THE INTERNATIONAL JOURNAL OF SCIENCE & TECHNOLEDGE

Generalized 3 – Complement of Set Domination

P. Sumathi

Head & Associate Professor, Department of Mathematics, C.K.N. College for Men, Anna Nagar, Chennai, India **T. Brindha**

Assistant Professor, Department of Mathematics, E.M.G. Yadava Women's College, Madurai, Chennai, India

Abstract:

Let G=(V, E) be a simple, undirected, finite nontrivial graph. A set $S \subseteq V$ of vertices of a graph G = (V, E) is called a dominating set if every vertex $v \in V$ is either an element of S or is adjacent to an element of S. A set $S \subseteq V$ is a set dominating set if for every set $T \subseteq V$ -S, there exists a non-empty set $R \subseteq S$ such that the subgraph $\langle RUT \rangle$ is connected. The minimum cardinality of a set dominating set is called set domination number and it is denoted by γ_s (G).Let $P=(V_1, V_2, V_3)$ be a partition of V of order 3. Remove the edges between V_i and V_j where $i \neq j$ ($1 \leq i, j \leq 3$) in G and join the edges between V_i and V_j which are not in G. The graph G_3^p thus obtained is called 3-complement of G with respect to 'P'.

Keywords: Dominating set, Set dominating set, 3-complement of G.

1. Introduction

Let G=(V,E) be a simple, undirected, finite nontrivial graph with vertex set V and edge set E. And $K_n, K_{m,n}, C_n, P_n$ and $K_{1,n}$ denote the complete graph, the complete bipartite graph, the cycle, the path and the star on n-vertices respectively. A nonempty set $S \subseteq V$ of vertices in a graph G=(V,E) is called a dominating set if every vertex ve V is either an element of S or is adjacent to an element of S. A set $S \subseteq V$ is a set dominating set if for every set $T \subseteq V$ -S, there exists a non-empty set $R \subseteq S$ such that the subgraph <RUT> is connected. The minimum cardinality of a set dominating set is called set domination number and it is denoted by γ_s (G).

2. Observation

For any connected graph G, γ (G) $\leq \gamma_s$ (G).

In the following example the set domination number γ_{s} is calculated.

3. Example

Let $V = \{v_1, v_2, \dots, v_n\}$ be the vertices of G. $S = \{v_3, v_4, v_6\}$. For every $T \subseteq V$ -S there exists a nonempty set $R \subseteq S$ such that $\langle RUT \rangle$ is connected. Here, γ_s (G) = 3.

The 3-complementary of the set domination number of some standard graphs are given below.

4. Theorem

When $G=K_n$ $(n \ge 3)$, let (V_1, V_2, V_3) be a partition of G and $|V_1| = k$, $|V_2| = r$, $|V_3| = l$ $(k \le r \le l$) then

 $\gamma_{s} (G_{3}^{p}) = k+r+1.$

Proof:-Let $V(K_n) = \{v_1, v_2, ..., v_n\}$ and (V_1, V_2, V_3) be a partition of G. Suppose $V_1 = \{v_1\} V_2 = \{v_2\}$ and $V_3 = \{v_3, v_4, ..., v_n\}$ then G_p^3 is a disconnected graph with 3 components. And v_1 and v_2 are isolated vertices.

Here < { v_3 , v_4 v_n }> form a complete graph with n-2 vertices in G₃^p.Here a γ_s – set is { v_1 , v_2 , v_3 }. Therefore γ_s (G₃^p) = 3.

If $V_1 = \{v_1\}, V_2 = \{v_2, v_3\}$ and $V_3 = \{v_4, v_5, \dots, v_n\}$ then G_p^3 is a disconnected graph with 3 components. And v_1 is an isolated vertex. And v_2 is adjacent to v_3 . Here $\langle v_4, v_5, \dots, v_n \rangle$ form a complete graph with n-3 vertices in G_3^p . Here a γ_s – set is $\{v_1, v_2, v_3, v_4\}$. Therefore $\gamma_s (G_3^p) = 4$.

Suppose $V_1 = \{v_1\}, V_2 = \{v_2, v_3, v_4\}$ and $V_3 = \{v_5, v_6, \dots, v_n\}$ then G_p^3 is a disconnected graph with 3 components. And v_1 is an isolated vertex. Here $\langle v_5, v_6, \dots, v_n \rangle$ and $\langle v_2, v_3, v_4 \rangle$ are disjoint and they form a complete graph Here a γ_s – set is $\{v_1, v_2, v_3, v_4, v_5\}$. Therefore $\gamma_s (G_3^p) = 5$.

Suppose $V_1 = \{v_1\}, V_2 = \{v_2, v_3, v_4, v_5\}$ and $V_3 = \{v_6, v_7, \dots, v_n\}$ then G_p^3 is a disconnected graph. And v_1 is an isolated vertex. Here $\langle v_2, v_3, v_4, v_5 \rangle$ and $\langle v_6, v_7, \dots, v_n \rangle$ are disjoint and they form a complete graph. Here a γ_s – set is $\{v_1, v_2, v_3, v_4, v_5, v_6\}$. Therefore γ_s (G_3^p) = 6.

Proceeding like this, Suppose $V_1 = \{v_1\}, V_2 = \{v_2, v_3, \dots, v_{n-1}\}$ and $V_3 = \{v_n\}$ then G_p^3 is a disconnected graph. Here a γ_s – set is $\{v_1, v_2, v_n\}$. Therefore $\gamma_s (G_3^p) = 3$.

If $V_1 = \{v_1, v_2\}, V_2 = \{v_3, v_4\}$ and $V_3 = \{v_5, v_6, \dots, v_n\}$ then G_p^3 is a disconnected graph with 3 components. And v_1 is adjacent to v_2 , v_3 is adjacent to v_4 and $\langle v_5, v_6, \dots, v_n \rangle$ form a complete graph with n-5 vertices. Here a γ_s – set is $\{v_1, v_2, v_3, v_4, v_5\}$. Therefore $\gamma_s (G_3^p) = 5$.

If $V_1 = \{v_1, v_2\}, V_2 = \{v_3, v_4, v_5\}$ and $V_3 = \{v_6, v_7, \dots, v_n\}$ then G_p^3 is a disconnected graph with 3 components. Here $\{<v_1, v_2>\}$ and $<\{v_3, v_4, v_5\}$ and $<v_6, v_7, \dots, v_n\}$ are disjoint. Here v_1 is adjacent to v_2 and $<v_3, v_4, v_5\}$ and $<\{v_6, v_7, \dots, v_n\}$ form a complete graph. Here a γ_s – set is $\{v_1, v_2, v_3, v_4, v_5, v_6\}$. Therefore γ_s (G_3^p) = 6.

If $V_1 = \{v_1, v_2\}, V_2 = \{v_3, v_4, v_5, v_6\}$ and $V_3 = \{v_7, v_8, \dots, v_n\}$ then G_p^3 is a disconnected graph with 3 components. Here $\{<v_1, v_2>\}$ and $<\{v_3, v_4, v_5, v_6\}>$ and $<v_7, v_8, \dots, v_n\}>$ are disjoint. Here v_1 is adjacent to v_2 and $<v_3, v_4, v_5, v_6\}>$ and $<\{v_7, v_8, \dots, v_n\}>$ form a complete graph. Here a γ_s – set is $\{v_1, v_2, v_3, v_4, v_5, v_6, v_7\}$. Therefore $\gamma_s (G_3^p) = 7$

Proceeding like this, If $V_1 = \{v_1, v_2\}, V_2 = \{v_3, v_4, \dots v_{n-1}\}$ and $V_3 = \{v_n\}$ then G_p^3 is a disconnected graph. Here v_n is an isolated vertex. And v_1 is adjacent to v_2 and $\langle v_3, v_4, \dots v_{n-1} \}$ form a complete graph with n-2 vertices. Here a γ_s – set is $\{v_1, v_2, v_3, v_n\}$. Therefore γ_s $(G_3^p) = 4$.

All other partitions, we get an isomorphic graph of one of the above cases.

5. Theorem

Let G be a Complete bipartite graph with partition (V_1, V_2) , where $|V_1|=m$ and $|V_2|=n$ where $m \le n$. Let (W_1, W_2, W_3) be a partition of $V(G_3^{p})$ then

 $\gamma_s (G_3^p) =$

if $|W_i| = |W_j| = 1$ where i, j = 1, 2, 3 with $i \neq j$

 $\begin{array}{ll} 2 & \text{if } W_i = \{u,v\} \text{ where } u \in V_1 \text{ and } v \in V_2 \\ m+1 & \text{if } W_i = V_1, W_j = \{v\} \text{ where } v \in V_2, W_k = V \setminus (W_i \cup W_j) \text{ for } i, j = 1,2,3 \\ n+1 & \text{if } W_i = V_2, W_j = \{u\} \text{ where } v \in V_1, W_k = V \setminus (W_i \cup W_j) \text{ for } i, j = 1,2,3 \\ m+2 & \text{if } W_i = V_1, W_j = \{v_p, v_q\} \text{ where } v_p, v_q \in V_2, W_k = V \setminus (W_i \cup W_j) \text{ for } i, j = 1,2,3 \\ n+2 & \text{if } W_i = V_2, W_j = \{u_p, u_q\} \text{ where } u_p, u_q \in V_1, W_k = V \setminus (W_i \cup W_j) \text{ for } i, j = 1,2,3 \\ \end{array}$

Proof:

 \rightarrow Case:1

Let $|W_1| = |V_j| + 1$, $|W_2| = 1$, $|W_3| = 1$ for some i. Then G_p^3 is a connected graph. In G_p^3 , which element is joined to V_i that element is adjacent to all other elements. Therefore a γ_s -set has only one element to satisfy the set domination. Hence $\gamma_s (G_3^p) = 1$ \rightarrow Case:2

If $V_1 = \{u_1\}, V_2 = \{v_2\}$ and $V_3 = V \setminus (V_1 \cup V_2)$ then G_p^3 is a connected graph. Here a γ_s – set is $\{v_1, u_2\}$. Therefore $\gamma_s (G_3^p) = 2$.

If $V_1 = \{u_1\}, V_2 = \{u_2, v_1\}$ and $V_3 = V \setminus (V_1 \cup V_2)$ then G_p^3 is a connected graph. Here a γ_s – set is $\{v_1, u_2\}$. Therefore $\gamma_s (G_3^{p}) = 2$.

If $V_1 = \{u_1\}, V_2 = \{u_2, u_3, v_1\}$ and $V_3 = V \setminus (V_1 \cup V_2)$ then G_p^3 is a connected graph. Here a γ_s – set is $\{v_1, u_3\}$. Therefore $\gamma_s (G_3^p) = 2$. If $V_1 = \{v_2\}, V_2 = \{v_3\}$ and $V_3 = V \setminus (V_1 \cup V_2)$ then G_p^3 is a connected graph. Here a γ_s – set is $\{v_1, v_2\}$. Therefore $\gamma_s (G_3^p) = 2$. If $V_1 = \{u_1, v_1\}, V_2 = \{u_2, u_3\}$ and $V_3 = V \setminus (V_1 \cup V_2)$ then G_p^3 is a connected graph. Here u_1 is adjacent to u_2 and u_3 . And v_1 is adjacent to v_2, v_3, \dots, v_n . Therefore a γ_s – set is $\{u_1, v_1\}$. Therefore $\gamma_s (G_3^p) = 2$.

If $V_1 = \{u_1, v_1, v_2\}, V_2 = \{u_2, u_3\}$ and $V_3 = V \setminus (V_1 \cup V_2)$ then G_p^3 is a connected graph. Here u_1 is adjacent to u_2, u_3, \dots, u_n . And v_1 and v_2 are adjacent to v_3, v_4, \dots, v_n . Therefore a γ_s – set is $\{u_1, v_2\}$. Therefore $\gamma_s (G_3^p) = 2$.

If $V_1 = \{u_1, v_1, v_2, v_3\}, V_2 = \{u_2, u_3\}$ and $V_3 = V \setminus (V_1 \cup V_2)$ then u_1 is adjacent to $u_2, u_3, \dots, u_n, v_1, v_2, v_3$. And v_1, v_2, v_3 are adjacent to v_4, v_5, \dots, v_n . Therefore a γ_s – set is $\{u_1, v_1\}$. Therefore γ_s (G_3^p) =2.

If $V_1 = \{u_1, u_2\}, V_2 = \{u_3\}$ and $V_3 = V \setminus (V_1 \cup V_2)$ then G_p^3 is a connected graph. Here u_3 is adjacent to $u_1, u_2, u_4, u_5 \dots u_n$. And u_4 is adjacent to v_1, v_2, \dots, v_n . Therefore a γ_s – set is $\{u_3, u_4\}$. Therefore $\gamma_s (G_3^p) = 2$.

If $V_1 = \{u_1, u_2\}, V_2 = \{u_3, v_1\}$ and $V_3 = V \setminus (V_1 \cup V_2)$ then G_p^3 is a connected graph. Here u_3 is adjacent to $u_1, u_2, u_3, \dots, u_n$. And v_1 is adjacent to v_2, v_3, \dots, v_n . Therefore a γ_s – set is $\{u_3, v_1\}$. Therefore $\gamma_s (G_3^p) = 2$.

Proceeding like this, for other similar partitions we get $\gamma_s (G_3^p) = 2$.

$$\rightarrow$$
 Case:3

In this case, G_p^3 is a disconnected graph. Here $u_1, u_2, ..., u_m$ are isolated vertices. And $v_i \in W_j$ is adjacent to $v_1, v_2, ..., v_n$ except i. Therefore a γ_s – set is $\{u_1, u_2, u_3, ..., u_m, v_i\}$. Therefore γ_s (G_3^p) =m+1.

 \rightarrow Case:4

In this case, G_p^3 is a disconnected graph. Here $v_1, v_2, ..., v_n$ are isolated vertices. And $u_i \in W_j$ is adjacent to $u_1, u_2, ..., u_n$ except i. Therefore a γ_s – set is $\{u_i, v_1, v_2, ..., v_n\}$. Therefore γ_s (G_3^p) =n+1.

 \rightarrow Case:5

In this case, G_p^3 is a disconnected graph. Here $u_1, u_2, ..., u_m$ are isolated vertices. And $v_p, v_q \in W_j$ are adjacent to $v_1, v_2, ..., v_n$. Therefore a γ_s – set is $\{u_1, u_2, u_3, ..., u_m, v_p, v_q\}$. Therefore γ_s (G_3^p) =m+2.

 \rightarrow Case:6

In this case, G_p^3 is a disconnected graph. Here $v_1, v_2, ..., v_n$ are isolated vertices. And $u_p, u_q \in W_j$ are adjacent to $u_1, u_2, ..., u_m$. Therefore a γ_s – set is { $v_1, v_2, v_3, ..., v_n, u_p, u_q$ }. Therefore γ_s (G_3^p) =n+2.

6. Theorem

Let G be a star ($K_{1,n}$ where $n \ge 4$) Let u be the star center and u_1, u_2, \dots, u_n be the pendant of G. Let (W_1, W_2, W_3) be the partition of G_3^p .

Then
$$\gamma_s$$
 (G₃^p)= 1 if W_k={u,u_i}, 1 \le i \le n, k=1,2,3
3 if W₁={u},W₂={u_i,u_j},W₃=V\(W₁ \cup W₂) or W₁={u}, W₂={u_i,u_j,u_k}, W₃=V\(W₁ \cup W₂)
2 otherwise

Proof:

 \rightarrow case:1

If $W_1 = \{u, u_1\}$, $W_2 = \{u_2\}$, $W_3 = \{u_3, u_4, ..., u_n\}$ then in G_3^p , u_1 is adjacent to all other vertices. Since, u_1 is adjacent to u and all other vertices of W_2 and W_3 . Therefore a γ_s set is $\{u_1\}$. Hence $\gamma_s (G_3^p) = 1$.

If $W_1 = \{u, u_2\}$, $W_2 = \{u_3\}$, $W_3 = \{u_1, u_4, u_5, \dots, u_n\}$ then in G_3^p , u_2 is adjacent to u and all other vertices of W_2 and W_3 . Therefore a γ_s set is $\{u_2\}$. Hence γ_s (G_3^p) = 1.

Proceeding like this, if $W_1 = \{u, u_n\}$, $W_2 = \{u_{n-1}\}$, $W_3 = \{u_1, u_2, \dots, u_{n-2}\}$ then in G_3^p , u is adjacent to u_2 and all other vertices W_2 and W_3 . Therefore a γ_s -set is $\{u_n\}$. Hence γ_s (G_3^p) = 1.

 \rightarrow Case:2

If $W_1 = \{u\}$, $W_2 = \{u_1, u_2\}$, $W_3 = \{u_3, u_4, \dots, u_n\}$ then in G_3^p , u is an isolated vertex. And u_1 is adjacent to u_3, u_4, \dots, u_n , u_2 is adjacent to u_3, u_4, \dots, u_n . Therefore a γ_s set is $\{u, u_1, u_2\}$. Hence γ_s (G_3^p) = 3.

If $W_1 = \{u\}$, $W_2 = \{u_1, u_2, u_3\}$, $W_3 = V|(W_1 \cup W_2)$ then in G_3^p , u is an isolated vertex. And u_1 is adjacent to u_4, u_5, \dots, u_n , u_2 is adjacent to u_4, u_5, \dots, u_n , u_1 is adjacent to u_4, u_5, \dots, u_n , u_2 is adjacent to u_4, u_5, \dots, u_n . Therefore a γ_s set is $\{u, u_1, u_4\}$. Hence γ_s (G_3^p) = 3.

If $W_1 = \{u\}$, $W_2 = \{u_1, u_2, \dots, u_{n-2}\}$, $W_3 = \{u_{n-1}, u_n\}$ then in G_3^p , u is an isolated vertex. And u_1 is adjacent to u_{n-1}, u_n and also u_{n-1} is adjacent to u_1, u_2, u_{n-2} . Therefore a γ_s -set is $\{u, u_1, u_{n-1}\}$. Hence γ_s (G_3^p) = 3.

If $W_1 = \{u\}$, $W_2 = \{u_1, u_2, \dots, u_{n-3}\}$, $W_3 = \{u_{n-2}, u_{n-1}, u_n\}$ then in G_3^p , u is an isolated vertex. And u_1 is adjacent to u_{n-2}, u_{n-1}, u_n , also u_{n-2} is adjacent to u_1, u_2, \dots, u_{n-3} . Therefore a γ_s set is $\{u, u_1, u_{n-2}\}$. Hence γ_s (G_3^p) = 3.

 \rightarrow Case:3

If $W_1 = \{u\}$, $W_2 = \{u_1\}$, $W_3 = V | (W_1 \cup W_2)$ then in G_3^p , u is an isolated vertex. And u_1 is adjacent to $u_2, u_3, ..., u_n$. Therefore a γ_s set is $\{u, u_1\}$. Hence $\gamma_s (G_3^p) = 2$.

If $W_1 = \{u\}$, $W_2 = \{u_n\}$, $W_3 = V|(W_1 \cup W_2)$ then in G_3^p , u is an isolated vertex. And u_n is adjacent to u_1, u_2, \dots, u_{n-1} . Therefore a γ_s set is $\{u, u_n\}$. Hence $\gamma_s (G_3^p) = 2$.

If $W_1 = \{u, u_1, u_2\}$, $W_2 = \{u_3\}$, $W_3 = V|(W_1 \cup W_2)$ then in G_3^p , u is adjacent to u_1, u_2 . And u_1 is adjacent to all other vertices of W_2 and W_3 . Therefore a γ_s -set is $\{u, u_1\}$. Hence γ_s (G_3^p) = 2. If $W_1 = \{u, u_1, u_2\}$, $W_2 = \{u_3, u_4, \dots, u_{n-2}\}$, $W_3 = \{u_{n-1}, u_n\}$ then in G_3^p , u is adjacent to u_1, u_2 . And u_1 is adjacent to all other vertices of W_2 and W_3 . Therefore a γ_s -set is $\{u, u_1\}$. Hence γ_s (G_3^p) = 2.

If $W_1 = \{u, u_1, u_2, \dots, u_{n-4}\}$, $W_2 = \{u_{n-3}, u_{n-2}\}$, $W_3 = \{u_{n-1}, u_n\}$ then in G_3^p , u is adjacent to u_1, u_2, \dots, u_{n-4} . And u_1 is adjacent to all other vertices of W_2 and W_3 . Therefore a γ_s -set is $\{u, u_1\}$. Hence $\gamma_s (G_3^p) = 2$.

If $W_1 = \{u, u_1, u_2, \dots, u_{n-3}\}$, $W_2 = \{u_{n-2}\}$, $W_3 = \{u_{n-1}, u_n\}$ then in G_3^p , u is adjacent to u_1, u_2, \dots, u_{n-3} . And u_1 is adjacent to u_{n-2}, u_{n-1}, u_n . Therefore a γ_s set is $\{u, u_1\}$. Hence γ_s (G_3^p) = 2.

Proceeding like this, If $W_1 = \{u, u_1, u_2, \dots, u_{n-2}\}$, $W_2 = \{u_{n-1}\}$, $W_3 = \{u_n\}$ then in G_3^p , u is adjacent to u_1, u_2, \dots, u_{n-2} . And u_1 is adjacent to un-1, un. Therefore a γ_s -set is $\{u, u_1\}$. Hence γ_s (G_3^p) = 2.

7. Theorem

Let G be a star ($K_{1,n}$ where n=3) Let u be the star center and u_1, u_2, u_3 be the pendant of G. Let (W_1, W_2, W_3) be the partition of G_3^p .

Then $\gamma_s (G_3^p) = \begin{cases} 1 \text{ if } W_k = \{u, u_i\}, 1 \le i \le n, k = 1, 2, 3 \\ 2 \text{ if } W_i = \{u\}, W_j = \{u_i\}, W_3 = V \setminus (W_1 \cup W_2) \end{cases}$

Proof:

If $W_1=\{u,u_1\}$, $W_2=\{u_2\}$, $W_3=\{u_3\}$ then in G_3^{p} , u_1 is adjacent to all other vertices. Therefore a γ_s -set is $\{u_1\}$. Hence $\gamma_s (G_3^{p})=1$.

If $W_1 = \{u, u_2\}$, $W_2 = \{u_1\}$, $W_3 = \{u_3\}$ then in G_3^p , u_2 is adjacent to all other vertices. Therefore a γ_s set is $\{u_2\}$. Hence $\gamma_s (G_3^p) = 1$.

If $W_1 = \{u, u_3\}$, $W_2 = \{u_1\}$, $W_3 = \{u_2\}$ then in G_3^p , u_3 is adjacent to all other vertices. Therefore a γ_s set is $\{u_3\}$. Hence $\gamma_s (G_3^p) = 1$.

 \rightarrow Case:2

If $W_1 = \{u\}$, $W_2 = \{u_1\}$, $W_3 = \{u_2, u_3\}$ then in G_3^p , u is an isolated vertex. And u_1 is adjacent to u_2, u_3 . Therefore a γ_s -set is $\{u, u_1\}$. Hence $\gamma_s = (G_3^p) = 2$.

If $W_1 = \{u\}$, $W_2 = \{u_2\}$, $W_3 = \{u_1, u_3\}$ then in G_3^p , u is an isolated vertex. And u_2 is adjacent to u_1, u_3 . Therefore a γ_s -set is $\{u, u_2\}$. Hence γ_s $(G_3^p) = 2$.

If $W_1 = \{u\}$, $W_2 = \{u_3\}$, $W_3 = \{u_1, u_2\}$ then in G_3^p , u is an isolated vertex. And u_3 is adjacent to u_1, u_2 . Therefore a γ_s -set is $\{u, u_3\}$. Hence γ_s $(G_3^p) = 2$.

8. Note

If W_k has only a star u then G_k^p is a disconnected graph for k=1,2,3.

9. Theorem

Let G be a path on n vertices ($n \ge 5$) say v_1, v_2, \dots, v_n . Let v_1 and v_n are pendant vertices and v_2, v_3, \dots, v_{n-1} are vertices of degree 2 then

Then
$$\gamma_s$$
 (G₃^p)= 1 if $W_k = \{v_j \cup N(v_j)\}$, j=1,n, k=1,2,3 or $W_k = \{v_s, v_{s+1}, v_{s+2}\}$, where $1 \le s \le n$.
3 if $W_i = \{v_r\}$, $W_j = \{v_s\}$, $W_k = V \setminus (W_i \cup W_j)$ where v_r and v_s are alternative, non pendant vertices.
2 otherwise

Proof:

→ case :1 If $W_1 = \{v_1, v_2\}, W_2 = \{v_3, v_4\}$ and $W_3 = V (W_1 \cup W_2)$ then in G_p^3 , v_1 is adjacent to to all other vertices. Therefore $\gamma_s - \text{set is } \{v_1\}$. Hence $\gamma_s (G_3^p) = 1$. If $W_1 = \{v_1, v_2\}, W_2 = \{v_3, v_4, v_5\}$ and $W_3 = V (W_1 \cup W_2)$ then in G_p^3 , v_1 is adjacent to to all other vertices. Therefore $\gamma_s - \text{set is } \{v_1\}$. Hence $\gamma_s (G_3^p) = 1$. If $W_1 = \{v_1, v_2\}, W_2 = \{v_3, v_4, v_5, v_6\}$ and $W_3 = V (W_1 \cup W_2)$ then in G_p^3 , v_1 is adjacent to to all other vertices. Therefore $\gamma_s - \text{set is } \{v_1\}$. Hence $\gamma_s (G_3^p) = 1$. Proceeding like this, If $W_1 = \{v_1, v_2\}, W_2 = \{v_3, v_4, ..., v_{n-1}\}$ and $W_3 = \{v_n\}$ then in G_p^3 , v_1 is adjacent to $v_2, v_3, ..., v_n$. Therefore $\gamma_s - \text{set is } \{v_1\}$. Hence $\gamma_s (G_3^p) = 1$.

If $W_1 = \{v_1\}, W_2 = \{v_2, v_3, \dots, v_{n-2}\}$ and $W_3 = \{v_{n-1}, v_n\}$ then in G_p^3 , v_n is adjacent to to all other vertices. Therefore $\gamma_s - set$ is $\{v_n\}$. Hence $\gamma_s (G_3^p) = 1$.

If $W_1 = \{v_1\}, W_2 = \{v_2, v_3, v_4\}$ and $W_3 = V \setminus (W_1 \cup W_2)$ then in G_p^3 , v_3 is adjacent to to all other vertices. Therefore $\gamma_s - set$ is $\{v_3\}$. Hence $\gamma_s (G_3^p) = 1$.

Proceeding like this,

If $W_1 = \{v_1\}, W_2 = \{v_2, v_3, \dots, v_{n-3}\}$ and $W_3 = \{v_{n-2}, v_{n-1}, v_n\}$ then in G_p^3 , v_{n-1} is adjacent to to all other vertices. Therefore γ_s – set is $\{v_{n-1}\}$. Hence $\gamma_s (G_3^p) = 1$.

And, if $W_1 = \{v_1, v_3, v_4, v_5, \dots, v_{n-10}, v_{n-8}, v_{n-7}, v_{n-6}\}, W_2 = \{v_2, v_6, v_7, v_8, \dots, v_{n-9}, v_{n-5}, v_{n-4}, v_{n-3}\}$ and $W_3 = \{v_{n-2}, v_{n-1}, v_n\}$ then in G_{p}^3 , v_{n-1} is adjacent to to all other vertices. Therefore γ_s – set is $\{v_{n-1}\}$. Hence γ_s (G_3^p) = 1.

 \rightarrow Case:2

If $W_1 = \{v_3\}, W_2 = \{v_5\}$ and $W_3 = V \setminus (W_1 \cup W_2)$ then in G_p^3 , v_4 is an isolated vertex. And v_3 is adjacent to $v_1, v_5, v_6, \dots, v_n$. Also v_5 is adjacent to $v_1, v_2, v_7, v_8, \dots, v_n$. Therefore $\gamma_s - \text{set}$ is $\{v_3, v_4, v_5\}$. Hence $\gamma_s (G_3^p) = 3$.

If $W_1 = \{v_3\}, W_2 = \{v_5\}$ and $W_3 = V \setminus (W_1 \cup W_2)$ then in G_p^3 , v_4 is an isolated vertex. And v_3 is adjacent to $v_1, v_5, v_6, \dots, v_n$. Also v_5 is adjacent to $v_1, v_2, v_7, v_8, \dots, v_n$. Therefore $\gamma_s - \text{set}$ is $\{v_3, v_4, v_5\}$. Hence $\gamma_s (G_3^p) = 3$.

If $W_1 = \{v_2\}, W_2 = \{v_4\}$ and $W_3 = V \setminus (W_1 \cup W_2)$ then in G_p^3 , v_3 is an isolated vertex. And v_2 is adjacent to $v_4, v_5, v_6, \dots, v_n$. Also v_4 is adjacent to $v_1, v_6, v_7, v_8, \dots, v_n$. Therefore $\gamma_s - \text{set is } \{v_2, v_3, v_4\}$. Hence $\gamma_s (G_3^p) = 3$.

Proceeding like this, If $W_1 = \{v_{n-1}\}, W_2 = \{v_{n-3}\}$ and $W_3 = V \setminus (W_1 \cup W_2)$ then in G_p^3 , v_{n-2} is an isolated vertex. And v_{n-3} is adjacent to $v_1, v_2, \dots, v_{n-5}, v_{n-4}$. Therefore $\gamma_s - set$ is $\{v_{n-2}, v_{n-3}, v_{n-4}\}$. Hence

$$\gamma_{s}(G_{3}^{p})=3.$$

If $W_1 = \{v_{n-2}\}, W_2 = \{v_n\}$ and $W_3 = V \setminus (W_1 \cup W_2)$ then in G_p^3 , v_{n-1} is an isolated vertex. And v_{n-2} is adjacent to $v_1, v_2, \dots, v_{n-5}, v_{n-4}$. Also v_n is adjacent to $v_1, v_2, \dots, v_{n-4}, v_{n-5}, v_{n-4}$. Also v_n is adjacent to $v_1, v_2, \dots, v_{n-4}, v_{n-5}, v_{n-4}$. Also v_n is adjacent to $v_1, v_2, \dots, v_{n-4}, v_{n-5}, v_{n-4}$. Also v_n is adjacent to $v_1, v_2, \dots, v_{n-4}, v_{n-5}, v_{n-4}$. Also v_n is adjacent to $v_1, v_2, \dots, v_{n-5}, v_{n-4}$.

 \rightarrow Case:3

If $W_1 = \{v_1\}, W_2 = \{v_2\}$ and $W_3 = V \setminus (W_1 \cup W_2)$ then in G_p^3 , v_1 is adjacent to v_3, v_4, \dots, v_n . Also v_2 is adjacent to v_4, v_5, \dots, v_n . Therefore γ_s – set is $\{v_1, v_2\}$. Hence

$$\gamma_{s}(G_{3}^{p})=2.$$

If $W_1 = \{v_1\}, W_2 = \{v_2, v_3\}$ and $W_3 = V \setminus (W_1 \cup W_2)$ then in G_p^3 , v_1 is adjacent to v_3, v_4, \dots, v_n . Also v_2 is adjacent to v_3, v_4, \dots, v_n . Therefore a γ_s – set is $\{v_1, v_2\}$. Hence γ_s (G_3^p) =2.

If $W_1 = \{v_1\}, W_2 = \{v_2, v_3, v_4, v_5\}$ and $W_3 = V \setminus (W_1 \cup W_2)$ then in G_p^3 , v_1 is adjacent to v_3, v_4, \dots, v_n . Also v_2 is adjacent to v_6, v_7, \dots, v_n . Also there exists a path from v_2 to v_5 and v_6 to v_n . Therefore $\gamma_s - \text{set}$ is $\{v_1, v_2\}$. Hence $\gamma_s (G_3^p) = 2$.

If $W_1 = \{v_1\}, W_2 = \{v_2, v_3, \dots, v_{n-1}\}$ and $W_3 = \{v_n\}$ then in G_p^3 , v_1 is adjacent to v_3, v_4, \dots, v_n . Also v_n is adjacent to v_1, v_2, \dots, v_{n-2} . Also, there exists a path from v_2 to v_{n-2} . Therefore γ_s – set is $\{v_1, v_2\}$. Hence γ_s (G_3^p) =2.

If $W_1 = \{v_1\}, W_2 = \{v_3\}$ and $W_3 = V \setminus (W_1 \cup W_2)$ then in G_p^3 is a disconnected graphwith two components. Here v_2 is an isolated vertex. Also v_1 is adjacent to $v_3, v_4, \dots v_n$. Also, there exists a path from v_4 to v_{11} . Therefore $\gamma_s - \text{set}$ is $\{v_1, v_2\}$. Hence $\gamma_s (G_3^p) = 2$.

If $W_1 = \{v_1, v_3\}, W_2 = \{v_5, v_7\}$ and $W_3 = V \setminus (W_1 \cup W_2)$ then in G_p^3 , v_1 is adjacent to v_4, v_5, \dots, v_n . Also v_5 is adjacent to $v_2, v_3, v_7, v_8, \dots, v_n$. Therefore γ_s – set is $\{v_1, v_5\}$. Hence $\gamma_s (G_3^p) = 2$.

Proceeding like this, if $W_1 = \{v_{1,v_3,v_5,...,v_{n-10},v_{n-8},v_{n-6}\}, W_2 = \{v_7,v_9,v_{11},...,v_{n-4},v_{n-2},v_n\}$ and $W_3 = V \setminus (W_1 \cup W_2)$ then in G_p^3 , v_1 is adjacent to $v_4,v_6,v_8,v_{10},v_7,v_9,v_{11},v_{n-4},v_{n-2},v_n,v_{n-9},v_{n-7},v_{n-5},v_{n-3},v_{n-1}$. Also v_n is adjacent to $v_1,v_2,...,v_{n-2}$. Therefore γ_s – set is $\{v_1,v_n\}$. Hence γ_s (G_3^p) =2.

If $W_1 = \{v_2, v_4, v_6\}, W_2 = \{v_{n-3}, v_{n-1}\}$ and $W_3 = V \setminus (W_1 \cup W_2)$ then in G_p^3 , v_2 is adjacent to $v_5, v_7, v_8, \dots, v_{n-2}, v_{n-1}, v_n$. Also v_{n-1} is adjacent to v_1, v_2, \dots, v_{n-2} . Therefore $\gamma_s - \text{set is } \{v_2, v_{n-1}\}$. Hence $\gamma_s (G_3^p) = 2$.

10. Theorem

Let G be a path on n vertices with n=3 say v_1 , v_2 v_n then γ_s (G₃^p) =2.

Proof:

If $W_1 = \{v_1\}, W_2 = \{v_2\}$ and $W_3 = \{v_3\}$ then G_p^3 is a disconnected graph with two components. Here v_2 is an isolated vertex. Also v_1 is adjacent to v_3 . Therefore $\gamma_s - \text{set}$ is $\{v_1, v_2\}$. Hence $\gamma_s (G_3^p) = 2$.

If $W_1 = \{v_2\}, W_2 = \{v_3\}$ and $W_3 = \{v_1\}$ then G_p^3 is a disconnected graph with two components. Here v_2 is an isolated vertex. Also v_1 is adjacent to v_3 . Therefore $\gamma_s - \text{set}$ is $\{v_1, v_2\}$. Hence $\gamma_s (G_3^p) = 2$.

If $W_1 = \{v_3\}, W_2 = \{v_1\}$ and $W_3 = \{v_2\}$ then G_p^3 is a disconnected graph with two components. Here v_2 is an isolated vertex. Also v_1 is adjacent to v_3 . Therefore $\gamma_s - \text{set}$ is $\{v_1, v_2\}$. Hence $\gamma_s (G_3^p) = 2$.

11. Theorem

Let G be a path on n vertices (n=4) say v_1 , v_2 v_n . Let v_1 and v_n are pendant vertices and v_2 , v_3 ,..., v_{n-1} are vertices of degree 2 then

Then
$$\gamma_s$$
 (G₃^p)=
3 $\begin{cases} 1 \text{ if } W_k = \{v_j \cup N(v_j)\}, 1 \le j \le n \text{ or } W_k = \{v_r\}, \text{ where } k \ne i, W_l = \{v_{s+1}\} \text{ and vice versa.} \\ \text{ if } W_k = \{v_1, v_n\} \text{ where } k = 1, 2. \end{cases}$

Proof:

If $W_1 = \{v_1\}, W_2 = \{v_2\}$ and $W_3 = \{v_3, v_4\}$ then in G_p^3 , v_4 is adjacent to all other vertices. Therefore $\gamma_s - \text{set is } \{v_4\}$. Hence $\gamma_s (G_3^p) = 1$.

If $W_1 = \{v_3\}, W_2 = \{v_4\}$ and $W_3 = \{v_1, v_2\}$ then in G_p^3 , v_1 is adjacent to all other vertices. Therefore γ_s – set is $\{v_1\}$. Hence γ_s (G_3^p) = 1. \rightarrow Case:2

If $W_1 = \{v_2\}, W_2 = \{v_3\}$ and $W_3 = \{v_2, v_4\}$ then in G_p^3 is a disconnected graph with two components. Here v_1 is adjacent to v_3 . Also v_2 is adjacent to v₄. Therefore γ_s – set is {v₁,v₂,v₃}. Hence γ_s (G₃^p) =3

\rightarrow Case:3

If $W_1 = \{v_1\}, W_2 = \{v_4\}$ and $W_3 = \{v_2, v_3\}$ then in G_p^3 , v_2 is adjacent to v_3, v_4 . Also v_1 is adjacent to v_3 and v_4 . Therefore γ_s – set is $\{v_2, v_3\}$. Hence $\gamma_s (G_3^p) = 2$.

If $W_1 = \{v_2\}, W_2 = \{v_4\}$ and $W_3 = \{v_1, v_3\}$ then G_p^3 is a disconnected graph with two components. In G_p^3 , v_3 is an isolated vertex. And v_4 is adjacent to v_1, v_2 . Therefore γ_s – set is $\{v_3, v_4\}$. Hence $\gamma_s (G_3^p) = 2$.

12. Theorem

Let G be a cycle with n vertices with n=4 say v_1, v_2, \dots, v_n then

$$\gamma_{s}(G_{3}^{p}) = \begin{cases} 2 & \text{if } W_{i} = \{v_{j} \cup N(v_{j})\}, 1 \leq j \leq n, W_{j} = \{v_{s}\}, W_{k} = \{v_{s+1}\} \text{ for some s and vice versa.} \\ 3 & \text{if } W_{i} = \{v_{j} \cup N(v_{j})\}, 1 \leq j \leq n, W_{j} = \{v_{r}\}, W_{3} = \{v_{s}\} \text{ where } v_{r} \text{ and } v_{s} \text{ are non- adjacent vertices or } \\ W_{1} = \{v_{p}, v_{q}\} \text{ where } v_{p}, v_{q} \text{ are non adjacent vertices}, W_{2} = \{v_{r}\}, W_{3} = \{v_{s}\} \text{ where } v_{r} \text{ and } v_{s} \text{ are non - adjacent vertices and vice versa.} \end{cases}$$

Proof:

If $W_1 = \{v_1\}, W_2 = \{v_2\}$ and $W_3 = \{v_3, v_4\}$ then v_3 is adjacent to v_2 and v_4 . And v_4 is adjacent to v_1, v_3 . Therefore $\gamma_s - \text{set}$ is $\{v_3, v_4\}$. Hence $\gamma_s (G_3^p) = 2$.

If $W_1 = \{v_2\}, W_2 = \{v_4\}$ and $W_3 = \{v_1, v_3\}$ then v_1 is adjacent to v_3 and v_4 . And v_3 is adjacent to v_1, v_2 . Therefore γ_s – set is $\{v_1, v_3\}$. Hence $\gamma_s (G_3^p) = 2$.

If $W_1 = \{v_3\}, W_2 = \{v_4\}$ and $W_3 = \{v_1, v_2\}$ then v_1 is adjacent to v_2 and v_4 . And v_2 is adjacent to v_1, v_3 . Therefore γ_s – set is $\{v_3, v_4\}$. Hence $\gamma_s (G_3^p) = 2$.

If $W_1 = \{v_2\}, W_2 = \{v_4\}$ and $W_3 = \{v_1, v_3\}$ then v_1 is adjacent to v_3 and v_4 . And v_2 is adjacent to v_3 . Therefore γ_s – set is $\{v_1, v_2\}$. Hence $\gamma_{s}(G_{3}^{p}) = 2.$

$$\rightarrow$$
 Case:2

If $W_1 = \{v_2, v_3\}, W_2 = \{v_1\}$ and $W_3 = \{v_4\}$ then G_p^3 is a disconnected graph with three components. Here v_2 and v_3 are isolated vertices. Also v_1 is adjacent to v_4 . Therefore γ_s – set is { v_1 , v_2 , v_3 }. Hence γ_s (G₃^p) =3

If $W_1 = \{v_1\}, W_2 = \{v_4\}$ and $W_3 = \{v_2, v_3\}$ then G_p^3 is a disconnected graph with three components. Here v_2 and v_3 are isolated vertices.

Also v_1 is adjacent to v_4 . Therefore $\gamma_s - \text{set}$ is $\{v_2, v_3, v_4\}$. Hence $\gamma_s (G_3^p) = 3$ If $W_1 = \{v_2\}, W_2 = \{v_3\}$ and $W_3 = \{v_1, v_4\}$ then G_p^3 is a disconnected graph with three components. Here v_1 and v_4 are isolated vertices. Also v₂ is adjacent to v₃. Therefore γ_s – set is {v₁,v₂,v₄}. Hence γ_s (G₃^p) =3.

13. Theorem

Let G be a cycle with n vertices with n=5 say v_1, v_2, \dots, v_n then

Then
$$\gamma_s (G_3^p) =$$

if $W_k = \{v_s, v_{s+1}, v_{s+2}\}$ for k=1,2,3. 2 if $W_i = \{v_j \cup N(v_j)\}$, $1 \le j \le n$, $W_j = \{v_p\}$ for some p, $W_k = V \setminus (W_i \cup W_j)$ and vice versa. 3 if $W_i = \{v_k\}, W_j = \{v_l\}$ where v_k and v_l are no adjacent vertices or $W_i = \{v_p\}$ where $1 \le p \le n$, $W_j = \{v_j, v_k\}$ where $i \ne j$ $W_k = V \setminus (W_i \cup W_j)$ where v_j and v_k are non adjacent vertices.

Proof:

If $W_1 = \{v_1\}, W_2 = \{v_2\}$ and $W_3 = \{v_3, v_4, v_5\}$ then v_4 is adjacent to all other vertices. Therefore $\gamma_s - \text{set is } \{v_4\}$. Hence $\gamma_s (G_3^p) = 1$. If $W_1 = \{v_1\}, W_2 = \{v_5\}$ and $W_3 = \{v_2, v_3, v_4\}$ then v_3 is adjacent to all other vertices. Therefore $\gamma_s - \text{set is } \{v_3\}$. Hence $\gamma_s (G_3^p) = 1$. If $W_1 = \{v_2\}, W_2 = \{v_3\}$ and $W_3 = \{v_1, v_4, v_5\}$ then v_5 is adjacent to all other vertices. Therefore $\gamma_s - \text{set}$ is $\{v_5\}$. Hence $\gamma_s (G_3^p) = 1$. If $W_1 = \{v_3\}, W_2 = \{v_4\}$ and $W_3 = \{v_1, v_2, v_5\}$ then v_1 is adjacent to all other vertices. Therefore $\gamma_s - \text{set is } \{v_1\}$. Hence $\gamma_s (G_3^p) = 1$. If $W_1 = \{v_4\}, W_2 = \{v_5\}$ and $W_3 = \{v_1, v_2, v_3\}$ then v_2 is adjacent to all other vertices. Therefore $\gamma_s - \text{set is } \{v_2\}$. Hence $\gamma_s (G_3^{p}) = 1$. \rightarrow Case:2

If $W_1 = \{v_1\}, W_2 = \{v_2, v_3\}$ and $W_3 = \{v_4, v_5\}$ then v_2 is adjacent to v_3, v_4, v_5 . And v_3 is adjacent to v_1, v_5 . Therefore γ_s – set is { v_2 , v_3 }. Hence γ_s (G_3^p) =2.

If $W_1 = \{v_2\}, W_2 = \{v_1, v_3\}$ and $W_3 = \{v_4, v_5\}$ then v_4 is adjacent to v_1, v_2, v_5 . And v_5 is adjacent to v_2, v_3, v_4 . Therefore γ_s - set is { v_4 , v_5 }. Hence γ_s (G₃^p) =2.

If $W_1 = \{v_2\}, W_2 = \{v_1, v_5\}$ and $W_3 = \{v_3, v_4\}$ then v_1 is adjacent to v_3, v_4 . And v_5 is adjacent to v_2, v_3 . Therefore γ_s – set is $\{v_1, v_5\}$. Hence γ_s (G₃^p) =2.

If $W_1 = \{v_3\}, W_2 = \{v_1, v_2\}$ and $W_3 = \{v_4, v_5\}$ then v_1 is adjacent to v_2, v_3, v_4 . And v_2 is adjacent to v_1, v_4, v_5 . Therefore $\gamma_s - set$ is $\{v_1, v_2\}$. Hence $\gamma_s (G_3^p) = 2$.

If $W_1 = \{v_4\}, W_2 = \{v_1, v_2\}$ and $W_3 = \{v_3, v_5\}$ then v_1 is adjacent to v_2, v_3, v_4 . And v_2 is adjacent to v_1, v_4, v_5 . Therefore $\gamma_s - set$ is $\{v_1, v_2\}$. Hence $\gamma_s (G_3^p) = 2$.

If $W_1 = \{v_5\}, W_2 = \{v_1, v_2\}$ and $W_3 = \{v_3, v_4\}$ then v_1 is adjacent to v_2, v_3, v_4 . And v_2 is adjacent to v_1, v_4, v_5 . Therefore $\gamma_s - \text{set is } \{v_1, v_2\}$. Hence $\gamma_s (G_3^p) = 2$.

If $W_1 = \{v_5\}, W_2 = \{v_1, v_4\}$ and $W_3 = \{v_2, v_3\}$ then v_2 is adjacent to v_3, v_4, v_5 . And v_3 is adjacent to v_1, v_2, v_5 . Therefore $\gamma_s - \text{set is } \{v_2, v_3\}$. Hence $\gamma_s (G_3^p) = 2$.

If $W_1 = \{v_5\}, W_2 = \{v_1, v_4\}$ and $W_3 = \{v_2, v_3\}$ then v_2 is adjacent to v_3, v_4, v_5 . And v_3 is adjacent to v_1, v_2, v_5 . Therefore $\gamma_s - set$ is $\{v_2, v_3\}$. Hence $\gamma_s (G_3^p) = 2$.

 \rightarrow Case:3

If $W_1 = \{v_1\}, W_2 = \{v_3\}$ and $W_3 = \{v_2, v_4, v_5\}$ then G_p^3 is a disconnected graph with two components. Here v_2 is an isolated vertex. And v_1 is adjacent to v_4, v_5 . And v_3 is adjacent to v_1, v_5 . Therefore γ_s – set is $\{v_1, v_2, v_3\}$. Hence

$$\gamma_{s}(G_{3}^{p})=3.$$

If $W_1 = \{v_1\}, W_2 = \{v_4\}$ and $W_3 = \{v_2, v_3, v_5\}$ then G_p^3 is a disconnected graph with two components. Here v_5 is an isolated vertex. And v_2 is adjacent to v_3, v_4 . And v_3 is adjacent to v_1, v_2 . Therefore $\gamma_s - \text{set}$ is $\{v_2, v_3, v_5\}$. Hence $\gamma_s (G_3^p) = 3$.

If $W_1 = \{v_2\}, W_2 = \{v_4\}$ and $W_3 = \{v_1, v_3, v_5\}$ then G_p^3 is a disconnected graph with two components. Here v_3 is an isolated vertex. And v_1 is adjacent to v_4, v_5 . And v_2 is adjacent to v_4, v_5 . Therefore γ_s – set is $\{v_1, v_2, v_3\}$. Hence

$$\gamma_{s} (G_{3}^{p}) = 3.$$

If $W_1 = \{v_2\}, W_2 = \{v_5\}$ and $W_3 = \{v_1, v_3, v_4\}$ then G_p^3 is a disconnected graph with two components. Here v_1 is an isolated vertex. And v_2 is adjacent to v_4, v_5 . And v_3 is adjacent to v_4, v_5 . Therefore $\gamma_s - \text{set}$ is $\{v_1, v_2, v_3\}$. Hence $\gamma_s (G_3^p) = 3$.

If $W_1 = \{v_3\}, W_2 = \{v_5\}$ and $W_3 = \{v_1, v_2, v_4\}$ then G_p^3 is a disconnected graph with two components. Here v_4 is an isolated vertex. And v_1 is adjacent to v_2, v_3 . And v_2 is adjacent to v_1, v_5 . Therefore $\gamma_s - \text{set}$ is $\{v_1, v_2, v_4\}$. Hence $\gamma_s (G_3^p) = 3$.

If $W_1 = \{v_2\}, W_2 = \{v_1, v_4\}$ and $W_3 = \{v_3, v_5\}$ then G_p^3 is a disconnected graph with two components. In one component v_1 is adjacent to v_3 . And in the other component v_2 is adjacent to v_4, v_5 . Therefore $\gamma_s - \text{set}$ is $\{v_1, v_2, v_3\}$. Hence $\gamma_s (G_3^p) = 3$.

If $W_1 = \{v_3\}, W_2 = \{v_1, v_4\}$ and $W_3 = \{v_2, v_5\}$ then G_p^3 is a disconnected graph with two components. In one component v_2 is adjacent to v_4 . And in the other component v_3 is adjacent to v_1, v_5 . Therefore $\gamma_s - \text{set is } \{v_2, v_3, v_4\}$. Hence $\gamma_s (G_3^p) = 3$.

If $W_1 = \{v_5\}, W_2 = \{v_1, v_3\}$ and $W_3 = \{v_2, v_4\}$ then G_p^3 is a disconnected graph with two components. In one component v_1 is adjacent to v_4 . And in the other component v_5 is adjacent to v_2, v_3 . Therefore $\gamma_s - \text{set}$ is $\{v_1, v_4, v_5\}$. Hence $\gamma_s (G_3^p) = 3$.

14. Theorem

Let G be a cycle with n vertices with n=6 say v_1, v_2, \dots, v_n

Then
$$\gamma_s$$
 (G₃^p)=
 $\begin{cases}
1 & \text{if } W_k = \{v_j \cup N(v_j)\}, 1 \le j \le n, \text{ or } W_k = \{v_s, v_{s+1}, v_{s+2}\} \text{ for } k=1,2,3.\\
3 & \text{if } W_k = \{v_i, v_j, v_1\} \text{ where } W_k \text{ contains all alternative vertices for } k=1,2,3.\\
2 & \text{otherwise}
\end{cases}$

Proof:

 \rightarrow Case:1

If $W_1 = \{v_1, v_2, v_3\}, W_2 = \{v_4, v_5\}$ and $W_3 = \{v_6\}$ then in G_p^3 v₂ is adjacent to all other vertices. Therefore $\gamma_s - \text{set is } \{v_2\}$. Hence $\gamma_s (G_3^p) = 1$.

If $W_1 = \{v_2, v_3, v_4\}, W_2 = \{v_1\}$ and $W_3 = \{v_5, v_6\}$ then in G_p^3 v₃ is adjacent to all other vertices. Therefore $\gamma_s - \text{set}$ is $\{v_3\}$. Hence γ_s (G_3^p) =1.

If $W_1 = \{v_3, v_4, v_5\}, W_2 = \{v_1, v_2\}$ and $W_3 = \{v_6\}$ then in G_p^3 v₄ is adjacent to all other vertices. Therefore $\gamma_s - \text{set is } \{v_4\}$. Hence γ_s (G₃^p) = 1.

Proceeding like this, If $W_1 = \{v_1, v_2\}, W_2 = \{v_3\}$ and $W_3 = \{v_4, v_5, v_6\}$ then in G_p^3 v₅ is adjacent to all other vertices. Therefore $\gamma_s - \text{set is} \{v_5\}$. Hence $\gamma_s (G_3^p) = 1$.

 \rightarrow Case:2

If $W_1 = \{v_1\}, W_2 = \{v_3, v_5\}$ and $W_3 = \{v_2, v_4, v_6\}$ then in G_p^3, v_1 is adjacent to v_3, v_4, v_5 . And v_3 is adjacent to v_1, v_6 . Also v_5 is adjacent to v_1, v_2 . Therefore $\gamma_s - \text{set}$ is $\{v_1, v_3, v_5\}$. Hence $\gamma_s (G_3^p) = 3$.

If $W_1 = \{v_2\}, W_2 = \{v_4, v_6\}$ and $W_3 = \{v_1, v_3, v_5\}$ then in G_{p}^3, v_2 is adjacent to v_4, v_5, v_6 . And v_4 is adjacent to v_1, v_2 . Also v_6 is adjacent to v_2, v_3 . Therefore $\gamma_s - \text{set}$ is $\{v_2, v_4, v_6\}$. Hence $\gamma_s (G_3^p) = 3$.

If $W_1 = \{v_2, v_4\}, W_2 = \{v_6\}$ and $W_3 = \{v_1, v_3, v_5\}$ then in G_{p}^3, v_6 is adjacent to v_2, v_3, v_4 . And v_4 is adjacent to v_1, v_6 . Also v_2 is adjacent to v_5, v_6 . Therefore $\gamma_s - \text{set}$ is $\{v_2, v_4, v_6\}$. Hence $\gamma_s (G_3^p) = 3$.

$$\rightarrow$$
 Case:3

If $W_1 = \{v_1\}, W_2 = \{v_2\}$ and $W_3 = \{v_3, v_4, \dots, v_n\}$ then in G_p^3, v_1 is adjacent to $v_3, v_4, v_5, \dots, v_{n-1}$. And v_2 is adjacent to v_4, v_5, \dots, v_n . Therefore γ_{s-1} s - set is $\{v_1, v_2\}$. Hence $\gamma_s (G_3^p) = 2$.

If $W_1 = \{v_1\}, W_2 = \{v_3\}$ and $W_3 = \{v_2, v_4, v_5, v_6\}$ then G_p^3 is a disconnected graph with two components. Here v_2 is an isolated vertex. And in the other component v5 is adjacent to all other vertices. Therefore $\gamma_s - \text{set}$ is $\{v_2, v_5\}$. Hence $\gamma_s (G_3^p) = 2$.

If $W_1 = \{v_1\}, W_2 = \{v_4\}$ and $W_3 = \{v_2, v_3, v_5, v_6\}$ then in G_p^3, v_1 is adjacent to v_3, v_4, v_5 . And v_4 is adjacent to v_1, v_2, v_6 . Therefore γ_s – set is $\{v_1, v_4\}$. Hence γ_s (G_3^p) =2.

If $W_1 = \{v_1\}, W_2 = \{v_5\}$ and $W_3 = \{v_2, v_3, v_4, v_6\}$ then G_p^3 is a disconnected graph with two components. Here v_6 is an isolated vertex. And in the other component v_3 is adjacent to v_1, v_2, v_4, v_5 . Therefore γ_s – set is $\{v_3, v_6\}$. Hence

$$\gamma_{s} (G_{3}^{p}) = 2.$$

If $W_1 = \{v_1\}, W_2 = \{v_6\}$ and $W_3 = \{v_2, v_3, v_4, v_5\}$ then in G_p^3, v_1 is adjacent to v_3, v_4, v_5 . And v_6 is adjacent to v_2, v_3, v_4 . And there exists a path from v_2 to v_5 . Therefore γ_s – set is $\{v_1, v_6\}$. Hence γ_s (G_3^p) =2.

Proceeding like this, if $W_1 = \{v_1, v_2, v_3, \dots, v_{n-2}\}, W_2 = \{v_{n-1}\}$ and $W_3 = \{v_n\}$ then in G^3_{p}, v_n is adjacent to v_2, v_3, \dots, v_{n-2} . And v_1 is adjacent to v_2, v_{n-1}, v_n . And there exists a path from v_1 to v_{n-2} . Therefore γ_s – set is $\{v_1, v_n\}$. Hence

 $\gamma_{s}(G_{3}^{p}) = 2.$

Also if $W_1 = \{v_1, v_3\}, W_2 = \{v_2, v_4\}$ and $W_3 = \{v_5, v_6\}$ then in G_p^3, v_5 is adjacent to v_2, v_3, v_6 . And v_6 is adjacent to v_2, v_3, v_4 . Therefore $\gamma_s - set$ is $\{v_5, v_6\}$. Hence $\gamma_s (G_3^p) = 2$.

15. Theorem

Let G be a cycle with $n \ge 7$ vertices say v_1, v_2, \dots, v_n then

Then γ_s (G₃^p)= 1 if $W_k = \{v_s, v_{s+1}, v_{s+2}\}$ for k=1,2,3. 3 if $W_i = \{v_k\}, 1 \le k \le n, W_j = \{v_1\}$ where v_1 is any vertex and v_1 is an alternative vertex of v_k or W_k contains 2 or 3 alternative vertices. 2 otherwise.

Proof:

If $W_1 = \{v_1, v_2, v_3\}, W_2 = \{v_4, v_5\}$ and $W_3 = \{v_6, v_7, \dots, v_n\}$ then in G_p^3 , v_2 is adjacent to all other vertices. Therefore $\gamma_s - \text{set is } \{v_2\}$. Hence $\gamma_s (G_3^p) = 1$.

If $W_1 = \{v_1, v_2, v_3\}, W_2 = \{v_4, v_5, v_6\}$ and $W_3 = \{v_7, v_8, \dots, v_n\}$ then in G_p^3 , v_2 is adjacent to all other vertices. Therefore $\gamma_s - \text{set is } \{v_3\}$. Hence $\gamma_s (G_3^p) = 1$.

Proceeding like this, if $W_1 = \{v_1, v_2, v_3\}, W_2 = \{v_4, v_5, \dots, v_{n-3}\}$ and $W_3 = \{v_{n-2}, v_n, v_n\}$ then in G^3_p , v_{n-1} is adjacent to all other vertices. Therefore $\gamma_s - \text{set is } \{v_{n-1}\}$. Hence $\gamma_s (G_3^p) = 1$.

If $W_1 = \{v_1, v_2\}, W_2 = \{v_3, v_4, v_5\}$ and $W_3 = \{v_6, v_7, \dots, v_n\}$ then in G^3_p , v_4 is adjacent to all other vertices. Therefore $\gamma_s - \text{set is } \{v_4\}$. Hence $\gamma_s (G_3^p) = 1$.

If $W_1 = \{v_1, v_2, v_3, v_4\}, W_2 = \{v_5, v_6, v_7\}$ and $W_3 = \{v_8, v_9, \dots, v_n\}$ then in G_p^3 , v_6 is adjacent to all other vertices. Therefore $\gamma_s - \text{set is } \{v_6\}$. Hence $\gamma_s (G_3^{p}) = 1$.

Proceeding like this, if $W_1 = \{v_1, v_2, v_3, v_4, v_5\}, W_2 = \{v_6, v_7, \dots, v_{n-3}\}$ and $W_3 = \{v_{n-2}, v_{n-1}, v_n\}$ then in G_p^3, v_{n-1} is adjacent to all other vertices. Therefore γ_s – set is $\{v_{n-1}\}$. Hence γ_s (G_3^p) =1.

If $W_1 = \{v_1, v_2, \dots, v_{n-8}\}, W_2 = \{v_{n-7}, v_{n-6}, v_{n-5}, v_{n-4}, v_{n-3}\}$ and $W_3 = \{v_{n-2}, v_{n-1}, v_n\}$ then in G_p^3, v_{n-1} is adjacent to all other vertices. Therefore $\gamma_s - set$ is $\{v_{n-1}\}$. Hence $\gamma_s (G_3^p) = 1$.

$$\rightarrow$$
 Case:2

If $W_1 = \{v_1\}, W_2 = \{v_2\}$ and $W_3 = \{v_3, v_4, \dots, v_n\}$ then in G_p^3, v_1 is adjacent to $v_3, v_4, v_5, \dots, v_n$ and v_2 is adjacent to v_4, v_5, \dots, v_n . And there exists a path from v_3 to v_n . Therefore γ_s – set is $\{v_1, v_2\}$. Hence γ_s (G_3^p) =2.

If $W_1 = \{v_1, v_2\}, W_2 = \{v_3, v_4\}$ and $W_3 = \{v_5, v_6, \dots, v_n\}$ then in G_p^3 , v_1 is adjacent to $v_2, v_3, v_4, \dots, v_{n-1}$ and v_2 is adjacent to v_4, v_5, \dots, v_n . And there exists a path from v_5 to v_n . Therefore γ_s – set is $\{v_1, v_2\}$. Hence γ_s (G_3^p) =2.

If $W_1 = \{v_1, v_2, v_3, v_4\}, W_2 = \{v_5, v_6\}$ and $W_3 = \{v_7, v_8, \dots, v_n\}$ then in G_p^3 , v_5 is adjacent to $v_1, v_2, v_3, v_6, v_7, \dots, v_n$ and v_6 is adjacent to $v_1, v_2, v_3, v_4, v_5, v_8, v_9, \dots$ v_n . Therefore $\gamma_s - \text{set is } \{v_5, v_6\}$. Hence $\gamma_s (G_3^p) = 2$.

Proceeding like this, if $W_1 = \{v_1, v_2, v_3, \dots, v_{n-3}\}, W_2 = \{v_{n-2}\}$ and $W_3 = \{v_{n-1}, v_n\}$ then in G_p^3 , v_{n-1} is adjacent to $v_1, v_2, \dots, v_{n-3}, v_n$ and v_n is adjacent to $v_2, v_3, v_4, \dots, v_{n-1}$. Therefore γ_s – set is $\{v_{n-1}, v_n\}$. Hence $\gamma_s(G_3^p) = 2$.

If $W_1 = \{v_1\}, W_2 = \{v_4\}$ and $W_3 = \{v_7, v_8, \dots, v_n\}$ then G_p^3 is a connected graph. And v_1 is adjacent to v_3, v_4, \dots, v_{n-1} and v_4 is adjacent to $v_1, v_2, v_6, v_7, \dots, v_n$. Therefore γ_s – set is $\{v_1, v_4\}$. Hence γ_s (G_3^p) =2.

If $W_1 = \{v_1\}, W_2 = \{v_5\}$ and $W_3 = \{v_7, v_8, \dots, v_n\}$ then v_1 is adjacent to v_3, v_4, \dots, v_{n-1} and v_5 is adjacent to $v_2, v_3, v_7, v_8, \dots, v_n$. Therefore $\gamma_s -$ set is $\{v_1, v_5\}$. Hence $\gamma_s (G_3^{p}) = 2$.

Proceeding like this, if $W_1 = \{v_1\}, W_2 = \{v_n\}$ and $W_3 = \{v_2, v_3, \dots, v_{n-1}\}$ then v_1 is adjacent to v_3, v_4, \dots, v_{n-1} and v_n is adjacent to v_2, v_3, \dots, v_{n-2} . Also there exists a path from v_2 to v_{n-1} . Therefore $\gamma_s - \text{set is } \{v_1, v_n\}$. Hence $\gamma_s (G_3^p) = 2$.

If $W_1 = \{v_1, v_2, v_3, v_4\}, W_2 = \{v_5, v_6, v_7, v_8\}$ and $W_3 = \{v_9, v_{10}, \dots, v_n\}$ then v_2 is adjacent to $v_1, v_3, v_5, v_6, v_7, \dots, v_n$ and v_3 is adjacent to $v_2, v_4, v_5, \dots, v_n$. Also there exists a path from v_1 to v_4, v_5 to v_8 and v_9 to v_n . Therefore $\gamma_s - \text{set is } \{v_2, v_3\}$. Hence $\gamma_s (G_3^p) = 2$.

If $W_1 = \{v_1, v_3\}, W_2 = \{v_5, v_7\}$ and $W_3 = V \setminus (W_1 \cup W_2)$ then v_1 is adjacent to $v_4, v_5, \ldots, v_{n-1}$ and v_7 is adjacent to $v_1, v_2, \ldots, v_5, v_9, v_{10}, \ldots, v_n$. Therefore γ_s - set is $\{v_1, v_7\}$. Hence $\gamma_s (G_3^p) = 2$.

If $W_1 = \{v_3, v_5\}, W_2 = \{v_7, v_9, v_{11}\}$ and $W_3 = V \setminus (W_1 \cup W_2)$ then V_3 is adjacent to $v_1, v_2, v_6, v_7, \dots, v_n$ and v_7 is adjacent to $v_1, v_2, \dots, v_5, v_9, v_{10}, \dots, v_n$. Therefore $\gamma_s - \text{set is } \{v_3, v_7\}$. Hence $\gamma_s (G_3^p) = 2$.

Proceeding like this, if $W_1 = \{v_1, v_3, v_5, \dots, v_{2n-1}\}, W_2 = \{v_2, v_4, v_6, v_8\}$ and $W_3 = V \setminus (W_1 \cup W_2)$ then v_2 is adjacent to $v_5, v_6, \dots, v_{2n-1}, v_{2n}$ and v_{10} is adjacent to $v_1, v_2, v_3, v_4, v_6, v_8, v_9, \dots, v_{2n-1}$. Therefore $\gamma_s - \text{set is } \{v_2, v_{10}\}$. Hence $\gamma_s (G_3^p) = 2$.

$$\rightarrow$$
 Case:3

If $W_1 = \{v_1\}, W_2 = \{v_3\}$ and $W_3 = V \setminus (W_1 \cup W_2)$ then G_3^p is a disconnected graph with two components. v_2 is an isolated vertex. v_1 is adjacent to $v_3, v_4, \ldots, v_{n-1}$ and v_3 is adjacent to v_5, v_6, \ldots, v_n . Also there exists a path from v_4 to v_n . Therefore $\gamma_s - \text{set}$ is $\{v_1, v_2, v_3\}$. Hence $\gamma_s (G_3^p) = 3$.

If $W_1 = \{v_2\}, W_2 = \{v_4\}$ and $W_3 = V \setminus (W_1 \cup W_2)$ then G_3^p is a disconnected graph with two components. v_3 is an isolated vertex. v_2 is adjacent to v_5, v_6, \ldots, v_n and v_4 is adjacent to $v_1, v_6, v_7 \ldots v_n$. Therefore $\gamma_s - \text{set}$ is $\{v_2, v_3, v_4\}$. Hence $\gamma_s (G_3^p) = 3$.

Proceeding like this, if $W_1 = \{v_{n-3}\}, W_2 = \{v_{n-1}\}$ and $W_3 = V \setminus (W_1 \cup W_2)$ then in $G_3^p \cdot v_{n-2}$ is an isolated vertex. v_{n-3} is adjacent to $v_1, v_2, \ldots, v_{n-4}, v_n$ and v_{n-1} is adjacent to $v_1, v_2, \ldots, v_{n-4}$. Therefore $\gamma_s - \text{set}$ is $\{v_{n-1}, v_{n-2}, v_{n-3}\}$. Hence $\gamma_s (G_3^p) = 3$.

If $W_1 = \{v_{n-2}\}, W_2 = \{v_n\}$ and $W_3 = V \setminus (W_1 \cup W_2)$ then G_3^p is a disconnected graph with two components. v_{n-1} is an isolated vertex. v_{n-2} is adjacent to v_1, v_2, \dots, v_{n-4} and v_n is adjacent to v_1, v_2, \dots, v_{n-3} . Therefore

 γ_s - set is { v_{n-2} , v_{n-1} , v_n }. Hence γ_s (G₃^p) =3.

16. Conjecture

For any complete graph $3 \le \gamma_s (G_3^p) \le n-1$, the lower bound is attained when $|W_1| = |W_2| = 1$ and the upper bound is attained when n=6.

17. Theorem

If G and G_3^p are connected graphs then $2 \le \gamma_s (G) + \gamma_s (G_3^p) \le n+1$.

Proof:

For any connected graph G and G_3^p , $\gamma_s(G) \ge 1$ and $\gamma_s(G_3^p) \ge 1$. Therefore $2 \le \gamma_s(G) + \gamma_s(G_2^p)$. Also we can justify $\gamma_s(G) + \gamma_s(G_2^p) \le n+1$ with the following examples.

Example:

The upper bound is attained at n=8 with a path. Here γ_s (G)=7 and γ_s (G₃^p) ≤2 for a connected graph G³_p. Therefore γ_s (G)+ γ_s (G₃^p) ≤9=n+1.

18. Conjecture

If any n partitions contain an isolated vertex then $\gamma_s(G_3^p) \ge n+1$. Proof:

If any two partition contains an isolated vertex then $\gamma_s(G_3^p) \ge 2$.

If any two partitions contain an isolated vertex then $\gamma_s(G_3^p) \ge 3$.

In general, If any n partitions contain an isolated vertex then $\gamma_s(G_3^p) \ge n+1$

19. References

- i. Hedetniemi. S.C., and Laskar,"Topics on Domination" Annals of Discrete Mathematics., 48., North Holland(1991)
- ii. Teresa W. Haynes, Stephen T. Hedetniemi, Peter J. Slater."Fundamentals of Domination in Graphs", Marcel Dekker, Inc., (1998).
- iii. E.Sampathkumar and pushpalatha," complement of a graph : A generalization Graphs and combinatories" (1998)
- iv. 4. E.Sampathkumar and L.pushpalatha, "Generalized complement of a graph, Indian journal of Pure and Applied Mathematics "June(1999).