatter plot showing configuration of the points as displayed in Figure 2 could be 

applied (Critchley, 1985). 

 

 
Figure 2: Multivariate plot of the students’ Group 1 (left panel) and Group 2 (right panel) data sets 

 

Some steps in outlier detection are to make a dot plot for each variable; to make a scatter plot for each pair of variables; and 

calculating/examining how large or small the standardized values,  for  and each column of 

 are as summarized by Johnson and Wichern (2007). Furthermore, a fourth step of outlier detection procedure, which 

integrates the other steps calculates the given in (1) and then examining these distances for usually large values. In a  plot, the 

outliers would be the points farthest from the origin, implying values that are greater than the . Table 1 (Upper 

and Lower Panel) shows the values of the First and Second student groups respectively.  

It is evident that outliers may be depicted for Group2 data set due to large  values ( ) spotted at the second and 

fortieth values (i.e. at ) of Table 1. An R pairs plot showing the multivariate scatter displayed in Figure 2 really showcases 

the scenario. Observe that two points are spotted lying far from the other clusters in the right panel of Figure 2. This may have greatly 

contributed to its non-compliance to the Mardia’s normality test. 

 

Figure 3 shows a reconstructed  Q-Q plot ignoring these points (outliers). Observe that Figure 3 suggests an approximate cleaned 

situation with all the . In addition, the Mardia’s MVN test conducted on the cleaned data set showed non-significant 

Skewness and Kurturses p-values of 0.063 and 0.386 respectively at 5% significant levels. Consequently, the cleaned Group 2 data set 

would be used for further analysis in this work. 
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Figure 3:Chi-Square Q-Q Plot for Cleaned Group 2 data set 

 

3.5. Equality of Covariance Matrices Using the Box’s M Test 

Fisher’s Linear Discriminant Function assumes that the population covariance matrices across the groups are equal because a pooled 

estimate of the common covariance matrix is used. To determine whether the covariance matrices for the groups under study are 

equal, the Box’s M test will be used (Box, 1949). The hypotheses: against  needs to be tested. The test 

statistic is given by 

 

where k is the number of groups, . At significance level ,  

It is important to note that Box’s M test is very sensitive to non-normality, such that a significant value indicates either unequal 

covariance matrices or non-normality or both. Hence, it is necessary to establish multivariate normality before using Box M test (Box, 

1949).Meanwhile,  for the Student grade data considered in this work is not rejected since  is less than 

. 

 

3.6. Equality of Group Mean Vectors (For Two Samples) 

In Discriminant analysis it is worthwhile to first test whether or not the mean vectors of the groups under study are equal. If the two 

groups differ in their mean vectors, it then means that we can construct a discriminant function which hopefully will enable us to 

distinguish members of one group from those of another group. Conducting such test is usually performed using the Hotellings’ T
2 
test 

under the assumption that the covariance matrices are equal . However, in the case of the unequal variances where

, Tamae and Takashi (2010) adjusted the degrees of freedom of the - distribution to accommodate the test for the mean 

vectors with unequal variances.  

Given the hypothesis of the inequality of means, the Hotellings’ T
2 

test statistic for two sample groups  and  with respective 

sample numbers , , the group means are ,  respectively. Also, the group 
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sample covariance matrices are given as ,  while the pooled covariance 

matrix is . Also, the F value is given by 

 

 
where 

 

We shall reject the null hypothesis ( 0H
) of equality of mean vectors at a significance level, α , if 1,, 21 −−+> PnnPFF α , Otherwise do 

not reject. In this paper, since, 
072.373.6 1,, 21

=>= −−+ PnnPFF α we therefore reject the null hypothesis, 0H
,and conclude that 

there is a significant difference between the mean vectors of the scores of SLT and Statistics candidates at
.05.0=α
 

 

 

4. Results and Discussions 

The Fisher’s Linear Discriminant function (FLDF) as discussed in Rencher (2002) is given by: 

 
The mean discriminant function for the SLT candidates is therefore  

 
Also, the mean discriminant function for STA candidates is:  

 
The critical value of the Fisher’s linear discriminant function is given by  

 

 
 

4.1. Classification Rule 

Classify the candidates whose discriminant scores are greater than or equal to the critical value (5.31) into SLT and those whose 

discriminant scores are less than the critical value (5.31) into STA. 

 

Using prior probabilities proportional to the sample sizes 
( )63.0,37.0 ==== sSTAcSLT

, the confusion matrix is presented in 

Table 2. 

 

Actual Membership Predicted Membership Total 

To SLT =c ( )1π  To STA= s  

From SLT= c ( )1π  68 32 100 

From STA= s  
19 39 58 

Table 2: Confusion matrix 

 

The apparent error rate is then given as  

1

670.08 -45.53

-45.53 854.60

 
=  
 

S
2

515.48 112.27

112.27 833.30

 
=  
 

S

( ) ( )1 1 2 2

1 2

613.59 12.131 1

12.13 846.822

n S n

n n

− + −  
= =  

+ −  

S
S

( ) ( )
21 2

1 2

1 100 58 2 1
13.54 6.73 (3)

2 2 100 58 2

n n p
F T

p n n

+ − − + − −
= = × =

+ − + −

( ) ( )2 1
1 2 1 2 (4)

T

T X X X X−= − −S

( ) ( ) 11
1 2 1 1 2

2

846.82 12.131
ˆ 9.14 14.22 0.0146 0.0166

12.13 613.59519453.2469

T X
y X X X X X X

X

−
−   

= − = = = +  
−  

TS a

( ) ( )1
1 1 2 11

846.82 12.13 200.591
ˆ 9.14 14.22 5.49

12.13 613.59 154.63519453.2469

T

y a X X X X
−

−  
= = − = =  

−  
S

( ) ( )1
2 1 2 22

846.82 12.13 191.451
ˆ 9.14 14.22 5.12

12.13 613.59 140.41519453.2469

T

y aX X X X
−

−  
= = − = =  

−  
S

1 2
5.49 5.12

ˆ 5.31
2 2

critical

y y
y

+ +
= = =

( )2π

( )2π

1. 2.

1 2

32 19 51
0.32

158 158

miss miss
n n

APER
n n

+ +
= = = =

+



 The International Journal Of Science & Technoledge (ISSN 2321 – 919X) www.theijst.com 

 

38                                                                    Vol 3 Issue 12                                                   December, 2015 

 

 

Observe that the probability of misclassification of SLT candidates = and the probability of misclassification of 

STA candidates=  

 

A partition plot for the quadratic discriminant analysis uses the R klaR package by Weihs et. al (2005). Maintaining the proportions of 

the data sets as the prior probabilities, it is observable that there is a clear distinction of the two discriminated populations. The error 

due to misclassification is calculated to be around 32%. 

 

 
Figure 4: Partition plot of the Student Grades with prior probability using LDA (c=0.37, s=0.63) 

 

The overall probability of misclassification is (0.32 or 32%).This is an indication that the discriminant function derived in this study 

has the capability of correctly allocating about 68% of the candidates applying for admission into their appropriate courses of study. 

Although the overall error rate of 32% may be low, there is unfairness here. It is less likely that more Statistics (STA) candidates will 

be misclassified as Science Laboratory Technology (SLT) candidates, rather than vice versa. This is evident from the group 

probabilities of misclassification, where out of 100 candidates admitted into SLT, about 68 were correctly admitted whereas 32 were 

wrongly admitted. Similarly, out of 58 candidates admitted into STA, about 39 were correctly admitted whereas 19 were wrongly 

admitted. This therefore, shows that SLT has about 32% chance of being misclassified whereas STA has about 33% chance of being 

misclassified.The Fisher Linear Discriminant Function indicated that about 32% of the candidates were misclassified into their courses 

of study. The LDA1 values of 8.425736 for SLT and 9.033104 for STA, which are quite close supports the high level of the APER 

value. A possible cause of the close LDA1 values leading to high APER value may be the non-presence of another factor which would 

be able to help discriminate the students as much as possible. For instance, such factor may have been the choices of students to the 

two departments irrespective of their scores and other factors like the existence of quota of admission into a particular department if 

any. The partition plot of Figure 4 and predicted classification scores plot displayed in Figure 5 brings this argument to limelight as 

many SLT and STA scores crossed the region of each other. With the group centroids closer together within, high error rate in 

inevitable. This is also supported by the expected unbiased actual error rate of 0.3228 using the Lachenbruch predicted membership 

approach (Lachenbruch, 1975). 
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Figure 5: Predicted classification scores plot of the Student Grades 

 

4.2. Allocation of New Students 

The classification rule for allocating candidates into their appropriate course of study can be given as follows: 

Allocate a new candidate 
)( 0x

to SLT Department 
)( 1π

if  

Allocate a new candidate 
)( 0x

to STA Department 
)( 2π

if
 

 

Using the LDA1 values, this implies that we then allocate an observation to the SLT group if  is smaller than

; we allocate an observation to the STA group if is smaller than . 

 

 Student1 Student2 Student3 Student4 Student5 

jamb 192 189 220 249 164 

putme 114 122 180 168 136 

Table 3: New students’ scores for 2015 session 

 

Table 3 shows five samples of the 2015 session JAMB and PUTME scores randomly selected for people looking for admission into 

the SLT and STA departments of the Federal Polytechnics, Nekede Owerri. 

Applying the classification rules (5) and (6), Table 4 shows the appropriate departments the students need to be admitted into.  

 

 Student1 Student2 Student3 Student4 Student5 

 
4.69 4.78 6.19 6.41 4.64 

department SLT SLT STA STA SLT 

Table 4: New students’ scores allocation using (5) and (6) 
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4.3. Recommendations 

The management of Federal Polytechnic Nekede should adopt this predictive model in its admission process as it will help them 

minimize the rate of misclassification during any admission period. 

This study focused on two departments only and the result of the discriminant analysis cannot be extended to the entire departments 

within the institution. We therefore recommend that future research be carried out to accommodate all the departments so that the 

institution would have a better knowledge of the classification rules for placing all candidates into their appropriate courses of study. 

This recommendation certainly calls for a multiple discriminant analysis. 

The discriminant function derived in this paper is able to correctly classify about 68% of all the candidates into their appropriate 

courses of study, but could not do same for those candidates that were denied admissions. So, we recommend that future research be 

carried out in order to derive a classification rule that can be used to place those candidates who were qualified for admission but were 

denied admission due to inadequate admission space. In addition, a future discriminant analysis may look into such factors like the 

students’ choice in correctly discriminating the departments the student is admitted into. 
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