
 The International Journal Of Science & Technoledge  (ISSN 2321 – 919X) www.theijst.com 

 

125                                                         Vol 3  Issue 10                                             October, 2015 

 

 

THE INTERNATIONAL JOURNAL OF  

SCIENCE & TECHNOLEDGE 
 

 

 

Generalized 3 – Complement of Set Domination 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
1. Introduction 
Let G=(V,E) be a simple, undirected, finite nontrivial graph with vertex set V and edge set E. And Kn,Km,n,Cn,Pn and K1,n denote the 

complete graph, the complete bipartite graph, the cycle, the path and the star on n-vertices respectively. A nonempty set S⊆V  of 

vertices in a graph G=(V,E) is called  a dominating set if every vertex vε V is either an element of S or is adjacent to an element of S. 

A set S⊆V  is a set dominating set if for every set T⊆V-S,  there exists a non-empty set R⊆S such that the subgraph <RUT> is 

connected. The minimum cardinality of a set dominating set is called set domination number and it is denoted by  γs (G). 

 

2. Observation 

For any connected graph G, γ (G)≤ γs (G). 

 

In the following example the set domination number γs is calculated.         

 

3. Example 

                 Consider the following graph G: 

                     v1                                v2 

    

                                                       v5 

 

                                                       v6 

 

 

                                             v7                        v8 

 

 

                      v3                                                                          v4 

Let V= {v1, v2......vn} be the vertices of G. S= {v3,v4,,v6}. 

For every T⊆V-S  there exists a nonempty set R⊆S such that  <RUT> is connected. 

Here, γs (G) = 3. 

 

The 3-complementary of  the set domination number of some standard graphs are given below. 
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Let G=(V,E) be a simple, undirected, finite nontrivial graph. A set S⊆V of vertices of a graph G = (V, E) is called a 

dominating set if every vertex v∈V is either an element of S or is adjacent to an element of S. A set S⊆V  is a set dominating 

set if for every set T⊆V-S,  there exists a non-empty set R⊆S such that the subgraph <RUT> is connected. The minimum 

cardinality of a set dominating set is called set domination number and it is denoted by  γs (G).Let P=(V1,V2,V3) be a 

partition of V of order 3. Remove the edges between Vi and Vj  where i≠j (1≤i,j≤3) in G and join the edges between  Vi and Vj  

which are not in G. The graph G3
p
 thus obtained is called 3-complement of G with respect to ‘P’.  
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4. Theorem 

When G=Kn (n ≥3),let (V1,V2,V3) be a partition of G and |V1| =k,|V2|=r,|V3|=l (k≤r≤l )then  

γ s (G3
p
)= k+r+1. 

Proof:-  

 Let V(Kn)= {v1,v2,.....vn}  and (V1,V2,V3) be a partition of G. Suppose V1= {v1} V2= {v2} and V3={ v3,v4,….,vn} then G
3

p is a 

disconnected  graph with 3 components. And v1 and v2 are isolated vertices. 

Here < {v3, v4.....vn}> form a complete graph with n-2 vertices in G3
p
.Here a γ s – set is {v1, v2,v3}. Therefore  

γ s (G3
p
) = 3. 

If  V1= {v1},V2= {v2,v3} and V3={ v4,v5,….,vn} then G
3

p is a disconnected  graph with 3 components. And v1 is an  isolated vertex. 

And v2 is adjacent to v3.Here < {v4, v5.....vn}> form a complete graph with n-3 vertices in G3
p
.Here a γ s – set is {v1, v2,v3,v4}. 

Therefore γ s (G3
p
) = 4. 

Suppose V1= {v1},V2= {v2,v3,v4} and V3={ v5,v6,….,vn} then G
3

p is a disconnected  graph with 3 components. And v1 is an  isolated 

vertex. Here < {v5, v6.....vn}> and < {v2, v3,v4}> are disjoint and they form a complete graph Here a γ s – set is {v1, v2,v3,v4,v5}. 

Therefore γ s (G3
p
) = 5. 

Suppose V1= {v1},V2= {v2,v3,v4,v5} and V3={ v6,v7,….,vn} then G
3

p is a disconnected  graph. And v1 is an  isolated vertex. Here < {v2, 

v3
,
v4,v5}> and < {v6, v7,…,vn}> are disjoint and they form a complete graph.Here a γ s – set is {v1, v2,v3,v4,v5,v6}. Therefore γ s (G3

p
) = 

6. 

Proceeding like this, Suppose V1= {v1},V2= {v2,v3,…vn-1} and V3={ vn} then G
3

p is a disconnected  graph. Here a γ s – set is{v1, v2,vn}. 

Therefore γ s (G3
p
) = 3. 

If  V1= {v1,v2},V2= {v3,v4} and V3={ v5,v6,….,vn} then G
3

p is a disconnected  graph with 3 components. And v1 is adjacent to v2, v3 is 

adjacent to v4 and  < {v5, v6
,
…vn}>  form a complete graph with n-5 vertices.Here a γ s – set is  

{v1, v2,v3,v4,v5}. Therefore γ s (G3
p
) = 5. 

If  V1= {v1,v2},V2= {v3,v4,v5} and V3={ v6,v7,….,vn} then G
3

p is a disconnected  graph with 3 components. Here {<v1,v2>} and  < {v3, 

v4,v5}> and <v6,v7,…vn}> are disjoint. Here v1 is adjacent to v2 and <v3,v4,v5}>  and <{v6,v7,…,vn}> form a complete graph. Here a γ s 

– set is {v1, v2,v3,v4,v5,v6}. Therefore γ s (G3
p
) = 6. 

If  V1= {v1,v2},V2= {v3,v4,v5,v6} and V3={ v7,v8,….,vn} then G
3

p is a disconnected  graph with 3 components. Here {<v1,v2>} and  < 

{v3, v4,v5,v6}> and <v7,v8,…vn}> are disjoint. Here v1 is adjacent to v2 and <v3,v4,v5,v6}>  and <{v7,v8,…,vn}>  form a complete 

graph. Here a γ s – set is {v1, v2,v3,v4,v5,v6,v7}. Therefore γ s (G3
p
) = 7 

Proceeding like this,If  V1= {v1,v2},V2= {v3,v4,…vn-1} and V3={ vn} then G
3

p is a disconnected  graph.  Here vn  is an isolated vertex. 

And v1 is adjacent to v2 and <v3,v4,…vn-1}>   form a complete graph with n-2 vertices. Here a γ s – set is {v1, v2,v3,vn}. Therefore γ s 

(G3
p
) =4. 

All other partitions, we get an isomorphic graph of one of the above cases. 

 

5. Theorem 

   Let G be a Complete bipartite graph with partition (V1,V2), where | V1|=m and | V2|=n  where  m≤n. Let (W1,W2,W3)be a partition of 

V(G3
p
) then    

        

γ s  (G3 
p
) =          1      if  |Wi |=|Wj |=1 where i,j=1,2,3 with i≠j    

                                       

                           2        if Wi={u,v} where uεV1 and vεV2 

m+1   if Wi=V1, Wj={v} where vεV2,Wk= V\(Wi∪Wj)  for i,j=1,2,3          

n+1  if Wi=V2, Wj={u} where vεV1,Wk= V\(Wi∪Wj)  for i,j=1,2,3                         

m+2 if Wi=V1, Wj={vp,vq}where vp,vq εV2,Wk=  V\(Wi∪Wj) for i,j=1,2,3                       

n+2 if Wi=V2, Wj={up,uq}where up,uq εV1, Wk= V\(Wi∪Wj) for i,j=1,2,3                           

 

Proof: 

 

→ Case:1 

 Let |W1 |=|Vj |+1, |W2 |=1, |W3 |=1for some i. Then G
3

p is a connected graph. In G
3

p, which element is joined to Vi  that element is 

adjacent to all other elements. Therefore a γ s  -set has only one element to satisfy the set domination. Hence γ s (G3
p
)=1 

→ Case:2 

If  V1= {u1},V2= {v2} and V3=V\(V1∪V2) then G
3

p is a connected  graph. Here a γ s – set is {v1, u2}. Therefore 

 γ s (G3
p
) =2. 

If  V1= {u1},V2= {u2,v1} and V3=V\(V1∪V2) then G
3

p is a connected  graph. Here a γ s – set is {v1, u2}. Therefore  

γ s (G3
p
) =2. 

If  V1= {u1},V2= {u2,u3,v1} and V3=V\(V1∪V2) then G
3

p is a connected  graph. Here a γ s – set is {v1, u3}. Therefore γ s (G3
p
) =2. 

If  V1= {v2},V2= {v3} and V3=V\(V1∪V2) then G
3

p is a connected  graph. Here a γ s – set is {v1, v2}. Therefore 

 γ s (G3
p
) =2. 
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If  V1= {u1,v1},V2= {u2,u3} and V3=V\(V1∪V2) then G
3

p is a connected  graph. Here u1 is adjacent to u2 and u3. And  v1 is adjacent to 

v2,v3,…,vn. Therefore  a γ s – set is {u1, v1}. Therefore γ s (G3
p
) =2. 

If  V1= {u1,v1,v2},V2= {u2,u3} and V3=V\(V1∪V2) then G
3

p is a connected  graph. Here u1 is adjacent to u2,u3,…un. And  v1 and v2 are  

adjacent to v3,v4,…,vn. Therefore  a γ s – set is {u1, v2}. Therefore γ s (G3
p
) =2. 

If  V1= {u1,v1,v2,v3},V2= {u2,u3} and V3=V\(V1∪V2) then u1 is adjacent to u2,u3,…un,v1,v2,v3.And  v1,v2,v3 are  adjacent to v4,v5,…,vn. 

Therefore  a γ s – set is {u1, v1}. Therefore γ s (G3
p
) =2. 

If  V1= {u1,u2},V2= {u3} and V3=V\(V1∪V2) then G
3

p is a connected  graph. Here u3 is adjacent to u1,u2,u4,u5…un. And  u4 is  adjacent 

to v1,v2,…,vn. Therefore  a γ s – set is {u3, u4}. Therefore γ s (G3
p
) =2. 

If  V1= {u1,u2},V2= {u3,v1} and V3=V\(V1∪V2) then G
3

p is a connected  graph. Here u3 is adjacent to u1,u2,u3…un. And  v1 is   adjacent 

to v2,v3,…,vn. Therefore  a γ s – set is {u3, v1}. Therefore γ s (G3
p
) =2. 

Proceeding like this, for other similar partitions we get  γ s (G3
p
) =2. 

→ Case:3 

In this case, G
3

p is a disconnected graph. Here u1,u2,…,um are isolated vertices. And viεWj is adjacent to v1,v2,…vn except i. Therefore 

a γ s – set is {u1,u2,u3,…um, vi}. Therefore γ s (G3
p
) =m+1. 

→ Case:4 

In this case, G
3

p is a disconnected graph. Here v1,v2,…,vn are isolated vertices. And uiεWj is adjacent to u1,u2,…un except i. Therefore 

a γ s – set is {ui,v1,v2,…vn}. Therefore γ s (G3
p
) =n+1. 

→ Case:5 

In this case, G
3

p is a disconnected graph. Here u1,u2,…,um are isolated vertices. And vp,vqεWj are  adjacent to v1,v2,…vn. Therefore a γ s 

– set is {u1,u2,u3,…um, vp,vq}. Therefore γ s (G3
p
) =m+2. 

→ Case:6 

In this case, G
3

p is a disconnected graph. Here v1,v2,…,vn are isolated vertices. And up,uqεWj are  adjacent to u1,u2,…um. Therefore a γ s 

– set is {v1,v2,v3,…vn, up,uq}. Therefore γ s (G3
p
) =n+2. 

 

6. Theorem 

Let G be a star (K1,n where n≥4) Let u be the star center and u1,u2,….,un be the pendant of G. Let (W1,W2,W3) be the partition of  G3
p
. 

 

 

Then  γs (G3
p
)=          1 if Wk={u,ui}, 1≤i≤n, k=1,2,3 

3 if  W1={u},W2={ui,uj},W3=V\(W1∪W2) or W1={u}, W2={ui,uj,uk}, W3= V\(W1∪W2)                                 

                        2  otherwise 

 

 

Proof: 

→ case:1 

If W1={u,u1}, W2={u2}, W3={u3,u4,…,un} then in G3
p
, u1 is adjacent to  all other vertices. Since,  u1 is adjacent to u and all other 

vertices of W2 and W3..Therefore a γ s-set is{u1}. Hence γ s (G3
p
)= 1. 

If W1={u,u2}, W2={u3}, W3={u1,u4,u5,…,un} then in G3
p
, u2 is adjacent to  u and all other vertices of W2 and W3..Therefore a γ s-set 

is{u2}. Hence γ s (G3
p
)= 1. 

Proceeding like this, if  W1={u,un}, W2={un-1}, W3={u1,u2,…,un-2} then in G3
p
, u is adjacent to u2 and all other vertices W2 and 

W3..Therefore a γ s-set is{un}. Hence γ s (G3
p
)= 1. 

→ Case:2 

If W1={u}, W2={u1,u2}, W3={u3,u4,…,un} then in G3
p
, u is an isolated vertex. And u1 is adjacent to u3,u4,…,un, u2 is adjacent to 

u3,u4,…,un.Therefore a γ s-set is{u,u1,u2}. Hence γ s (G3
p
)= 3. 

If W1={u}, W2={u1,u2,u3}, W3=V|(W1∪W2) then in G3
p
, u is an isolated vertex. And u1 is adjacent to u4,u5,…,un, u2 is adjacent to 

u4,u5,…,un.and also u4 is adjacent to u1,u2,u3. Therefore a γ s-set is{u,u1,u4}. Hence γ s (G3
p
)= 3. 

If W1={u}, W2={u1,u2,…,un-2}, W3={un-1,un} then in G3
p
, u is an isolated vertex. And u1 is adjacent to un-1,un and also  un-1 is adjacent 

to u1,u2,un-2.Therefore a γ s-set is{u,u1,un-1}. Hence γ s (G3
p
)= 3. 

If W1={u}, W2={u1,u2,…,un-3}, W3={un-2,un-1,un} then in G3
p
, u is an isolated vertex. And u1 is adjacent to un-2,un-1,un,also un-2 is 

adjacent to u1,u2,…,un-3. Therefore a γ s-set is{u,u1,un-2}. Hence γ s (G3
p
)= 3. 

→ Case:3 

If W1={u}, W2={u1}, W3=V|(W1∪W2) then in G3
p
, u is an isolated vertex. And u1 is adjacent to u2,u3,…,un. Therefore a γ s-set is{u,u1}. 

Hence γ s (G3
p
)= 2. 

If W1={u}, W2={un}, W3=V|(W1∪W2) then in G3
p
, u is an isolated vertex. And un is adjacent to u1,u2,…,un-1. Therefore a γ s-set 

is{u,un}. Hence γ s (G3
p
)= 2. 

If W1={u,u1,u2}, W2={u3}, W3=V|(W1∪W2) then in G3
p
, u is adjacent to u1,u2. And u1 is adjacent to all other vertices of W2 and W3. 

Therefore a γ s-set is{u,u1}. Hence γ s (G3
p
)= 2. 
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If W1={u,u1,u2}, W2={u3,u4,…,un-2}, W3={un-1,un} then in G3
p
, u is adjacent to u1,u2. And u1 is adjacent to all other vertices of W2 and 

W3. Therefore a γ s-set is{u,u1}. Hence γ s (G3
p
)= 2. 

If W1={u,u1,u2,…,un-4}, W2={un-3,un-2}, W3={un-1,un} then in G3
p
, u is adjacent to u1,u2,…,un-4. And u1 is adjacent to all other vertices 

of W2 and W3. Therefore a γ s-set is{u,u1}. Hence γ s (G3
p
)= 2. 

If W1={u,u1,u2,…,un-3}, W2={un-2}, W3={un-1,un} then in G3
p
, u is adjacent to u1,u2,…,un-3. And u1 is adjacent to un-2,un-1,un. Therefore a 

γ s-set is{u,u1}. Hence γ s (G3
p
)= 2. 

Proceeding like this, If W1={u,u1,u2,…,un-2}, W2={un-1}, W3={un} then in G3
p
, u is adjacent to u1,u2,…,un-2. And u1 is adjacent toun-

1,un. Therefore a γ s-set is{u,u1}. Hence γ s (G3
p
)= 2. 

 

7. Theorem 

Let G be a star (K1,n where n=3) Let u be the star center and u1,u2,u3 be the pendant of G. Let (W1,W2,W3) be the partition of  G3
p
. 

 

 

Then  γs (G3
p
)=          1 if Wk={u,ui}, 1≤i≤n, k=1,2,3 

2 if  Wi={u},Wj={ui},W3=V\(W1∪W2)                                  

 

Proof: 

If W1={u,u1}, W2={u2}, W3={u3} then in G3
p
, u1 is adjacent to  all other vertices. Therefore a γ s-set is{u1}. Hence  

γ s (G3
p
)= 1. 

If W1={u,u2}, W2={u1}, W3={u3} then in G3
p
, u2 is adjacent to  all other vertices. Therefore a γ s-set is{u2}. Hence  

γ s (G3
p
)= 1. 

If W1={u,u3}, W2={u1}, W3={u2} then in G3
p
, u3 is adjacent to  all other vertices. Therefore a γ s-set is{u3}. Hence 

 γ s (G3
p
)= 1. 

 

→ Case:2 

If W1={u}, W2={u1}, W3={u2,u3} then in G3
p
, u is an isolated vertex. And u1 is adjacent to u2,u3. Therefore a γ s-set is{u,u1}. Hence γ s 

(G3
p
)= 2. 

If W1={u}, W2={u2}, W3={u1,u3} then in G3
p
, u is an isolated vertex. And u2 is adjacent to u1,u3. Therefore a γ s-set is{u,u2}. Hence γ s 

(G3
p
)= 2. 

If W1={u}, W2={u3}, W3={u1,u2} then in G3
p
, u is an isolated vertex. And u3 is adjacent to u1,u2. Therefore a γ s-set is{u,u3}. Hence γ s 

(G3
p
)= 2. 

 

8. Note 

If Wk has only a star u then Gk
p
 is a disconnected graph for k=1,2,3. 

 

9. Theorem 

Let G be a path on  n vertices (n≥5) say v1, v2.........vn.Let v1 and vn are pendant vertices and v2,v3,…,vn-1 are vertices of degree 2 then 

 

 

Then  γ s (G3 
p
)=         1   if  Wk={vj∪N(vj)}, j=1,n, k=1,2,3 or  Wk={vs,vs+1,vs+2 },where 1≤s≤n. 

3    if  Wi={vr}, Wj={vs},Wk=V\(Wi∪Wj) where  vr and vs are alternative, non pendant                                                     

         vertices. 

                                   2    otherwise 

      

Proof:  

→ case :1 

If  W1= {v1,v2},W2= {v3,v4} and W3=V\(W1∪W2) then in G
3

p, v1 is adjacent to to all other vertices. Therefore   

γ s – set is {v1}. Hence  γ s (G3
p
) =1. 

If  W1= {v1,v2},W2= {v3,v4,v5} and W3=V\(W1∪W2) then in G
3

p, v1 is adjacent to to all other vertices. Therefore 

  γ s – set is {v1}. Hence  γ s (G3
p
) =1. 

If  W1= {v1,v2},W2= {v3,v4,v5,v6} and W3=V\(W1∪W2) then in G
3

p, v1 is adjacent to to all other vertices. Therefore  γ s – set is {v1}. 

Hence γ s (G3
p
) =1. 

Proceeding like this, If  W1= {v1,v2},W2= {v3,v4,…,vn-1} and W3={vn} then in G
3

p, v1 is adjacent to v2,v3,…,vn. Therefore  γ s – set is 

{v1}. Hence  γ s (G3
p
) =1. 

If  W1= {v1},W2= {v2,v3,…,vn-2} and W3={vn-1,vn} then in G
3

p, vn is adjacent to to all other vertices. Therefore 

  γ s – set is {vn}. Hence  γ s (G3
p
) =1. 

If  W1= {v1},W2= {v2,v3,v4} and W3=V\(W1∪W2) then in G
3

p, v3 is adjacent to to all other vertices. Therefore  

 γ s – set is {v3}. Hence  γ s (G3
p
) =1. 
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Proceeding like this, 

If  W1= {v1},W2= {v2,v3,…,vn-3} and W3={vn-2,vn-1,vn} then in G
3

p, vn-1 is adjacent to to all other vertices. Therefore  γ s – set is {vn-1}. 

Hence  γ s (G3
p
) =1. 

And,if  W1= {v1,v3,v4,v5,…,vn-10,vn-8,vn-7,vn-6},W2= {v2,v6,v7,v8,…,vn-9,vn-5,vn-4,vn-3} and W3={vn-2,vn-1,vn} then in G
3

p, vn-1 is adjacent 

to to all other vertices. Therefore  γ s – set is {vn-1}. Hence  γ s (G3
p
) =1. 

→ Case:2 

If  W1= {v3},W2= {v5} and W3=V\(W1∪W2) then in G
3

p, v4 is an isolated vertex. And v3 is  adjacent to v1,v5,v6,…,vn. Also v5 is 

adjacent to v1,v2,v7,v8,…vn. Therefore  γ s – set is {v3,v4,v5}. Hence γ s (G3
p
) =3. 

If  W1= {v3},W2= {v5} and W3=V\(W1∪W2) then in G
3

p, v4 is an isolated vertex. And v3 is  adjacent to v1,v5,v6,…,vn. Also v5 is 

adjacent to v1,v2,v7,v8,…vn. Therefore  γ s – set is {v3,v4,v5}. Hence  γ s (G3
p
) =3. 

If  W1= {v2},W2= {v4} and W3=V\(W1∪W2) then in G
3

p, v3 is an isolated vertex. And v2 is  adjacent to v4,v5,v6,…,vn. Also v4 is 

adjacent to v1,v6,v7,v8,…vn. Therefore  γ s – set is {v2,v3,v4}. Hence  γ s (G3
p
) =3. 

Proceeding like this, If  W1= {vn-1},W2= {vn-3} and W3=V\(W1∪W2) then in G
3

p, vn-2 is an isolated vertex. And vn-3 is  adjacent to 

v1,v2…,vn-5,vn-1,vn. Also vn-1 is adjacent to v1,v2,…,vn-5,vn-4.Therefore  γ s – set is {vn-2,vn-3,vn-1}. Hence   

γ s (G3
p
) =3. 

If  W1= {vn-2},W2= {vn} and W3=V\(W1∪W2) then in G
3

p, vn-1 is an isolated vertex. And vn-2 is  adjacent to v1,v2,…vn-5,vn-4. Also vn is 

adjacent to v1,v2,…,vn-4,vn-3.Therefore  γ s – set is {vn-1,vn-2,vn}. Hence  γ s (G3
p
) =3. 

→ Case:3 

If  W1= {v1},W2= {v2} and W3=V\(W1∪W2) then in G
3

p, v1 is  adjacent to v3,v4,…,vn. Also v2 is adjacent to v4,v5,…vn. Therefore  γ s – 

set is {v1,v2}. Hence  

γ s (G3
p
) =2. 

If  W1= {v1},W2= {v2,v3} and W3=V\(W1∪W2) then in G
3

p, v1 is  adjacent to v3,v4,…,vn. Also v2 is adjacent to v3,v4,…vn. Therefore a  

γ s – set is {v1,v2}. Hence γ s (G3
p
) =2. 

If  W1= {v1},W2= {v2,v3,v4,v5} and W3=V\(W1∪W2) then in G
3

p, v1 is  adjacent to v3,v4,…,vn. Also v2 is adjacent to v6,v7,…vn. Also 

there exists a  path from v2 to v5 and v6 to vn. Therefore  γ s – set is {v1,v2}. Hence γ s (G3
p
) =2. 

If  W1= {v1},W2= {v2,v3,…vn-1} and W3={vn} then in G
3

p, v1 is  adjacent to v3,v4,…,vn. Also vn is adjacent to v1,v2,…vn-2. Also, there 

exists a  path from v2 to vn-2. Therefore  γ s – set is {v1,v2}. Hence γ s (G3
p
) =2. 

If  W1= {v1},W2= {v3} and W3=V\(W1∪W2) then in G
3

p
 
 is a disconnected graphwith two components. Here v2 is an isolated vertex. 

Also v1 is adjacent to v3,v4,…vn. Also, there exists a  path from v4 to v11. Therefore  γ s – set is {v1,v2}. Hence γ s (G3
p
) =2. 

If  W1= {v1,v3},W2= {v5,v7} and W3=V\(W1∪W2) then in G
3

p, v1 is  adjacent to v4,v5,…,vn. Also v5 is adjacent to v2,v3,v7,v8,.…,vn. 

Therefore  γ s – set is {v1,v5}. Hence γ s (G3
p
) =2. 

Proceeding like this,if  W1= {v1,v3,v5,…,vn-10,vn-8,vn-6},W2={v7,v9,v11,…vn-4,vn-2,vn} and W3=V\(W1∪W2) then in G
3

p, v1 is  adjacent to 

v4,v6,v8,v10.,v7,v9,v11,vn-4,vn-2,vn,vn-9,vn-7,vn-5,vn-3,vn-1. Also vn is adjacent to v1,v2,…vn-2. Therefore  γ s – set is {v1,vn}. Hence γ s (G3
p
) 

=2. 

If  W1= {v2,v4,v6},W2= {vn-3,vn-1} and W3=V\(W1∪W2) then in G
3

p, v2 is  adjacent to v5,v7,v8…,vn-2,vn-1,vn. Also vn-1 is adjacent to 

v1,v2,…vn-2. Therefore  γ s – set is {v2,vn-1}. Hence γ s (G3
p
) =2. 

 

10. Theorem 

Let G be a path on  n vertices with n=3 say v1, v2.........vn then γ s (G3
p
) =2. 

 

Proof: 

If  W1= {v1},W2= {v2} and W3={v3} then G
3

p
 
 is a disconnected graph with two components. Here v2 is an isolated vertex. Also v1 is 

adjacent to v3. Therefore  γ s – set is {v1,v2}. Hence γ s (G3
p
) =2. 

If  W1= {v2},W2= {v3} and W3={v1} then G
3

p
 
 is a disconnected graph with two components. Here v2 is an isolated vertex. Also v1 is 

adjacent to v3. Therefore  γ s – set is {v1,v2}. Hence γ s (G3
p
) =2. 

If  W1= {v3},W2= {v1} and W3={v2} then G
3

p
 
 is a disconnected graph with two components. Here v2 is an isolated vertex. Also v1 is 

adjacent to v3. Therefore  γ s – set is {v1,v2}. Hence γ s (G3
p
) =2. 

 

11. Theorem 

Let G be a path on  n vertices (n=4) say v1, v2.........vn.Let v1 and vn are pendant vertices and v2,v3,…,vn-1 are vertices of degree 2 then 

 

 

Then  γ s  (G3 
p
)=         1   if  Wk={vj∪N(vj)}, 1≤j≤n or Wk={vr },where k≠i, Wl={vs+1}and vice versa. 

             3    if  Wk={v1,vn}where k=1,2. 

 

 

Proof: 

If  W1= {v1},W2= {v2} and W3={v3,v4} then in G
3

p, v4 is adjacent to all other vertices. Therefore  γ s – set is {v4}. Hence γ s (G3
p
) =1. 
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If  W1= {v3},W2= {v4} and W3={v1,v2} then in G
3

p, v1 is adjacent to all other vertices. Therefore  γ s – set is {v1}. Hence  γ s (G3
p
) =1. 

→ Case:2 

If  W1= {v2},W2= {v3} and W3={v2,v4}then in G
3

p
 
 is a disconnected graph with two components. Here  v1 is adjacent to v3. Also v2 is 

adjacent to v4. Therefore  γ s – set is {v1,v2,v3}. Hence γ s (G3
p
) =3 

→ Case:3 

If  W1= {v1},W2= {v4} and W3={v2,v3}then in G
3

p, v2 is adjacent to v3,v4. Also v1 is adjacent to v3 and v4. Therefore  γ s – set is 

{v2,v3}. Hence γ s (G3
p
) =2. 

If  W1= {v2},W2= {v4} and W3={v1,v3}then  G
3

p 
 
 is a disconnected graph with two components. In G

3
p, v3 is an isolated vertex. And 

v4 is  adjacent to v1,v2.  Therefore  γ s – set is {v3,v4}. Hence γ s (G3
p
) =2. 

 

12. Theorem 

Let G be a cycle with  n vertices with n=4 say v1, v2.........vn then 

 

 

 

  γ s (G3 
p
)=         2   if  Wi={vj∪N(vj)}, 1≤j≤n, Wj={vs},Wk={vs+1} for some s and vice   versa. 

3    if  Wi={vj∪N(vj)}, 1≤j≤n,  Wj={vr},W3={vs}where vr and vs are non- adjacent vertices or                                 

               W1={vp,vq} where vp,vq are non adjacent vertices,W2={vr},W3={vs} where vr and vs are non – adjacent 

vertices and vice versa. 

 

Proof: 

If  W1= {v1},W2= {v2} and W3={v3,v4}then  v3 is adjacent to v2 and v4.And  v4 is  adjacent to v1,v3.  Therefore  γ s – set is {v3,v4}. 

Hence γ s (G3
p
) =2. 

If  W1= {v2},W2= {v4} and W3={v1,v3}then  v1 is adjacent to v3 and v4.And  v3 is  adjacent to v1,v2.  Therefore  γ s – set is {v1,v3}. 

Hence γ s (G3
p
) =2. 

If  W1= {v3},W2= {v4} and W3={v1,v2}then  v1 is adjacent to v2 and v4.And  v2 is  adjacent to v1,v3.  Therefore  γ s – set is {v3,v4}. 

Hence γ s (G3
p
) =2. 

If  W1= {v2},W2= {v4} and W3={v1,v3}then  v1 is adjacent to v3 and v4.And  v2 is  adjacent to v3.  Therefore  γ s – set is {v1,v2}. Hence 

γ s (G3
p
) =2. 

→ Case:2 

If  W1= {v2,v3},W2= {v1} and W3={v4}then  G
3

p
 
 is a disconnected graph with three components. Here  v2 and v3 are isolated vertices. 

Also v1 is adjacent to v4. Therefore  γ s – set is {v1,v2,v3}. Hence γ s (G3
p
) =3 

If  W1= {v1},W2= {v4} and W3={v2,v3}then  G
3

p
 
 is a disconnected graph with three components. Here  v2 and v3 are isolated vertices. 

Also v1 is adjacent to v4. Therefore  γ s – set is {v2,v3,v4}. Hence γ s (G3
p
) =3 

  If  W1= {v2},W2= {v3} and W3={v1,v4}then  G
3

p
 
 is a disconnected graph with three components. Here  v1 and v4 are isolated vertices. 

Also v2 is adjacent to v3. Therefore  γ s – set is {v1,v2,v4}. Hence γ s (G3
p
) =3. 

 

13. Theorem 

Let G be a cycle with  n vertices with n=5 say v1, v2.........vn then 

 

Then  γ s (G3 
p
)=          

                                   1   if  Wk={vs,vs+1,vs+2} for k=1,2,3.  

2    if  Wi={vj∪N(vj)}, 1≤j≤n, Wj={vp} for some p, Wk=V\(Wi∪Wj) and vice versa.                             

3 if  Wi= {vk},Wj= {vl} where vk and vl are no  adjacent vertices or Wi={vp}where 1≤p≤n,                                        

Wj={vj,vk} where i≠j Wk= V\(Wi∪Wj) where vj and vk are non adjacent vertices.                                                           

 

Proof: 

If  W1= {v1},W2= {v2} and W3={v3,v4,v5}then  v4 is adjacent to  all other vertices. Therefore  γ s – set is {v4}. Hence γ s (G3
p
) =1. 

If  W1= {v1},W2= {v5} and W3={v2,v3,v4}then  v3 is adjacent to  all other vertices. Therefore  γ s – set is {v3}. Hence γ s (G3
p
) =1. 

If  W1= {v2},W2= {v3} and W3={v1,v4,v5}then  v5 is adjacent to  all other vertices. Therefore  γ s – set is {v5}. Hence γ s (G3
p
) =1. 

If  W1= {v3},W2= {v4} and W3={v1,v2,v5}then  v1 is adjacent to  all other vertices. Therefore  γ s – set is {v1}. Hence γ s (G3
p
) =1. 

If  W1= {v4},W2= {v5} and W3={v1,v2,v3}then  v2 is adjacent to  all other vertices. Therefore  γ s – set is {v2}. Hence γ s (G3
p
) =1. 

→ Case:2 

If  W1= {v1},W2= {v2,v3} and W3={v4,v5}then  v2 is adjacent tov3,v4,v5.And v3 is adjacent to v1,v5. Therefore 

  γ s – set is {v2,v3}. Hence γ s (G3
p
) =2. 

If  W1= {v2},W2= {v1,v3} and W3={v4,v5}then  v4 is adjacent tov1,v2,v5.And v5 is adjacent to v2,v3,v4. Therefore   

γ s – set is {v4,v5}. Hence γ s (G3
p
) =2. 
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If  W1= {v2},W2= {v1,v5} and W3={v3,v4}then  v1 is adjacent tov3,v4.And v5 is adjacent to v2,v3. Therefore  γ s – set is {v1,v5}. Hence γ 

s (G3
p
) =2. 

If  W1= {v3},W2= {v1,v2} and W3={v4,v5}then  v1 is adjacent tov2,v3,v4.And v2 is adjacent to v1,v4,v5. Therefore   

γ s – set is {v1,v2}. Hence γ s (G3
p
) =2. 

If  W1= {v4},W2= {v1,v2} and W3={v3,v5}then  v1 is adjacent tov2,v3,v4.And v2 is adjacent to v1,v4,v5. Therefore  

 γ s – set is {v1,v2}. Hence γ s (G3
p
) =2. 

If  W1= {v5},W2= {v1,v2} and W3={v3,v4}then  v1 is adjacent tov2,v3,v4. And v2 is adjacent to v1,v4,v5. Therefore   

γ s – set is {v1,v2}. Hence γ s (G3
p
) =2. 

If  W1= {v5},W2= {v1,v4} and W3={v2,v3}then  v2 is adjacent to v3,v4,v5.And v3 is adjacent to v1,v2,v5. Therefore   

γ s – set is {v2,v3}. Hence γ s (G3
p
) =2. 

If  W1= {v5},W2= {v1,v4} and W3={v2,v3}then  v2 is adjacent tov3,v4,v5.And v3 is adjacent to v1,v2,v5. Therefore  

 γ s – set is {v2,v3}. Hence γ s (G3
p
) =2. 

→ Case:3 

If  W1= {v1},W2= {v3} and W3={v2,v4,v5}then G
3

p is a disconnected graph with two components. Here v2 is an isolated vertex. And v1 

is adjacent to v4,v5.And v3 is adjacent to v1,v5. Therefore  γ s – set is {v1,v2,v3}. Hence  

γ s (G3
p
) =3. 

If W1= {v1},W2= {v4} and W3={v2,v3,v5}then G
3

p is a disconnected graph with two components. Here v5 is an isolated vertex. And v2 

is adjacent to v3,v4. And v3 is adjacent to v1,v2. Therefore  γ s – set is {v2,v3,v5}. Hence  

γ s (G3
p
) =3. 

If W1= {v2},W2= {v4} and W3={v1,v3,v5}then G
3

p is a disconnected graph with two components. Here v3 is an isolated vertex. And v1 

is adjacent to v4,v5.And v2 is adjacent to v4,v5. Therefore  γ s – set is {v1,v2,v3}. Hence  

γ s (G3
p
) =3. 

If W1= {v2},W2= {v5} and W3={v1,v3,v4}then G
3

p is a disconnected graph with two components. Here v1 is an isolated vertex. And v2 

is adjacent to v4,v5. And v3 is adjacent to v4,v5. Therefore  γ s – set is {v1,v2,v3}. Hence 

 γ s (G3
p
) =3. 

If W1= {v3},W2= {v5} and W3={v1,v2,v4}then G
3

p is a disconnected graph with two components. Here v4 is an isolated vertex. And v1 

is adjacent to v2,v3.And v2 is adjacent to v1,v5. Therefore  γ s – set is {v1,v2,v4}. Hence  

γ s (G3
p
) =3. 

If W1= {v2},W2= {v1,v4} and W3={v3,v5}then G
3

p is a disconnected graph with two components. In one component   v1 is adjacent to 

v3.And in the other component v2 is adjacent to v4,v5. Therefore  γ s – set is {v1,v2,v3}. Hence  

γ s (G3
p
) =3. 

If  W1= {v3},W2= {v1,v4} and W3={v2,v5}then G
3

p is a disconnected graph with two components. In one component   v2 is adjacent to 

v4.And in the other component v3 is adjacent to v1,v5. Therefore  γ s – set is {v2,v3,v4}. Hence 

 γ s (G3
p
) =3. 

If  W1= {v5},W2= {v1,v3} and W3={v2,v4}then G
3

p is a disconnected graph with two components. In one component   v1 is adjacent to 

v4.And in the other component v5 is adjacent to v2,v3. Therefore  γ s – set is {v1,v4,v5}. Hence  

γ s (G3
p
) =3. 

 

14. Theorem  

Let G be a cycle with  n vertices with n=6 say v1, v2.........vn 

 

Then  γ s  (G3 
p
)=         1   if  Wk={vj∪N(vj)}, 1≤j≤n, or Wk={vs,vs+1,vs+2} for k=1,2,3.  

    

             3    if  Wk={vi,vj,vl}where Wk contains all alternative vertices for k=1,2,3. 

                                      2     otherwise 

Proof: 

→ Case:1 

If  W1= {v1,v2,v3},W2= {v4,v5} and W3={v6}then in G
3

p  v2 is adjacent to  all other vertices. Therefore  γ s – set is {v2}. Hence γ s (G3
p
) 

=1. 

If  W1= {v2,v3,v4},W2= {v1} and W3={v5,v6}then in G
3

p  v3 is adjacent to  all other vertices. Therefore  γ s – set is {v3}. Hence γ s (G3
p
) 

=1. 

If  W1= {v3,v4,v5},W2= {v1,v2} and W3={v6}then in G
3

p  v4 is adjacent to  all other vertices. Therefore  γ s – set is {v4}. Hence γ s (G3
p
) 

=1. 

Proceeding like this, If  W1= {v1,v2},W2= {v3} and W3={v4,v5,v6}then in G
3

p  v5 is adjacent to  all other vertices. Therefore  γ s – set is 

{v5}. Hence γ s (G3
p
) =1. 

→ Case:2 

If  W1= {v1},W2= {v3,v5} and W3={v2,v4,v6}then in  G
3

p,v1 is adjacent to v3,v4,v5.And  v3 is adjacent to v1,v6.Also v5 is adjacent to 

v1,v2. Therefore  γ s – set is {v1,v3,v5}. Hence γ s (G3
p
) =3. 
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If  W1= {v2},W2= {v4,v6} and W3={v1,v3,v5}then in  G
3

p,v2 is adjacent to v4,v5,v6.And  v4 is adjacent to v1,v2.Also v6 is adjacent to 

v2,v3. Therefore  γ s – set is {v2,v4,v6}. Hence γ s (G3
p
) =3. 

If  W1= {v2,v4},W2= {v6} and W3={v1,v3,v5}then in  G
3

p,v6 is adjacent to v2,v3,v4.And  v4 is adjacent to v1,v6.Also v2 is adjacent to 

v5,v6. Therefore  γ s – set is {v2,v4,v6}. Hence γ s (G3
p
) =3. 

→ Case:3 

If  W1= {v1},W2= {v2} and W3={v3,v4,…,vn}then in  G
3

p,v1 is adjacent to v3,v4,v5…,vn-1.And  v2 is adjacent to v4,v5,…,vn. Therefore  γ 

s – set is {v1,v2}. Hence γ s (G3
p
) =2. 

If  W1= {v1},W2= {v3} and W3={v2,v4,v5,v6}then   G
3

p is a disconnected graph with two components. Here v2 is an isolated vertex. 

And in the other component v5 is adjacent to all other vertices. Therefore  γ s – set is {v2,v5}. Hence γ s (G3
p
) =2. 

If  W1= {v1},W2= {v4} and W3={v2,v3,v5,v6}then in  G
3

p,v1 is adjacent to v3,v4,v5.And  v4 is adjacent to v1,v2,v6.Therefore  γ s – set is 

{v1,v4}. Hence γ s (G3
p
) =2. 

If  W1= {v1},W2= {v5} and W3={v2,v3,v4,v6}then G
3

p is a disconnected graph with two components. Here v6 is  an isolated vertex. And 

in the other component v3 is adjacent to v1,v2,v4,v5.Therefore  γ s – set is {v3,v6}. Hence  

γ s (G3
p
) =2. 

If  W1= {v1},W2= {v6} and W3={v2,v3,v4,v5}then in  G
3

p,v1 is adjacent to v3,v4,v5.And  v6 is adjacent to v2,v3,v4.And there exists a path 

from v2 to v5.Therefore  γ s – set is {v1,v6}. Hence γ s (G3
p
) =2. 

Proceeding like this,if  W1= {v1,v2,v3,…vn-2},W2= {vn-1} and W3={vn}then in  G
3

p,vn is adjacent to v2,v3,…,vn-2.And  v1 is adjacent to 

v2,vn-1,vn.And there exists a path from v1 to vn-2.Therefore  γ s – set is {v1,vn}. Hence 

 γ s (G3
p
) =2. 

Also if   W1= {v1,v3},W2= {v2,v4} and W3={v5,v6}then in  G
3

p,v5 is adjacent to v2,v3,v6.And  v6 is adjacent to v2,v3,v4.Therefore  γ s – 

set is {v5,v6}. Hence γ s (G3
p
) =2. 

 

15. Theorem 

Let G be a cycle with  n≥7 vertices say v1, v2.........vn then 

 

 

Then  γ s        (G3 
p
)=         1   if  Wk={vs,vs+1,vs+2} for k=1,2,3.  

    

3    if  Wi={vk}, 1≤k≤n,Wj={vl} where vl is any  vertex and vl is an  alternative vertex of                                                                                                                           

   vk or Wk contains 2 or 3 alternative vertices. 

                                   2    otherwise. 

 

Proof: 

If  W1= {v1,v2,v3},W2= {v4,v5} and W3={v6,v7,…,vn}then in G
3

p, v2 is adjacent to  all other vertices. Therefore  γ s – set is {v2}. Hence 

γ s (G3
p
) =1. 

If  W1= {v1,v2,v3},W2= {v4,v5,v6} and W3={v7,v8,…,vn}then in G
3

p, v2 is adjacent to  all other vertices. Therefore  γ s – set is {v3}. 

Hence γ s (G3
p
) =1. 

 Proceeding like this, if  W1= {v1,v2,v3},W2= {v4,v5,…,vn-3} and W3={vn-2,vn-,vn}then in G
3

p, vn-1 is adjacent to  all other vertices. 

Therefore  γ s – set is {vn-1}. Hence γ s (G3
p
) =1. 

If  W1= {v1,v2},W2= {v3,v4,v5} and W3={v6,v7,…,vn}then in G
3

p, v4 is adjacent to  all other vertices. Therefore  γ s – set is {v4}. Hence 

γ s (G3
p
) =1. 

If  W1= {v1,v2,v3,v4},W2= {v5,v6,v7} and W3={v8,v9,…,vn}then in G
3

p, v6 is adjacent to  all other vertices. Therefore  γ s – set is {v6}. 

Hence γ s (G3
p
) =1. 

Proceeding like this, if  W1= {v1,v2,v3,v4,v5},W2= {v6,v7,…vn-3} and W3={vn-2,vn-1,vn}then in G
3

p,vn-1 is adjacent to  all other vertices. 

Therefore  γ s – set is {vn-1}. Hence γ s (G3
p
) =1. 

If  W1= {v1,v2,…,vn-8},W2= {vn-7,vn-6,vn-5,vn-4,vn-3} and W3={vn-2,vn-1,vn}then in G
3

p,vn-1 is adjacent to  all other vertices. Therefore  γ s 

– set is {vn-1}. Hence γ s (G3
p
) =1. 

→ Case:2 

If  W1= {v1},W2= {v2} and W3={v3,v4,…,vn}then in G
3

p,v1 is adjacent to  v3,v4,v5…,vn and v2 is adjacent to v4,v5,…vn. And there exists 

a path from v3 to vn. Therefore  γ s – set is {v1,v2}. Hence γ s (G3
p
) =2. 

If  W1= {v1,v2},W2= {v3.v4} and W3={v5,v6,…,vn}then in G
3

p, v1 is adjacent to  v2,v3,v4…,vn-1 and v2 is adjacent to v4,v5,…vn. And 

there exists a path from v5 to vn. Therefore  γ s – set is {v1,v2}. Henceγ s (G3
p
) =2. 

If  W1= {v1,v2,v3,v4},W2= {v5.v6} and W3={v7,v8,…,vn}then in G
3

p, v5 is adjacent to  v1,v2,v3,v6,v7,……,vn and v6 is adjacent to 

v1,v2,v3,v4,v5,v8,v9,… vn. Therefore  γ s – set is {v5,v6}. Hence γ s (G3
p
) =2. 

Proceeding like this, if  W1= {v1,v2,v3,…vn-3},W2= {vn-2} and W3={vn-1,vn}then in G
3

p, vn-1 is adjacent to  v1,v2,…,vn-3,vn and vn is 

adjacent to v2,v3,v4…,vn-1. Therefore  γ s – set is {vn-1,vn}. Hence γ s (G3
p
) =2. 

If  W1= {v1},W2= {v4} and W3={v7,v8,…,vn}then  G
3

p is a connected graph. And  v1 is adjacent to  v3,v4,……,vn-1 and v4 is adjacent to 

v1,v2,v6,v7,… vn. Therefore  γ s – set is {v1,v4}. Hence γ s (G3
p
) =2. 
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If  W1= {v1},W2= {v5} and W3={v7,v8,…,vn}then  v1 is adjacent to  v3,v4,……,vn-1 and v5 is adjacent to v2,v3,v7,v8,… vn. Therefore  γ s 

– set is {v1,v5}. Hence γ s (G3
p
) =2. 

Proceeding like this, if  W1= {v1},W2= {vn} and W3={v2,v3,…,vn-1}then    v1 is adjacent to  v3,v4,……,vn-1 and vn is adjacent to 

v2,v3,… vn-2. Also there exists a path from v2 to vn-1.Therefore  γ s – set is {v1,vn}. Hence γ s (G3
p
) =2. 

If  W1= {v1,v2,v3,v4},W2= {v5.v6,v7,v8} and W3={v9,v10,…,vn}then v2 is adjacent to  v1,v3,v5,v6,v7,……,vn and v3 is adjacent to 

v2,v4,v5,… vn. Also there exists a path from v1 to v4,v5 to v8 and v9 to vn. Therefore  γ s – set is {v2,v3}. Hence γ s (G3
p
) =2. 

If  W1= {v1,v3},W2= {v5.v7} and W3=V\(W1∪W2) then v1 is adjacent to  v4,v5,……,vn-1 and v7 is adjacent to v1,v2,…,v5,v9,v10,…vn. 

Therefore  γ s – set is {v1,v7}. Hence γ s (G3
p
) =2. 

If  W1= {v3,v5},W2= {v7.v9,v11} and W3=V\(W1∪W2) then  V3 is adjacent to  v1,v2,v6,v7,……,vn and v7 is adjacent to 

v1,v2,…,v5,v9,v10,…vn. Therefore  γ s – set is {v3,v7}. Hence γ s (G3
p
) =2. 

 Proceeding like this, if W1= {v1,v3,v5,…v2n-1},W2= {v2.v4,v6,v8} and W3=V\(W1∪W2) then v2 is adjacent to  v5,v6,……,v2n-1,v2n and 

v10 is adjacent to v1,v2,v3,v4,v6,v8,v9,…v2n-1. Therefore  γ s – set is {v2,v10}. Hence γ s (G3
p
) =2. 

→ Case:3 

If  W1= {v1},W2= {v3} and W3=V\(W1∪W2) then G3
p
 is a disconnected graph with two components.v2 is an isolated vertex.v1 is 

adjacent to  v3,v4,……,vn-1 and v3 is adjacent to v5,v6,…vn. Also there exists a path from v4 to vn. Therefore  γ s – set is {v1,v2,v3}. 

Hence γ s (G3
p
) =3. 

If  W1= {v2},W2= {v4} and W3=V\(W1∪W2) then G3
p
 is a disconnected graph with two components.v3 is an isolated vertex.v2 is 

adjacent to  v5,v6,……,vn and v4 is adjacent to v1,v6,v7…vn..Therefore  γ s – set is {v2,v3,v4}. Hence 

 γ s (G3
p
) =3. 

Proceeding like this, if W1= {vn-3},W2= {vn-1} and W3=V\(W1∪W2) then in G3
p
.vn-2 is an isolated vertex.vn-3 is adjacent to  

v1,v2,……,vn-4,vn and vn-1 is adjacent to v1,v2,…vn-4. Therefore  γ s – set is {vn-1,vn-2,vn-3}. Hence 

 γ s (G3
p
) =3. 

If  W1= {vn-2},W2= {vn} and W3=V\(W1∪W2) then G3
p
 is a disconnected graph with two components.vn-1 is an isolated vertex.vn-2 is 

adjacent to  v1,v2,……,vn-4 and vn is adjacent to v1,v2,…vn-3. Therefore  

 γ s – set is {vn-2,vn-1,vn}. Hence γ s (G3
p
) =3. 

 

16. Conjecture 

For any complete graph 3≤γ s (G3
p
)≤n-1,the lower bound is attained when |W1|=|W2|=1 and the upper bound is attained when n=6. 

 

17. Theorem 

 If G and G3
p
 are connected graphs then 2≤γs (G)+ γs (G3

p
)  ≤n+1. 

 

Proof: 

For any connected graph G and G3
p
, γs (G)≥1 and  γs (G3

p
) ≥1.Therefore 2≤γs (G)+ γs (G2

p
) . 

Also we can justify γs (G)+ γs (G2
p
)  ≤n+1 with the following examples. 

 

Example: 

The upper bound is attained at n=8 with a path. Here γs (G)=7 and  γs (G3
p
)  ≤2 for a connected graph G

3
p.  

Therefore  γs (G)+ γs (G3
p
)  ≤9=n+1. 

 

18. Conjecture 

If any n partitions contain an isolated vertex then γs (G3
p
)  ≥n+1. 

Proof: 

If any two partition contains an isolated vertex then γs (G3
p
)  ≥2. 

If any two partitions contain an isolated vertex then γs (G3
p
)  ≥3. 

In general, If any n partitions contain an isolated vertex then γs (G3
p
)  ≥n+1 
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