THE INTERNATIONAL JOURNAL OF SCIENCE \& TECHNOLEDGE

Generalized 3 - Complement of Set Domination

P. Sumathi
Head \& Associate Professor, Department of Mathematics, C.K.N. College for Men, Anna Nagar, Chennai, India
T. Brindha
Assistant Professor, Department of Mathematics, E.M.G. Yadava Women's College, Madurai, Chennai, India

Abstract

: Let $G=(V, E)$ be a simple, undirected, finite nontrivial graph. A set $S \subseteq V$ of vertices of a graph $G=(V, E)$ is called a dominating set if every vertex $v \in V$ is either an element of S or is adjacent to an element of S. A set $S \subseteq V$ is a set dominating set if for every set $T \subseteq V-S$, there exists a non-empty set $R \subseteq S$ such that the subgraph $<R U T>$ is connected. The minimum cardinality of a set dominating set is called set domination number and it is denoted by $\gamma_{s}(G)$ Let $P=\left(V_{l}, V_{2}, V_{3}\right)$ be a partition of V of order 3 . Remove the edges between V_{i} and V_{j} where $i \neq j(1 \leq, j \leq)$ in G and join the edges between V_{i} and V_{j} which are not in G. The graph $G_{3}{ }^{p}$ thus obtained is called 3 -complement of G with respect to ' P '.

Keywords: Dominating set, Set dominating set, 3-complement of G.

1. Introduction

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a simple, undirected, finite nontrivial graph with vertex set V and edge set E . And $\mathrm{K}_{\mathrm{n}}, \mathrm{K}_{\mathrm{m}, \mathrm{n}, \mathrm{C}}, \mathrm{C}_{\mathrm{n}}, \mathrm{P}_{\mathrm{n}}$ and $\mathrm{K}_{1, \mathrm{n}}$ denote the complete graph, the complete bipartite graph, the cycle, the path and the star on n-vertices respectively. A nonempty set $\mathrm{S} \subseteq \mathrm{V}$ of vertices in a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is called a dominating set if every vertex $v \varepsilon \mathrm{~V}$ is either an element of S or is adjacent to an element of S . A set $\mathrm{S} \subseteq \mathrm{V}$ is a set dominating set if for every set $\mathrm{T} \subseteq \mathrm{V}$-S, there exists a non-empty set $\mathrm{R} \subseteq \mathrm{S}$ such that the subgraph $<\mathrm{RUT}\rangle$ is connected. The minimum cardinality of a set dominating set is called set domination number and it is denoted by $\gamma_{\mathrm{s}}(\mathrm{G})$.

2. Observation

For any connected graph G, $\gamma(\mathrm{G}) \leq \gamma_{\mathrm{s}}(\mathrm{G})$.
In the following example the set domination number γ_{s} is calculated.

3. Example

Consider the following graph G :

Let $\mathrm{V}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2} \ldots \ldots . \mathrm{v}_{\mathrm{n}}\right\}$ be the vertices of $\mathrm{G} . \mathrm{S}=\left\{\mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{6}\right\}$.
For every $T \subseteq V-S$ there exists a nonempty set $R \subseteq S$ such that $\langle R U T\rangle$ is connected.
Here, $\gamma_{\mathrm{s}}(\mathrm{G})=3$.
The 3-complementary of the set domination number of some standard graphs are given below.

4. Theorem

When $\mathrm{G}=\mathrm{K}_{\mathrm{n}}(\mathrm{n} \geq 3)$, let $\left(\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}\right)$ be a partition of G and $\left|\mathrm{V}_{1}\right|=\mathrm{k},\left|\mathrm{V}_{2}\right|=\mathrm{r},\left|\mathrm{V}_{3}\right|=1(\mathrm{k} \leq \mathrm{r} \leq 1)$ then
$\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=\mathrm{k}+\mathrm{r}+1$.
Proof:-
Let $V\left(K_{n}\right)=\left\{v_{1}, v_{2}, \ldots . . v_{n}\right\}$ and $\left(V_{1}, V_{2}, V_{3}\right)$ be a partition of G. Suppose $V_{1}=\left\{v_{1}\right\} V_{2}=\left\{v_{2}\right\}$ and $V_{3}=\left\{v_{3}, v_{4}, \ldots, v_{n}\right\}$ then G_{p}^{3} is a disconnected graph with 3 components. And v_{1} and v_{2} are isolated vertices.
Here $<\left\{\mathrm{v}_{3}, \mathrm{v}_{4} \ldots . . \mathrm{v}_{\mathrm{n}}\right\}>$ form a complete graph with $\mathrm{n}-2$ vertices in $\mathrm{G}_{3}{ }^{\mathrm{p}}$. Here a $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\}$. Therefore $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=3$.
If $V_{1}=\left\{\mathrm{v}_{1}\right\}, \mathrm{V}_{2}=\left\{\mathrm{v}_{2}, \mathrm{v}_{3}\right\}$ and $\mathrm{V}_{3}=\left\{\mathrm{v}_{4}, \mathrm{v}_{5}, \ldots ., \mathrm{v}_{\mathrm{n}}\right\}$ then $\mathrm{G}_{\mathrm{p}}^{3}$ is a disconnected graph with 3 components. And v_{1} is an isolated vertex. And v_{2} is adjacent to v_{3}.Here $<\left\{\mathrm{v}_{4}, \mathrm{v}_{5} \ldots \ldots \mathrm{v}_{\mathrm{n}}\right\}>$ form a complete graph with $\mathrm{n}-3$ vertices in $\mathrm{G}_{3}{ }^{\mathrm{p}}$. Here a γ_{s} - set is $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}\right\}$. Therefore $\gamma_{s}\left(G_{3}{ }^{\mathrm{p}}\right)=4$.
Suppose $\mathrm{V}_{1}=\left\{\mathrm{v}_{1}\right\}, \mathrm{V}_{2}=\left\{\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}\right\}$ and $\mathrm{V}_{3}=\left\{\mathrm{v}_{5}, \mathrm{v}_{6}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ then $\mathrm{G}_{\mathrm{p}}^{3}$ is a disconnected graph with 3 components. And v_{1} is an isolated vertex. Here $<\left\{\mathrm{v}_{5}, \mathrm{v}_{6} \ldots . . \mathrm{v}_{\mathrm{n}}\right\}>$ and $<\left\{\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}\right\}>$ are disjoint and they form a complete graph Here a $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}\right\}$. Therefore $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=5$.
Suppose $V_{1}=\left\{v_{1}\right\}, V_{2}=\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$ and $V_{3}=\left\{v_{6}, v_{7}, \ldots, v_{n}\right\}$ then G_{p}^{3} is a disconnected graph. And v_{1} is an isolated vertex. Here $<\left\{v_{2}\right.$, $\left.v_{3}{ }^{\prime} \mathrm{v}_{4}, \mathrm{v}_{5}\right\}>$ and $<\left\{\mathrm{v}_{6}, \mathrm{v}_{7}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}>$ are disjoint and they form a complete graph.Here a $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{v}_{6}\right\}$. Therefore $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=$ 6.

Proceeding like this, Suppose $V_{1}=\left\{v_{1}\right\}, V_{2}=\left\{v_{2}, v_{3}, \ldots v_{n-1}\right\}$ and $V_{3}=\left\{v_{n}\right\}$ then G_{p}^{3} is a disconnected graph. Here a $\gamma_{s}-$ set is $\left\{v_{1}, v_{2}, v_{n}\right\}$. Therefore $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=3$.
If $\mathrm{V}_{1}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\}, \mathrm{V}_{2}=\left\{\mathrm{v}_{3}, \mathrm{v}_{4}\right\}$ and $\mathrm{V}_{3}=\left\{\mathrm{v}_{5}, \mathrm{v}_{6}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ then $\mathrm{G}_{\mathrm{p}}^{3}$ is a disconnected graph with 3 components. And v_{1} is adjacent to $\mathrm{v}_{2}, \mathrm{v}_{3}$ is adjacent to v_{4} and $\left\langle\left\{v_{5}, v_{6} \ldots v_{n}\right\}\right\rangle$ form a complete graph with $n-5$ vertices.Here a $\gamma_{s}-$ set is
$\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}\right\}$. Therefore $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=5$.
If $V_{1}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\}, \mathrm{V}_{2}=\left\{\mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}\right\}$ and $\mathrm{V}_{3}=\left\{\mathrm{v}_{6}, \mathrm{v}_{7}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ then $\mathrm{G}_{\mathrm{p}}^{3}$ is a disconnected graph with 3 components. Here $\left\{<\mathrm{v}_{1}, \mathrm{v}_{2}>\right\}$ and $<\left\{\mathrm{v}_{3}\right.$, $\left.\left.\mathrm{v}_{4}, \mathrm{v}_{5}\right\}\right\rangle$ and $\left.\left\langle\mathrm{v}_{6}, \mathrm{v}_{7}, \ldots \mathrm{v}_{\mathrm{n}}\right\}\right\rangle$ are disjoint. Here v_{1} is adjacent to v_{2} and $\left.\left\langle\mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}\right\}\right\rangle$ and $\left\langle\left\{\mathrm{v}_{6}, \mathrm{v}_{7}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}\right\rangle$ form a complete graph. Here a $\boldsymbol{\gamma}_{\mathrm{s}}$ - set is $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{v}_{6}\right\}$. Therefore $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=6$.

If $\mathrm{V}_{1}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\}, \mathrm{V}_{2}=\left\{\mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{v}_{6}\right\}$ and $\mathrm{V}_{3}=\left\{\mathrm{v}_{7}, \mathrm{v}_{8}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ then $\mathrm{G}_{\mathrm{p}}^{3}$ is a disconnected graph with 3 components. Here $\left\{<\mathrm{v}_{1}, \mathrm{v}_{2}>\right\}$ and $<$ $\left.\left\{v_{3}, v_{4}, v_{5}, v_{6}\right\}\right\rangle$ and $\left.\left\langle v_{7}, v_{8}, \ldots v_{n}\right\}\right\rangle$ are disjoint. Here v_{1} is adjacent to v_{2} and $\left.\left\langle v_{3}, v_{4}, v_{5}, v_{6}\right\}\right\rangle$ and $\left\langle\left\{v_{7}, v_{8}, \ldots, v_{n}\right\}\right\rangle$ form a complete graph. Here a $\gamma_{s}-$ set is $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{v}_{6}, \mathrm{v}_{7}\right\}$. Therefore $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=7$
Proceeding like this, If $V_{1}=\left\{v_{1}, v_{2}\right\}, V_{2}=\left\{v_{3}, v_{4}, \ldots v_{n-1}\right\}$ and $V_{3}=\left\{v_{n}\right\}$ then G_{p}^{3} is a disconnected graph. Here v_{n} is an isolated vertex. And v_{1} is adjacent to v_{2} and $\left.\left\langle v_{3}, v_{4}, \ldots v_{n-1}\right\}\right\rangle$ form a complete graph with $n-2$ vertices. Here a $\gamma_{s}-\operatorname{set}$ is $\left\{v_{1}, v_{2}, v_{3}, v_{n}\right\}$. Therefore γ_{s} $\left(\mathrm{G}_{3}^{\mathrm{p}}\right)=4$.
All other partitions, we get an isomorphic graph of one of the above cases.

5. Theorem

Let G be a Complete bipartite graph with partition $\left(V_{1}, V_{2}\right)$, where $\left|V_{1}\right|=m$ and $\left|V_{2}\right|=n$ where $m \leq n$. Let $\left(W_{1}, W_{2}, W_{3}\right)$ be a partition of $\mathrm{V}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)$ then
$\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=\quad 1$ if $\left|\mathrm{W}_{\mathrm{i}}\right|=\left|\mathrm{W}_{\mathrm{j}}\right|=1$ where $\mathrm{i}, \mathrm{j}=1,2,3$ with $\mathrm{i} \neq \mathrm{j}$
2 if $\mathrm{W}_{\mathrm{i}}=\{\mathrm{u}, \mathrm{v}\}$ where $\mathrm{u} \varepsilon \mathrm{V}_{1}$ and $v \varepsilon \mathrm{~V}_{2}$
$\mathrm{m}+1$ if $\mathrm{W}_{\mathrm{i}}=\mathrm{V}_{1}, \mathrm{~W}_{\mathrm{j}}=\{\mathrm{v}\}$ where $\mathrm{v} \varepsilon \mathrm{V}_{2}, \mathrm{~W}_{\mathrm{k}}=\mathrm{V} \backslash\left(\mathrm{W}_{\mathrm{i}} \cup \mathrm{W}_{\mathrm{j}}\right)$ for $\mathrm{i}, \mathrm{j}=1,2,3$
$\mathrm{n}+1$ if $\mathrm{W}_{\mathrm{i}}=\mathrm{V}_{2}, \mathrm{~W}_{\mathrm{j}}=\{\mathrm{u}\}$ where $\mathrm{v} \varepsilon \mathrm{V}_{1}, \mathrm{~W}_{\mathrm{k}}=\mathrm{V} \backslash\left(\mathrm{W}_{\mathrm{i}} \cup \mathrm{W}_{\mathrm{j}}\right)$ for $\mathrm{i}, \mathrm{j}=1,2,3$
$\mathrm{m}+2$ if $\mathrm{W}_{\mathrm{i}}=\mathrm{V}_{1}, \mathrm{~W}_{\mathrm{j}}=\left\{\mathrm{v}_{\mathrm{p}}, \mathrm{v}_{\mathrm{q}}\right\}$ where $\mathrm{v}_{\mathrm{p}}, \mathrm{v}_{\mathrm{q}} \varepsilon \mathrm{V}_{2}, \mathrm{~W}_{\mathrm{k}}=\mathrm{V} \backslash\left(\mathrm{W}_{\mathrm{i}} \cup \mathrm{W}_{\mathrm{j}}\right)$ for $\mathrm{i}, \mathrm{j}=1,2,3$
$\mathrm{n}+2$ if $\mathrm{W}_{\mathrm{i}}=\mathrm{V}_{2}, \mathrm{~W}_{\mathrm{j}}=\left\{\mathrm{u}_{\mathrm{p}}, \mathrm{u}_{\mathrm{q}}\right\}$ where $\mathrm{u}_{\mathrm{p}}, \mathrm{u}_{\mathrm{q}} \varepsilon \mathrm{V}_{1}, \mathrm{~W}_{\mathrm{k}}=\mathrm{V} \backslash\left(\mathrm{W}_{\mathrm{i}} \cup \mathrm{W}_{\mathrm{j}}\right)$ for $\mathrm{i}, \mathrm{j}=1,2,3$
Proof:
\rightarrow Case: 1
Let $\left|W_{1}\right|=\left|V_{j}\right|+1,\left|W_{2}\right|=1,\left|W_{3}\right|=1$ for some i. Then G_{p}^{3} is a connected graph. In G_{p}^{3}, which element is joined to V_{i} that element is adjacent to all other elements. Therefore a γ_{s}-set has only one element to satisfy the set domination. Hence $\gamma_{s}\left(G_{3}{ }^{\mathrm{p}}\right)=1$
\rightarrow Case:2
If $V_{1}=\left\{u_{1}\right\}, V_{2}=\left\{v_{2}\right\}$ and $V_{3}=V \backslash\left(V_{1} \cup V_{2}\right)$ then G_{p}^{3} is a connected graph. Here a $\gamma_{s}-$ set is $\left\{v_{1}, u_{2}\right\}$. Therefore
$\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}^{\mathrm{p}}\right)=2$.
If $\mathrm{V}_{1}=\left\{\mathrm{u}_{1}\right\}, \mathrm{V}_{2}=\left\{\mathrm{u}_{2}, \mathrm{v}_{1}\right\}$ and $\mathrm{V}_{3}=\mathrm{V} \backslash\left(\mathrm{V}_{1} \cup \mathrm{~V}_{2}\right)$ then $\mathrm{G}_{\mathrm{p}}^{3}$ is a connected graph. Here a $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{1}, \mathrm{u}_{2}\right\}$. Therefore
$\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=2$.
If $\mathrm{V}_{1}=\left\{\mathrm{u}_{1}\right\}, \mathrm{V}_{2}=\left\{\mathrm{u}_{2}, \mathrm{u}_{3}, \mathrm{v}_{1}\right\}$ and $\mathrm{V}_{3}=\mathrm{V} \backslash\left(\mathrm{V}_{1} \cup \mathrm{~V}_{2}\right)$ then $\mathrm{G}_{\mathrm{p}}^{3}$ is a connected graph. Here a $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{1}, \mathrm{u}_{3}\right\}$. Therefore $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=2$.
If $V_{1}=\left\{v_{2}\right\}, V_{2}=\left\{v_{3}\right\}$ and $V_{3}=V \backslash\left(V_{1} \cup V_{2}\right)$ then G_{p}^{3} is a connected graph. Here a $\gamma_{s}-$ set is $\left\{v_{1}, v_{2}\right\}$. Therefore
$\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=2$.

If $V_{1}=\left\{u_{1}, v_{1}\right\}, V_{2}=\left\{u_{2}, u_{3}\right\}$ and $V_{3}=V \backslash\left(V_{1} \cup V_{2}\right)$ then G_{p}^{3} is a connected graph. Here u_{1} is adjacent to u_{2} and u_{3}. And v_{1} is adjacent to $\mathrm{v}_{2}, \mathrm{v}_{3}, \ldots, \mathrm{v}_{\mathrm{n}}$. Therefore a $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{u}_{1,}, \mathrm{v}_{1}\right\}$. Therefore $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=2$.
If $V_{1}=\left\{u_{1}, v_{1}, v_{2}\right\}, V_{2}=\left\{u_{2}, u_{3}\right\}$ and $V_{3}=V \backslash\left(V_{1} \cup V_{2}\right)$ then G_{p}^{3} is a connected graph. Here u_{1} is adjacent to $u_{2}, u_{3}, \ldots u_{n}$. And v_{1} and v_{2} are adjacent to $\mathrm{v}_{3}, \mathrm{v}_{4}, \ldots, \mathrm{v}_{\mathrm{n}}$. Therefore a $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{u}_{1,} \mathrm{v}_{2}\right\}$. Therefore $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=2$.
If $V_{1}=\left\{u_{1}, v_{1}, v_{2}, v_{3}\right\}, V_{2}=\left\{u_{2}, u_{3}\right\}$ and $V_{3}=V \backslash\left(V_{1} \cup V_{2}\right)$ then u_{1} is adjacent to $u_{2}, u_{3}, \ldots u_{n}, v_{1}, v_{2}, v_{3}$. And v_{1}, v_{2}, v_{3} are adjacent to $v_{4}, v_{5}, \ldots, v_{n}$. Therefore a $\gamma_{s}-$ set is $\left\{u_{1,}, v_{1}\right\}$. Therefore $\gamma_{s}\left(G_{3}{ }^{p}\right)=2$.
If $V_{1}=\left\{u_{1}, u_{2}\right\}, V_{2}=\left\{u_{3}\right\}$ and $V_{3}=V \backslash\left(V_{1} \cup V_{2}\right)$ then G_{p}^{3} is a connected graph. Here u_{3} is adjacent to $u_{1}, u_{2}, u_{4}, u_{5} \ldots u_{n}$. And u_{4} is adjacent to $v_{1}, v_{2}, \ldots, v_{n}$. Therefore a $\gamma_{s}-$ set is $\left\{u_{3}, u_{4}\right\}$. Therefore $\gamma_{s}\left(G_{3}{ }^{p}\right)=2$.
If $V_{1}=\left\{u_{1}, u_{2}\right\}, V_{2}=\left\{u_{3}, v_{1}\right\}$ and $V_{3}=V \backslash\left(V_{1} \cup V_{2}\right)$ then G_{p}^{3} is a connected graph. Here u_{3} is adjacent to $u_{1}, u_{2}, u_{3} \ldots u_{n}$. And v_{1} is adjacent to $v_{2}, v_{3}, \ldots, v_{n}$. Therefore a $\gamma_{s}-$ set is $\left\{u_{3}, v_{1}\right\}$. Therefore $\gamma_{s}\left(G_{3}{ }^{p}\right)=2$.
Proceeding like this, for other similar partitions we get $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{P}}\right)=2$.
\rightarrow Case:3
In this case, G_{p}^{3} is a disconnected graph. Here $u_{1}, u_{2}, \ldots, u_{m}$ are isolated vertices. And $v_{i} \varepsilon W_{j}$ is adjacent to $v_{1}, v_{2}, \ldots v_{n}$ except i. Therefore a $\gamma_{s}-$ set is $\left\{u_{1}, u_{2}, u_{3}, \ldots u_{m}, v_{i}\right\}$. Therefore $\gamma_{s}\left(G_{3}{ }^{p}\right)=m+1$.
\rightarrow Case: 4
In this case, G_{p}^{3} is a disconnected graph. Here $v_{1}, v_{2}, \ldots, v_{n}$ are isolated vertices. And $u_{i} \varepsilon W_{j}$ is adjacent to $u_{1}, u_{2}, \ldots u_{n}$ except i. Therefore

\rightarrow Case:5
In this case, $\mathrm{G}_{\mathrm{p}}^{3}$ is a disconnected graph. Here $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{m}}$ are isolated vertices. And $\mathrm{v}_{\mathrm{p}}, \mathrm{v}_{\mathrm{q}} \varepsilon \mathrm{W}_{\mathrm{j}}$ are adjacent to $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{n}}$. Therefore a γ_{s} - set is $\left\{u_{1}, u_{2}, u_{3}, \ldots u_{m}, v_{p}, v_{q}\right\}$. Therefore $\gamma_{s}\left(G_{3}{ }^{p}\right)=m+2$.
\rightarrow Case:6
In this case, G_{p}^{3} is a disconnected graph. Here $v_{1}, v_{2}, \ldots, v_{n}$ are isolated vertices. And $u_{p}, u_{q} \varepsilon W_{j}$ are adjacent to $u_{1}, u_{2}, \ldots u_{m}$. Therefore a γ_{s} - set is $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \ldots \mathrm{v}_{\mathrm{n}}, \mathrm{u}_{\mathrm{p}}, \mathrm{u}_{\mathrm{q}}\right\}$. Therefore $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=\mathrm{n}+2$.

6. Theorem

Let G be a star $\left(K_{1, n}\right.$ where $\left.n \geq 4\right)$ Let u be the star center and $u_{1}, u_{2}, \ldots, u_{n}$ be the pendant of G. Let $\left(W_{1}, W_{2}, W_{3}\right)$ be the partition of $G_{3}{ }^{p}$.

Then

1 if $\mathrm{W}_{\mathrm{k}}=\left\{\mathrm{u}, \mathrm{u}_{\mathrm{i}}\right\}, 1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{k}=1,2,3$
3 if $\mathrm{W}_{1}=\{\mathrm{u}\}, \mathrm{W}_{2}=\left\{\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{j}}\right\}, \mathrm{W}_{3}=\mathrm{V} \backslash\left(\mathrm{W}_{1} \cup \mathrm{~W}_{2}\right)$ or $\mathrm{W}_{1}=\{\mathrm{u}\}, \mathrm{W}_{2}=\left\{\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{j}}, \mathrm{u}_{\mathrm{k}}\right\}, \mathrm{W}_{3}=\mathrm{V} \backslash\left(\mathrm{W}_{1} \cup \mathrm{~W}_{2}\right)$
2 otherwise

Proof:

\rightarrow case: 1
If $W_{1}=\left\{u, u_{1}\right\}, W_{2}=\left\{u_{2}\right\}, W_{3}=\left\{u_{3}, u_{4}, \ldots, u_{n}\right\}$ then in $G_{3}{ }^{p}, u_{1}$ is adjacent to all other vertices. Since, u_{1} is adjacent to u and all other vertices of W_{2} and W_{3}. Therefore a γ_{s} set is $\left\{u_{1}\right\}$. Hence $\gamma_{s}\left(G_{3}{ }^{p}\right)=1$.
If $W_{1}=\left\{u, u_{2}\right\}, W_{2}=\left\{u_{3}\right\}, W_{3}=\left\{u_{1}, u_{4}, u_{5}, \ldots, u_{n}\right\}$ then in $G_{3}{ }^{p}, u_{2}$ is adjacent to u and all other vertices of W_{2} and W_{3}. Therefore a γ_{s-s} set is $\left\{\mathrm{u}_{2}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=1$.
Proceeding like this, if $W_{1}=\left\{u, u_{n}\right\}, W_{2}=\left\{u_{n-1}\right\}, W_{3}=\left\{u_{1}, u_{2}, \ldots, u_{n-2}\right\}$ then in $G_{3}{ }^{p}, u$ is adjacent to u_{2} and all other vertices W_{2} and W_{3}. Therefore a $\gamma_{\mathrm{s} \text {-set }}$ is $\left\{\mathrm{u}_{\mathrm{n}}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=1$.
\rightarrow Case:2
If $W_{1}=\{u\}, W_{2}=\left\{u 1, u_{2}\right\}, W_{3}=\left\{u_{3}, u_{4}, \ldots, u_{n}\right\}$ then in $G_{3}{ }^{p}, u$ is an isolated vertex. And u_{1} is adjacent to $u_{3}, u_{4}, \ldots, u_{n}, u_{2}$ is adjacent to $u_{3}, u_{4}, \ldots, u_{n}$. Therefore a γ_{s-} set is $\left\{u, u_{1}, u_{2}\right\}$. Hence $\gamma_{s}\left(G_{3}{ }^{p}\right)=3$.
If $W_{1}=\{u\}, W_{2}=\left\{u_{1}, u_{2}, u_{3}\right\}, W_{3}=V \mid\left(W_{1} \cup W_{2}\right)$ then in $G_{3}{ }^{p}, u$ is an isolated vertex. And u_{1} is adjacent to $u_{4}, u_{5}, \ldots, u_{n}$, u_{2} is adjacent to $\mathbf{u}_{4}, \mathbf{u}_{5}, \ldots, \mathbf{u}_{\mathrm{n}}$. and also u_{4} is adjacent to $\mathrm{u}_{1}, \mathbf{u}_{2}, \mathrm{u}_{3}$. Therefore a $\gamma_{\mathrm{s}-\text { set }}$ is $\left\{\mathrm{u}, \mathrm{u}_{1}, \mathrm{u}_{4}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=3$.
If $W_{1}=\{u\}, W_{2}=\left\{u_{1}, u_{2}, \ldots, u_{n-2}\right\}, W_{3}=\left\{u_{n-1}, u_{n}\right\}$ then in $G_{3}{ }^{p}, u$ is an isolated vertex. And u_{1} is adjacent to u_{n-1}, u_{n} and also u_{n-1} is adjacent to $\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{\mathrm{n}-2}$. Therefore a $\gamma_{\mathrm{s} \text { - }}$ set is $\left\{\mathrm{u}, \mathrm{u}_{1}, \mathrm{u}_{\mathrm{n}-1}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=3$.
If $W_{1}=\{u\}, W_{2}=\left\{u_{1}, u_{2}, \ldots, u_{n-3}\right\}, W_{3}=\left\{u_{n-2}, u_{n-1}, u_{n}\right\}$ then in $G_{3}{ }^{p}, u$ is an isolated vertex. And u_{1} is adjacent to u_{n-2}, u_{n-1}, u_{n}, also u_{n-2} is adjacent to $u_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}-3}$. Therefore a $\gamma_{\mathrm{s} \text { - }}$ set is $\left\{\mathrm{u}, \mathrm{u}_{1}, \mathrm{u}_{\mathrm{n}-2}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=3$.
\rightarrow Case:3
If $W_{1}=\{u\}, W_{2}=\left\{u_{1}\right\}, W_{3}=V 1\left(W_{1} \cup W_{2}\right)$ then in $G_{3}{ }^{p}, u$ is an isolated vertex. And u_{1} is adjacent to $u_{2}, u_{3}, \ldots, u_{n}$. Therefore a γ_{s-} set is $\left\{u, u_{1}\right\}$. Hence $\gamma_{s}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=2$.
If $W_{1}=\{u\}, W_{2}=\left\{u_{n}\right\}, W_{3}=V \mid\left(W_{1} \cup W_{2}\right)$ then in $G_{3}{ }^{p}, u$ is an isolated vertex. And u_{n} is adjacent to $u_{1}, u_{2}, \ldots, u_{n-1}$. Therefore a γ_{s-} set is $\left\{u, u_{n}\right\}$. Hence $\gamma_{s}\left(G_{3}{ }^{p}\right)=2$.
If $W_{1}=\left\{u, u_{1}, u_{2}\right\}, W_{2}=\left\{u_{3}\right\}, W_{3}=V l\left(W_{1} \cup W_{2}\right)$ then in $G_{3}{ }^{p}, u$ is adjacent to u_{1}, u_{2}. And u_{1} is adjacent to all other vertices of W_{2} and W_{3}. Therefore a $\gamma_{s-\text { set }}$ is $\left\{u, u_{1}\right\}$. Hence $\gamma_{s}\left(G_{3}{ }^{p}\right)=2$.

If $W_{1}=\left\{u, u_{1}, u_{2}\right\}, W_{2}=\left\{u_{3}, u_{4}, \ldots, u_{n-2}\right\}, W_{3}=\left\{u_{n-1}, u_{n}\right\}$ then in $G_{3}{ }^{p}, u$ is adjacent to u_{1}, u_{2}. And u_{1} is adjacent to all other vertices of W_{2} and W_{3}. Therefore a $\gamma_{\mathrm{s} \text {-set }}$ is $\left\{\mathrm{u}, \mathrm{u}_{1}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=2$.
If $W_{1}=\left\{u, u_{1}, u_{2}, \ldots, u_{n-4}\right\}, W_{2}=\left\{u_{n-3}, u_{n-2}\right\}, W_{3}=\left\{u_{n-1}, u_{n}\right\}$ then in $G_{3}{ }^{p}, u$ is adjacent to $u_{1}, u_{2}, \ldots, u_{n-4}$. And u_{1} is adjacent to all other vertices of W_{2} and W_{3}. Therefore a $\gamma_{s-s e t}$ is $\left\{u, u_{1}\right\}$. Hence $\gamma_{s}\left(G_{3}{ }^{p}\right)=2$.
If $W_{1}=\left\{u, u_{1}, u_{2}, \ldots, u_{n-3}\right\}, W_{2}=\left\{u_{n-2}\right\}, W_{3}=\left\{u_{n-1}, u_{n}\right\}$ then in $G_{3}{ }^{p}, u$ is adjacent to $u_{1}, u_{2}, \ldots, u_{n-3}$. And u_{1} is adjacent to u_{n-2}, u_{n-1}, u_{n}. Therefore a γ_{S-} set is $\left\{u, u_{1}\right\}$. Hence $\gamma_{s}\left(G_{3}{ }^{p}\right)=2$.
Proceeding like this, If $W_{1}=\left\{u, u_{1}, u_{2}, \ldots, u_{n-2}\right\}, W_{2}=\left\{u_{n-1}\right\}, W_{3}=\left\{u_{n}\right\}$ then in $G_{3}{ }^{p}, u$ is adjacent to $u_{1}, u_{2}, \ldots, u_{n-2}$. And u_{1} is adjacent toun1 ,un. Therefore a γ_{s-} set is $\left\{u, u_{1}\right\}$. Hence $\gamma_{s}\left(G_{3}{ }^{p}\right)=2$.
7. Theorem

Let G be a star $\left(K_{1, n}\right.$ where $\left.n=3\right)$ Let u be the star center and u_{1}, u_{2}, u_{3} be the pendant of G. Let $\left(W_{1}, W_{2}, W_{3}\right)$ be the partition of $G_{3}{ }^{p}$.
Then $\gamma_{s}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=\left\{\begin{array}{l}1 \text { if } \mathrm{W}_{\mathrm{k}}=\left\{\mathrm{u}, \mathrm{u}_{\mathrm{i}}\right\}, 1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{k}=1,2,3 \\ 2 \text { if } \mathrm{W}_{\mathrm{i}}=\{\mathrm{u}\}, \mathrm{W}_{\mathrm{j}}=\left\{\mathrm{u}_{\mathrm{i}}\right\}, \mathrm{W}_{3}=\mathrm{V} \backslash\left(\mathrm{W}_{1} \cup \mathrm{~W}_{2}\right)\end{array}\right.$

Proof:

If $W_{1}=\left\{u, u_{1}\right\}, W_{2}=\left\{u_{2}\right\}, W_{3}=\left\{u_{3}\right\}$ then in $G_{3}{ }^{p}, u_{1}$ is adjacent to all other vertices. Therefore a γ_{s-s} set is $\left\{u_{1}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=1$.
If $W_{1}=\left\{u, u_{2}\right\}, W_{2}=\left\{u_{1}\right\}, W_{3}=\left\{u_{3}\right\}$ then in $G_{3}{ }^{p}, u_{2}$ is adjacent to all other vertices. Therefore a γ_{s-s} set is $\left\{u_{2}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=1$.
If $W_{1}=\left\{u, u_{3}\right\}, W_{2}=\left\{u_{1}\right\}, W_{3}=\left\{u_{2}\right\}$ then in $G_{3}{ }^{p}, u_{3}$ is adjacent to all other vertices. Therefore a $\gamma_{s-\text { set }}$ is $\left\{u_{3}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=1$.
\rightarrow Case:2
If $W_{1}=\{u\}, W_{2}=\left\{u_{1}\right\}, W_{3}=\left\{u_{2}, u_{3}\right\}$ then in $G_{3}{ }^{p}, u$ is an isolated vertex. And u_{1} is adjacent to u_{2}, u_{3}. Therefore a $\gamma_{s-\text { set }}$ is $\left\{u, u_{1}\right\}$. Hence γ_{s} $\left(\mathrm{G}_{3}^{\mathrm{p}}\right)=2$.
If $W_{1}=\{u\}, W_{2}=\left\{u_{2}\right\}, W_{3}=\left\{u_{1}, u_{3}\right\}$ then in $G_{3}{ }^{p}, u$ is an isolated vertex. And u_{2} is adjacent to u_{1}, u_{3}. Therefore a γ_{s-} set is $\left\{u, u_{2}\right\}$. Hence γ_{s} $\left(\mathrm{G}_{3}^{\mathrm{p}}\right)=2$.
If $W_{1}=\{u\}, W_{2}=\left\{u_{3}\right\}, W_{3}=\left\{u_{1}, u_{2}\right\}$ then in $G_{3}{ }^{p}, u$ is an isolated vertex. And u_{3} is adjacent to u_{1}, u_{2}. Therefore a γ_{s-} set is $\left\{u, u_{3}\right\}$. Hence γ_{s} $\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=2$.

8. Note

If W_{k} has only a star u then $\mathrm{G}_{\mathrm{k}}{ }^{\mathrm{p}}$ is a disconnected graph for $\mathrm{k}=1,2,3$.

9. Theorem

Let G be a path on n vertices $(n \geq 5)$ say $v_{1}, v_{2} \ldots \ldots \ldots . v_{n}$. Let v_{1} and v_{n} are pendant vertices and $v_{2}, v_{3}, \ldots, v_{n-1}$ are vertices of degree 2 then

Then $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}^{\mathrm{p}}\right)=$
1 if $W_{k}=\left\{v_{j} \cup N\left(v_{j}\right)\right\}, j=1, n, k=1,2,3$ or $W_{k}=\left\{v_{s}, v_{s+1}, v_{s+2}\right\}$, where $1 \leq s \leq n$.
3 if $W_{i}=\left\{\mathrm{v}_{\mathrm{r}}\right\}, \mathrm{W}_{\mathrm{j}}=\left\{\mathrm{v}_{\mathrm{s}}\right\}, \mathrm{W}_{\mathrm{k}}=\mathrm{V} \backslash\left(\mathrm{W}_{\mathrm{i}} \cup \mathrm{W}_{\mathrm{j}}\right)$ where v_{r} and v_{s} are alternative, non pendant vertices.
2 otherwise

Proof:
\rightarrow case :1
If $\mathrm{W}_{1}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\}, \mathrm{W}_{2}=\left\{\mathrm{v}_{3}, \mathrm{v}_{4}\right\}$ and $\mathrm{W}_{3}=\mathrm{V} \backslash\left(\mathrm{W}_{1} \cup \mathrm{~W}_{2}\right)$ then in $\mathrm{G}_{\mathrm{p}}^{3}$, v_{1} is adjacent to to all other vertices. Therefore
$\gamma_{s}-$ set is $\left\{v_{1}\right\}$. Hence $\gamma_{s}\left(G_{3}{ }^{p}\right)=1$.
If $W_{1}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\}, \mathrm{W}_{2}=\left\{\mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}\right\}$ and $\mathrm{W}_{3}=\mathrm{V} \backslash\left(\mathrm{W}_{1} \cup \mathrm{~W}_{2}\right)$ then in $\mathrm{G}^{3}{ }_{\mathrm{p}}, \mathrm{v}_{1}$ is adjacent to to all other vertices. Therefore
$\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{1}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=1$.
If $W_{1}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\}, \mathrm{W}_{2}=\left\{\mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{v}_{6}\right\}$ and $\mathrm{W}_{3}=\mathrm{V} \backslash\left(\mathrm{W}_{1} \cup \mathrm{~W}_{2}\right)$ then in $\mathrm{G}_{\mathrm{p}}^{3}, \mathrm{v}_{1}$ is adjacent to to all other vertices. Therefore $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{1}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=1$.
Proceeding like this, If $W_{1}=\left\{v_{1}, v_{2}\right\}, W_{2}=\left\{v_{3}, v_{4}, \ldots, v_{n-1}\right\}$ and $W_{3}=\left\{v_{n}\right\}$ then in G_{p}^{3}, v_{1} is adjacent to $v_{2}, v_{3}, \ldots, v_{n}$. Therefore $\gamma_{s}-$ set is $\left\{\mathrm{v}_{1}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=1$.
If $W_{1}=\left\{\mathrm{v}_{1}\right\}, \mathrm{W}_{2}=\left\{\mathrm{v}_{2}, \mathrm{v}_{3}, \ldots, \mathrm{v}_{\mathrm{n}-2}\right\}$ and $\mathrm{W}_{3}=\left\{\mathrm{v}_{\mathrm{n}-1}, \mathrm{v}_{\mathrm{n}}\right\}$ then in $\mathrm{G}_{\mathrm{p}}^{3}, \mathrm{v}_{\mathrm{n}}$ is adjacent to to all other vertices. Therefore $\gamma_{s}-$ set is $\left\{\mathrm{v}_{\mathrm{n}}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=1$.
If $W_{1}=\left\{\mathrm{v}_{1}\right\}, \mathrm{W}_{2}=\left\{\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}\right\}$ and $\mathrm{W}_{3}=\mathrm{V} \backslash\left(\mathrm{W}_{1} \cup \mathrm{~W}_{2}\right)$ then in $\mathrm{G}_{\mathrm{p}}^{3}, \mathrm{v}_{3}$ is adjacent to to all other vertices. Therefore
$\gamma_{s}-$ set is $\left\{\mathrm{v}_{3}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=1$.

Proceeding like this,
If $W_{1}=\left\{v_{1}\right\}, W_{2}=\left\{v_{2}, v_{3}, \ldots, v_{n-3}\right\}$ and $W_{3}=\left\{v_{n-2}, v_{n-1}, v_{n}\right\}$ then in G_{p}^{3}, v_{n-1} is adjacent to to all other vertices. Therefore $\gamma_{s}-$ set is $\left\{v_{n-1}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=1$.
And, if $\mathrm{W}_{1}=\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}, \ldots, \mathrm{v}_{\mathrm{n}-10}, \mathrm{v}_{\mathrm{n}-8}, \mathrm{v}_{\mathrm{n}-7}, \mathrm{v}_{\mathrm{n}-6}\right\}, \mathrm{W}_{2}=\left\{\mathrm{v}_{2}, \mathrm{v}_{6}, \mathrm{v}_{7}, \mathrm{v}_{8}, \ldots, \mathrm{v}_{\mathrm{n}-9}, \mathrm{v}_{\mathrm{n}-5}, \mathrm{v}_{\mathrm{n}-4}, \mathrm{v}_{\mathrm{n}-3}\right\}$ and $\mathrm{W}_{3}=\left\{\mathrm{v}_{\mathrm{n}-2}, \mathrm{v}_{\mathrm{n}-1}, \mathrm{v}_{\mathrm{n}}\right\}$ then in $\mathrm{G}_{\mathrm{p}}^{3}$, $\mathrm{v}_{\mathrm{n}-1}$ is adjacent to to all other vertices. Therefore $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{\mathrm{n}-1}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=1$.
\rightarrow Case:2
If $W_{1}=\left\{\mathrm{v}_{3}\right\}, \mathrm{W}_{2}=\left\{\mathrm{v}_{5}\right\}$ and $\mathrm{W}_{3}=\mathrm{V} \backslash\left(\mathrm{W}_{1} \cup \mathrm{~W}_{2}\right)$ then in $\mathrm{G}_{\mathrm{p}}^{3}, \mathrm{v}_{4}$ is an isolated vertex. And v_{3} is adjacent to $\mathrm{v}_{1}, \mathrm{v}_{5}, \mathrm{v}_{6}, \ldots, \mathrm{v}_{\mathrm{n}}$. Also v_{5} is adjacent to $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{7}, \mathrm{v}_{8}, \ldots \mathrm{v}_{\mathrm{n}}$. Therefore $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=3$.
If $W_{1}=\left\{\mathrm{v}_{3}\right\}, \mathrm{W}_{2}=\left\{\mathrm{v}_{5}\right\}$ and $\mathrm{W}_{3}=\mathrm{V} \backslash\left(\mathrm{W}_{1} \cup \mathrm{~W}_{2}\right)$ then in $\mathrm{G}_{\mathrm{p}}^{3}, \mathrm{v}_{4}$ is an isolated vertex. And v_{3} is adjacent to $\mathrm{v}_{1}, \mathrm{v}_{5}, \mathrm{v}_{6}, \ldots, \mathrm{v}_{\mathrm{n}}$. Also v_{5} is adjacent to $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{7}, \mathrm{v}_{8}, \ldots \mathrm{v}_{\mathrm{n}}$. Therefore $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=3$.
If $W_{1}=\left\{v_{2}\right\}, W_{2}=\left\{v_{4}\right\}$ and $W_{3}=V \backslash\left(W_{1} \cup W_{2}\right)$ then in G_{p}^{3}, v_{3} is an isolated vertex. And v_{2} is adjacent to $v_{4}, v_{5}, v_{6}, \ldots, v_{n}$. Also v_{4} is adjacent to $\mathrm{v}_{1}, \mathrm{v}_{6}, \mathrm{v}_{7}, \mathrm{v}_{8}, \ldots \mathrm{v}_{\mathrm{n}}$. Therefore $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=3$.
Proceeding like this, If $W_{1}=\left\{v_{n-1}\right\}, W_{2}=\left\{v_{n-3}\right\}$ and $W_{3}=V \backslash\left(W_{1} \cup W_{2}\right)$ then in G_{p}^{3}, v_{n-2} is an isolated vertex. And v_{n-3} is adjacent to $\mathrm{v}_{1}, \mathrm{v}_{2 \ldots}, \ldots \mathrm{v}_{\mathrm{n}-5}, \mathrm{vn-1}, \mathrm{v}_{\mathrm{n}}$. Also $\mathrm{v}_{\mathrm{n}-1}$ is adjacent to $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}-5}, \mathrm{v}_{\mathrm{n}-4}$. Therefore $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{\mathrm{n}-2}, \mathrm{v}_{\mathrm{n}-3}, \mathrm{v}_{\mathrm{n}-1}\right\}$. Hence
$\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=3$.
If $W_{1}=\left\{\mathrm{v}_{\mathrm{n}-2}\right\}, \mathrm{W}_{2}=\left\{\mathrm{v}_{\mathrm{n}}\right\}$ and $\mathrm{W}_{3}=\mathrm{V} \backslash\left(\mathrm{W}_{1} \cup \mathrm{~W}_{2}\right)$ then in $\mathrm{G}_{\mathrm{p}}^{3}, \mathrm{v}_{\mathrm{n}-1}$ is an isolated vertex. And $\mathrm{v}_{\mathrm{n}-2}$ is adjacent to $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{n}-5}, \mathrm{v}_{\mathrm{n}-4}$. Also v_{n} is adjacent to $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}-4}, \mathrm{v}_{\mathrm{n}-3}$. Therefore $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{\mathrm{n}-1}, \mathrm{v}_{\mathrm{n}-2}, \mathrm{v}_{\mathrm{n}}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=3$.
\rightarrow Case:3
If $W_{1}=\left\{v_{1}\right\}, W_{2}=\left\{\mathrm{v}_{2}\right\}$ and $\mathrm{W}_{3}=\mathrm{V} \backslash\left(\mathrm{W}_{1} \cup \mathrm{~W}_{2}\right)$ then in $\mathrm{G}_{\mathrm{p}}^{3}, \mathrm{v}_{1}$ is adjacent to $\mathrm{v}_{3}, \mathrm{v}_{4}, \ldots, \mathrm{v}_{\mathrm{n}}$. Also v_{2} is adjacent to $\mathrm{v}_{4}, \mathrm{v}_{5}, \ldots \mathrm{v}_{\mathrm{n}}$. Therefore γ_{s} set is $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\}$. Hence
$\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=2$.
If $W_{1}=\left\{v_{1}\right\}, W_{2}=\left\{v_{2}, v 3\right\}$ and $W_{3}=V \backslash\left(W_{1} \cup W_{2}\right)$ then in G_{p}^{3}, v_{1} is adjacent to $v_{3}, v_{4}, \ldots, v_{n}$. Also v_{2} is adjacent to $v_{3}, v_{4}, \ldots v_{n}$. Therefore a $\gamma_{s}-$ set is $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=2$.
If $W_{1}=\left\{v_{1}\right\}, W_{2}=\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$ and $W_{3}=V \backslash\left(W_{1} \cup W_{2}\right)$ then in G_{p}^{3}, v_{1} is adjacent to $v_{3}, v_{4}, \ldots, v_{n}$. Also v_{2} is adjacent to $v_{6}, v_{7}, \ldots v_{n}$. Also there exists a path from v_{2} to v_{5} and v_{6} to v_{n}. Therefore $\gamma_{s}-$ set is $\left\{v_{1}, v_{2}\right\}$. Hence $\gamma_{s}\left(G_{3}{ }^{p}\right)=2$.
If $W_{1}=\left\{v_{1}\right\}, W_{2}=\left\{v_{2}, v_{3}, \ldots v_{n-1}\right\}$ and $W_{3}=\left\{v_{n}\right\}$ then in G_{p}^{3}, v_{1} is adjacent to $v_{3}, v_{4}, \ldots, v_{n}$. Also v_{n} is adjacent to $v_{1}, v_{2}, \ldots v_{n-2}$. Also, there exists a path from v_{2} to v_{n-2}. Therefore $\gamma_{s}-$ set is $\left\{v_{1}, v_{2}\right\}$. Hence $\gamma_{s}\left(G_{3}{ }^{p}\right)=2$.
If $W_{1}=\left\{v_{1}\right\}, W_{2}=\left\{v_{3}\right\}$ and $W_{3}=V \backslash\left(W_{1} \cup W_{2}\right)$ then in G_{p}^{3} is a disconnected graphwith two components. Here v_{2} is an isolated vertex. Also v_{1} is adjacent to $\mathrm{v}_{3}, \mathrm{v}_{4}, \ldots \mathrm{v}_{\mathrm{n}}$. Also, there exists a path from v_{4} to v_{11}. Therefore $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=2$.
If $W_{1}=\left\{\mathrm{v}_{1}, \mathrm{v}_{3}\right\}, \mathrm{W}_{2}=\left\{\mathrm{v}_{5}, \mathrm{v}_{7}\right\}$ and $\mathrm{W}_{3}=\mathrm{V} \backslash\left(\mathrm{W}_{1} \cup \mathrm{~W}_{2}\right)$ then in $\mathrm{G}_{\mathrm{p}}^{3}, \mathrm{v}_{1}$ is adjacent to $\mathrm{v}_{4}, \mathrm{v}_{5}, \ldots, \mathrm{v}_{\mathrm{n}}$. Also v_{5} is adjacent to $\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{7}, \mathrm{v}_{8}, \ldots, \mathrm{v}_{\mathrm{n}}$. Therefore $\gamma_{s}-$ set is $\left\{\mathrm{v}_{1}, \mathrm{v}_{5}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=2$.
Proceeding like this, if $W_{1}=\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{5}, \ldots, \mathrm{v}_{\mathrm{n}-10}, \mathrm{v}_{\mathrm{n}-8}, \mathrm{v}_{\mathrm{n}-6}\right\}, \mathrm{W}_{2}=\left\{\mathrm{v}_{7}, \mathrm{v}_{9}, \mathrm{v}_{11}, \ldots \mathrm{v}_{\mathrm{n}-4}, \mathrm{v}_{\mathrm{n}-2}, \mathrm{v}_{\mathrm{n}}\right\}$ and $\mathrm{W}_{3}=\mathrm{V} \backslash\left(\mathrm{W}_{1} \cup \mathrm{~W}_{2}\right)$ then in $\mathrm{G}_{\mathrm{p}}^{3}$, v_{1} is adjacent to $\mathrm{v}_{4}, \mathrm{v}_{6}, \mathrm{v}_{8}, \mathrm{v}_{10}, \mathrm{v}_{7}, \mathrm{v}_{9}, \mathrm{v}_{11}, \mathrm{v}_{\mathrm{n}-4}, \mathrm{v}_{\mathrm{n}-2}, \mathrm{v}_{\mathrm{n}}, \mathrm{v}_{\mathrm{n}-9}, \mathrm{v}_{\mathrm{n}-7}, \mathrm{v}_{\mathrm{n}-5}, \mathrm{v}_{\mathrm{n}-3}, \mathrm{v}_{\mathrm{n}-1}$. Also v_{n} is adjacent to $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{n}-2}$. Therefore $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{1}, \mathrm{v}_{\mathrm{n}}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)$ $=2$.
If $\mathrm{W}_{1}=\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{6}\right\}, \mathrm{W}_{2}=\left\{\mathrm{v}_{\mathrm{n}-3}, \mathrm{v}_{\mathrm{n}-1}\right\}$ and $\mathrm{W}_{3}=\mathrm{V} \backslash\left(\mathrm{W}_{1} \cup \mathrm{~W}_{2}\right)$ then in $\mathrm{G}_{\mathrm{p}}^{3}, \mathrm{v}_{2}$ is adjacent to $\mathrm{v}_{5}, \mathrm{v}_{7}, \mathrm{v}_{8} \ldots, \mathrm{v}_{\mathrm{n}-2}, \mathrm{v}_{\mathrm{n}-1}, \mathrm{v}_{\mathrm{n}}$. Also $\mathrm{v}_{\mathrm{n}-1}$ is adjacent to $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{n}-2}$. Therefore $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{2}, \mathrm{v}_{\mathrm{n}-1}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=2$.

10. Theorem

Let G be a path on n vertices with $n=3$ say $v_{1}, v_{2} \ldots \ldots \ldots . v_{n}$ then $\gamma_{s}\left(G_{3}{ }^{\mathrm{p}}\right)=2$.

Proof:

If $W_{1}=\left\{v_{1}\right\}, W_{2}=\left\{v_{2}\right\}$ and $W_{3}=\left\{v_{3}\right\}$ then G_{p}^{3} is a disconnected graph with two components. Here v_{2} is an isolated vertex. Also v_{1} is adjacent to v_{3}. Therefore $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=2$.
If $W_{1}=\left\{v_{2}\right\}, W_{2}=\left\{v_{3}\right\}$ and $W_{3}=\left\{v_{1}\right\}$ then G_{p}^{3} is a disconnected graph with two components. Here v_{2} is an isolated vertex. Also v_{1} is adjacent to v_{3}. Therefore $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=2$.
If $W_{1}=\left\{v_{3}\right\}, W_{2}=\left\{v_{1}\right\}$ and $W_{3}=\left\{v_{2}\right\}$ then G_{p}^{3} is a disconnected graph with two components. Here v_{2} is an isolated vertex. Also v_{1} is adjacent to v_{3}. Therefore $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=2$.

11. Theorem

Let G be a path on n vertices $(n=4)$ say $v_{1}, v_{2} \ldots \ldots \ldots . v_{n}$. Let v_{1} and v_{n} are pendant vertices and $v_{2}, v_{3}, \ldots, v_{n-1}$ are vertices of degree 2 then

Then $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=\left\{\begin{array}{l}1 \text { if } \mathrm{W}_{\mathrm{k}}=\left\{\mathrm{v}_{\mathrm{j}} \cup \mathrm{N}\left(\mathrm{v}_{\mathrm{j}}\right)\right\}, 1 \leq \mathrm{j} \leq \text { n or } \mathrm{W}_{\mathrm{k}}=\left\{\mathrm{v}_{\mathrm{r}}\right\} \text {, where } \mathrm{k} \neq \mathrm{i}, \mathrm{W}_{\mathrm{l}}=\left\{\mathrm{v}_{\mathrm{s}+1}\right\} \text { and vice versa. } \\ 3 \\ \text { if } \mathrm{W}_{\mathrm{k}}=\left\{\mathrm{v}_{1}, \mathrm{v}_{\mathrm{n}}\right\} \text { where } \mathrm{k}=1,2 .\end{array}\right.$

Proof:
If $W_{1}=\left\{v_{1}\right\}, W_{2}=\left\{v_{2}\right\}$ and $W_{3}=\left\{v_{3}, v_{4}\right\}$ then in G_{p}^{3}, v_{4} is adjacent to all other vertices. Therefore $\gamma_{s}-$ set is $\left\{v_{4}\right\}$. Hence $\gamma_{s}\left(G_{3}{ }^{p}\right)=1$.

If $W_{1}=\left\{v_{3}\right\}, W_{2}=\left\{v_{4}\right\}$ and $W_{3}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\}$ then in $\mathrm{G}_{\mathrm{p}}^{3}, \mathrm{v}_{1}$ is adjacent to all other vertices. Therefore $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{1}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=1$.
\rightarrow Case:2
If $W_{1}=\left\{v_{2}\right\}, W_{2}=\left\{v_{3}\right\}$ and $W_{3}=\left\{v_{2}, v_{4}\right\}$ then in G_{p}^{3} is a disconnected graph with two components. Here v_{1} is adjacent to v_{3}. Also v_{2} is adjacent to v_{4}. Therefore $\gamma_{s}-$ set is $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=3$
\rightarrow Case:3
If $W_{1}=\left\{v_{1}\right\}, W_{2}=\left\{v_{4}\right\}$ and $W_{3}=\left\{v_{2}, v_{3}\right\}$ then in G_{p}^{3}, v_{2} is adjacent to v_{3}, v_{4}. Also v_{1} is adjacent to v_{3} and v_{4}. Therefore $\gamma_{s}-$ set is $\left\{\mathrm{v}_{2}, \mathrm{v}_{3}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{P}}\right)=2$.
If $W_{1}=\left\{v_{2}\right\}, W_{2}=\left\{v_{4}\right\}$ and $W_{3}=\left\{v_{1}, v_{3}\right\}$ then G_{p}^{3} is a disconnected graph with two components. In G_{p}^{3}, v_{3} is an isolated vertex. And v_{4} is adjacent to v_{1}, v_{2}. Therefore $\gamma_{s}-$ set is $\left\{v_{3}, v_{4}\right\}$. Hence $\gamma_{s}\left(G_{3}{ }^{p}\right)=2$.

12. Theorem

Let G be a cycle with n vertices with $n=4$ say $v_{1}, v_{2} \ldots \ldots \ldots v_{n}$ then
$\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=\left\{\begin{array}{c}2 \text { if } \mathrm{W}_{\mathrm{i}}=\left\{\mathrm{v}_{\mathrm{j}} \cup N\left(\mathrm{v}_{\mathrm{j}}\right)\right\}, 1 \leq \mathrm{j} \leq \mathrm{n}, \mathrm{W}_{\mathrm{j}}=\left\{\mathrm{v}_{\mathrm{s}}\right\}, \mathrm{W}_{\mathrm{k}}=\left\{\mathrm{v}_{\mathrm{s}+1}\right\} \text { for some } \mathrm{s} \text { and vice versa. } \\ 3 \text { if } \mathrm{W}_{\mathrm{i}}=\left\{\mathrm{v}_{\mathrm{j}} \cup N\left(\mathrm{v}_{\mathrm{j}}\right)\right\}, 1 \leq \mathrm{j} \leq \mathrm{n}, \mathrm{W}_{\mathrm{j}}=\left\{\mathrm{v}_{\mathrm{r}}\right\}, \mathrm{W}_{3}=\left\{\mathrm{v}_{\mathrm{s}}\right\} \text { where } \mathrm{v}_{\mathrm{r}} \text { and } \mathrm{v}_{\mathrm{s}} \text { are non- adjacent vertices or } \\ \mathrm{W}_{1}=\left\{\mathrm{v}_{\mathrm{p}}, \mathrm{v}_{\mathrm{q}}\right\} \text { where } \mathrm{v}_{\mathrm{p}}, \mathrm{v}_{\mathrm{q}} \text { are non adjacent vertices, } \mathrm{W}_{2}=\left\{\mathrm{v}_{\mathrm{r}}\right\}, \mathrm{W}_{3}=\left\{\mathrm{v}_{\mathrm{s}}\right\} \text { where } \mathrm{v}_{\mathrm{r}} \text { and } \mathrm{v}_{\mathrm{s}} \text { are non } \text { - adjacent } \\ \text { vertices and vice versa. }\end{array}\right.$

Proof:
If $W_{1}=\left\{v_{1}\right\}, W_{2}=\left\{v_{2}\right\}$ and $W_{3}=\left\{v_{3}, v_{4}\right\}$ then v_{3} is adjacent to v_{2} and v_{4}.And v_{4} is adjacent to v_{1}, v_{3}. Therefore $\gamma_{s}-$ set is $\left\{v_{3}, v_{4}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=2$.
If $W_{1}=\left\{v_{2}\right\}, W_{2}=\left\{v_{4}\right\}$ and $W_{3}=\left\{v_{1}, v_{3}\right\}$ then v_{1} is adjacent to v_{3} and v_{4}.And v_{3} is adjacent to v_{1}, v_{2}. Therefore $\gamma_{s}-$ set is $\left\{v_{1}, v_{3}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=2$.
If $W_{1}=\left\{v_{3}\right\}, W_{2}=\left\{\mathrm{v}_{4}\right\}$ and $\mathrm{W}_{3}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\}$ then v_{1} is adjacent to v_{2} and v_{4}. And v_{2} is adjacent to $\mathrm{v}_{1}, \mathrm{v}_{3}$. Therefore $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{3}, \mathrm{v}_{4}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=2$.
If $W_{1}=\left\{v_{2}\right\}, W_{2}=\left\{v_{4}\right\}$ and $W_{3}=\left\{v_{1}, v_{3}\right\}$ then v_{1} is adjacent to v_{3} and v_{4}.And v_{2} is adjacent to v_{3}. Therefore $\gamma_{s}-$ set is $\left\{v_{1}, v_{2}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=2$.
\rightarrow Case: 2
If $W_{1}=\left\{v_{2}, v_{3}\right\}, W_{2}=\left\{v_{1}\right\}$ and $W_{3}=\left\{v_{4}\right\}$ then G_{p}^{3} is a disconnected graph with three components. Here v_{2} and v_{3} are isolated vertices. Also v_{1} is adjacent to v_{4}. Therefore $\gamma_{s}-$ set is $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=3$
If $W_{1}=\left\{v_{1}\right\}, W_{2}=\left\{v_{4}\right\}$ and $W_{3}=\left\{v_{2}, v_{3}\right\}$ then G_{p}^{3} is a disconnected graph with three components. Here v_{2} and v_{3} are isolated vertices. Also v_{1} is adjacent to v_{4}. Therefore $\gamma_{s}-$ set is $\left\{\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=3$
If $W_{1}=\left\{v_{2}\right\}, W_{2}=\left\{v_{3}\right\}$ and $W_{3}=\left\{v_{1}, v_{4}\right\}$ then G_{p}^{3} is a disconnected graph with three components. Here v_{1} and v_{4} are isolated vertices. Also v_{2} is adjacent to v_{3}. Therefore $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{4}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=3$.

13. Theorem

Let G be a cycle with n vertices with $n=5$ say $v_{1}, v_{2} \ldots \ldots . . . v_{n}$ then
Then $\gamma_{s}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=$

$$
\left\{\begin{array}{l}
1 \text { if } \mathrm{W}_{\mathrm{k}}=\left\{\mathrm{v}_{\mathrm{s}}, \mathrm{v}_{\mathrm{s}+1}, \mathrm{v}_{\mathrm{s}+2}\right\} \text { for } \mathrm{k}=1,2,3 \text {. } \\
2 \text { if } \mathrm{W}_{\mathrm{i}}=\left\{\mathrm{v}_{\mathrm{j}} \cup \mathrm{~N}\left(\mathrm{v}_{\mathrm{j}}\right)\right\}, 1 \leq \mathrm{j} \leq \mathrm{n}, \mathrm{Wj}=\left\{\mathrm{v}_{\mathrm{p}}\right\} \text { for some } \mathrm{p}, \mathrm{~W}_{\mathrm{k}}=\mathrm{V} \backslash\left(\mathrm{~W}_{\mathrm{i}} \cup \mathrm{~W}_{\mathrm{j}}\right) \text { and vice versa. } \\
3 \text { if } \mathrm{W}_{\mathrm{i}}=\left\{\mathrm{v}_{\mathrm{k}}\right\}, \mathrm{W}_{\mathrm{j}}=\left\{\mathrm{v}_{\mathrm{l}}\right\} \text { where } \mathrm{v}_{\mathrm{k}} \text { and } \mathrm{v}_{1} \text { are no adjacent vertices or } \mathrm{W}_{\mathrm{i}}=\left\{\mathrm{v}_{\mathrm{p}}\right\} \text { where } 1 \leq \mathrm{p} \leq \mathrm{n}, \\
\mathrm{~W}_{\mathrm{j}}=\left\{\mathrm{v}_{\mathrm{j}}, \mathrm{v}_{\mathrm{k}}\right\} \text { where } \mathrm{i} \neq \mathrm{j} \mathrm{~W}_{\mathrm{k}}=\mathrm{V} \backslash\left(\mathrm{~W}_{\mathrm{i}} \cup \mathrm{~W}_{\mathrm{j}}\right) \text { where } \mathrm{v}_{\mathrm{j}} \text { and } \mathrm{v}_{\mathrm{k}} \text { are non adjacent vertices. }
\end{array}\right.
$$

Proof:
If $W_{1}=\left\{v_{1}\right\}, W_{2}=\left\{v_{2}\right\}$ and $W_{3}=\left\{v_{3}, v_{4}, v_{5}\right\}$ then v_{4} is adjacent to all other vertices. Therefore $\gamma_{s}-$ set is $\left\{v_{4}\right\}$. Hence $\gamma_{s}\left(G_{3}{ }^{p}\right)=1$.
If $W_{1}=\left\{v_{1}\right\}, W_{2}=\left\{v_{5}\right\}$ and $W_{3}=\left\{v_{2}, v_{3}, v_{4}\right\}$ then v_{3} is adjacent to all other vertices. Therefore $\gamma_{s}-$ set is $\left\{v_{3}\right\}$. Hence $\gamma_{s}\left(G_{3}{ }^{p}\right)=1$.
If $W_{1}=\left\{v_{2}\right\}, W_{2}=\left\{v_{3}\right\}$ and $W_{3}=\left\{v_{1}, v_{4}, v_{5}\right\}$ then v_{5} is adjacent to all other vertices. Therefore $\gamma_{s}-$ set is $\left\{v_{5}\right\}$. Hence $\gamma_{s}\left(G_{3}{ }^{p}\right)=1$.
If $W_{1}=\left\{v_{3}\right\}, W_{2}=\left\{v_{4}\right\}$ and $W_{3}=\left\{v_{1}, v_{2}, v_{5}\right\}$ then v_{1} is adjacent to all other vertices. Therefore $\gamma_{s}-$ set is $\left\{v_{1}\right\}$. Hence $\gamma_{s}\left(G_{3}{ }^{p}\right)=1$.
If $W_{1}=\left\{v_{4}\right\}, W_{2}=\left\{v_{5}\right\}$ and $W_{3}=\left\{v_{1}, v_{2}, v_{3}\right\}$ then v_{2} is adjacent to all other vertices. Therefore $\gamma_{s}-$ set is $\left\{v_{2}\right\}$. Hence $\gamma_{s}\left(G_{3}{ }^{p}\right)=1$.
\rightarrow Case:2
If $W_{1}=\left\{\mathrm{v}_{1}\right\}, \mathrm{W}_{2}=\left\{\mathrm{v}_{2}, \mathrm{v}_{3}\right\}$ and $\mathrm{W}_{3}=\left\{\mathrm{v}_{4}, \mathrm{v}_{5}\right\}$ then v_{2} is adjacent to $\mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}$. And v_{3} is adjacent to $\mathrm{v}_{1}, \mathrm{v}_{5}$. Therefore
$\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{2}, \mathrm{v}_{3}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=2$.
If $W_{1}=\left\{\mathrm{v}_{2}\right\}, \mathrm{W}_{2}=\left\{\mathrm{v}_{1}, \mathrm{v}_{3}\right\}$ and $\mathrm{W}_{3}=\left\{\mathrm{v}_{4}, \mathrm{v}_{5}\right\}$ then v_{4} is adjacent $\mathrm{to}_{1}, \mathrm{v}_{2}, \mathrm{v}_{5}$. And v_{5} is adjacent to $\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}$. Therefore
$\gamma_{s}-$ set is $\left\{\mathrm{v}_{4}, \mathrm{v}_{5}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{P}}\right)=2$.

If $W_{1}=\left\{v_{2}\right\}, W_{2}=\left\{v_{1}, v_{5}\right\}$ and $W_{3}=\left\{v_{3}, v_{4}\right\}$ then v_{1} is adjacent to $_{3}, v_{4}$. And v_{5} is adjacent to v_{2}, v_{3}. Therefore $\gamma_{s}-$ set is $\left\{v_{1}, v_{5}\right\}$. Hence γ ${ }_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=2$.
If $W_{1}=\left\{\mathrm{v}_{3}\right\}, \mathrm{W}_{2}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\}$ and $\mathrm{W}_{3}=\left\{\mathrm{v}_{4}, \mathrm{v}_{5}\right\}$ then v_{1} is adjacent $\mathrm{tov}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}$. And v_{2} is adjacent to $\mathrm{v}_{1}, \mathrm{v}_{4}, \mathrm{v}_{5}$. Therefore
$\gamma_{s}-$ set is $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=2$.
If $W_{1}=\left\{v_{4}\right\}, W_{2}=\left\{v_{1}, v_{2}\right\}$ and $W_{3}=\left\{v_{3}, v_{5}\right\}$ then v_{1} is adjacent tov v_{2}, v_{3}, v_{4}. And v_{2} is adjacent to v_{1}, v_{4}, v_{5}. Therefore
$\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=2$.
If $W_{1}=\left\{v_{5}\right\}, W_{2}=\left\{v_{1}, v_{2}\right\}$ and $W_{3}=\left\{\mathrm{v}_{3}, \mathrm{v}_{4}\right\}$ then v_{1} is adjacent to $\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}$. And v_{2} is adjacent to $\mathrm{v}_{1}, \mathrm{v} 4, \mathrm{v}_{5}$. Therefore
$\gamma_{s}-$ set is $\left\{v_{1}, \mathrm{v}_{2}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=2$.
If $W_{1}=\left\{\mathrm{v}_{5}\right\}, \mathrm{W}_{2}=\left\{\mathrm{v}_{1}, \mathrm{v}_{4}\right\}$ and $\mathrm{W}_{3}=\left\{\mathrm{v}_{2}, \mathrm{v}_{3}\right\}$ then v_{2} is adjacent to $\mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}$. And v_{3} is adjacent to $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{5}$. Therefore
$\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{2}, \mathrm{v}_{3}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=2$.
If $W_{1}=\left\{v_{5}\right\}, W_{2}=\left\{v_{1}, v_{4}\right\}$ and $W_{3}=\left\{v_{2}, v_{3}\right\}$ then v_{2} is adjacent to v_{3}, v_{4}, v_{5}. And v_{3} is adjacent to v_{1}, v_{2}, v_{5}. Therefore
$\gamma_{s}-$ set is $\left\{\mathrm{v}_{2}, \mathrm{v}_{3}\right\}$. Hence $\boldsymbol{\gamma}_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{P}}\right)=2$.
\rightarrow Case:3
If $W_{1}=\left\{v_{1}\right\}, W_{2}=\left\{v_{3}\right\}$ and $W_{3}=\left\{v_{2}, v_{4}, v_{5}\right\}$ then G_{p}^{3} is a disconnected graph with two components. Here v_{2} is an isolated vertex. And v_{1} is adjacent to $\mathrm{v}_{4}, \mathrm{v}_{5}$. And v_{3} is adjacent to $\mathrm{v}_{1}, \mathrm{v}_{5}$. Therefore $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\}$. Hence
$\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=3$.
If $W_{1}=\left\{v_{1}\right\}, W_{2}=\left\{v_{4}\right\}$ and $W_{3}=\left\{v_{2}, v_{3}, v_{5}\right\}$ then G_{p}^{3} is a disconnected graph with two components. Here v_{5} is an isolated vertex. And v_{2} is adjacent to v_{3}, v_{4}. And v_{3} is adjacent to v_{1}, v_{2}. Therefore $\gamma_{s}-$ set is $\left\{v_{2}, v_{3}, v_{5}\right\}$. Hence
$\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=3$.
If $W_{1}=\left\{v_{2}\right\}, W_{2}=\left\{v_{4}\right\}$ and $W_{3}=\left\{v_{1}, v_{3}, v_{5}\right\}$ then G_{p}^{3} is a disconnected graph with two components. Here v_{3} is an isolated vertex. And v_{1} is adjacent to $\mathrm{v}_{4}, \mathrm{v}_{5}$. And v_{2} is adjacent to $\mathrm{v}_{4}, \mathrm{v}_{5}$. Therefore $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\}$. Hence
$\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=3$.
If $W_{1}=\left\{v_{2}\right\}, W_{2}=\left\{v_{5}\right\}$ and $W_{3}=\left\{v_{1}, v_{3}, v_{4}\right\}$ then G_{p}^{3} is a disconnected graph with two components. Here v_{1} is an isolated vertex. And v_{2} is adjacent to v_{4}, v_{5}. And v_{3} is adjacent to v_{4}, v_{5}. Therefore $\gamma_{s}-$ set is $\left\{v_{1}, v_{2}, v_{3}\right\}$. Hence
$\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=3$.
If $W_{1}=\left\{v_{3}\right\}, W_{2}=\left\{v_{5}\right\}$ and $W_{3}=\left\{v_{1}, v_{2}, v_{4}\right\}$ then G_{p}^{3} is a disconnected graph with two components. Here v_{4} is an isolated vertex. And v_{1} is adjacent to $\mathrm{v}_{2}, \mathrm{v}_{3}$. And v_{2} is adjacent to $\mathrm{v}_{1}, \mathrm{v}_{5}$. Therefore $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{4}\right\}$. Hence
$\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=3$.
If $W_{1}=\left\{\mathrm{v}_{2}\right\}, \mathrm{W}_{2}=\left\{\mathrm{v}_{1}, \mathrm{v}_{4}\right\}$ and $\mathrm{W}_{3}=\left\{\mathrm{v}_{3}, \mathrm{v}_{5}\right\}$ then $\mathrm{G}_{\mathrm{p}}^{3}$ is a disconnected graph with two components. In one component v_{1} is adjacent to v_{3}. And in the other component v_{2} is adjacent to $\mathrm{v}_{4}, \mathrm{v}_{5}$. Therefore $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\}$. Hence
$\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}^{\mathrm{p}}\right)=3$.
If $W_{1}=\left\{\mathrm{v}_{3}\right\}, \mathrm{W}_{2}=\left\{\mathrm{v}_{1}, \mathrm{v}_{4}\right\}$ and $\mathrm{W}_{3}=\left\{\mathrm{v}_{2}, \mathrm{v}_{5}\right\}$ then $\mathrm{G}_{\mathrm{p}}^{3}$ is a disconnected graph with two components. In one component v_{2} is adjacent to
v_{4}. And in the other component v_{3} is adjacent to $\mathrm{v}_{1}, \mathrm{v}_{5}$. Therefore $\gamma_{s}-$ set is $\left\{\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}\right\}$. Hence
$\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}^{\mathrm{p}}\right)=3$.
If $W_{1}=\left\{\mathrm{v}_{5}\right\}, \mathrm{W}_{2}=\left\{\mathrm{v}_{1}, \mathrm{v}_{3}\right\}$ and $\mathrm{W}_{3}=\left\{\mathrm{v}_{2}, \mathrm{v}_{4}\right\}$ then $\mathrm{G}_{\mathrm{p}}^{3}$ is a disconnected graph with two components. In one component v_{1} is adjacent to v_{4}. And in the other component v_{5} is adjacent to $\mathrm{v}_{2}, \mathrm{v}_{3}$. Therefore $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{1}, \mathrm{v}_{4}, \mathrm{v}_{5}\right\}$. Hence
$\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=3$.

14. Theorem

Let G be a cycle with n vertices with $n=6$ say $v_{1}, v_{2} \ldots \ldots . . . v_{n}$
Then $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=\left\{1\right.$ if $\mathrm{W}_{\mathrm{k}}=\left\{\mathrm{v}_{\mathrm{j}} \cup \mathrm{N}\left(\mathrm{v}_{\mathrm{j}}\right)\right\}, 1 \leq \mathrm{j} \leq \mathrm{n}$, or $\mathrm{W}_{\mathrm{k}}=\left\{\mathrm{v}_{\mathrm{s}}, \mathrm{v}_{\mathrm{s}+1}, \mathrm{v}_{\mathrm{s}+2}\right\}$ for $\mathrm{k}=1,2,3$.
3 if $\mathrm{W}_{\mathrm{k}}=\left\{\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}, \mathrm{v}_{\mathrm{l}}\right\}$ where W_{k} contains all alternative vertices for $\mathrm{k}=1,2,3$.
Proof:
\rightarrow Case:1
If $W_{1}=\left\{v_{1}, v_{2}, v_{3}\right\}, W_{2}=\left\{v_{4}, v_{5}\right\}$ and $W_{3}=\left\{v_{6}\right\}$ then in $G_{p}^{3} v_{2}$ is adjacent to all other vertices. Therefore $\gamma_{s}-$ set is $\left\{v_{2}\right\}$. Hence $\gamma_{s}\left(G_{3}{ }^{p}\right)$ $=1$.
If $W_{1}=\left\{v_{2}, v_{3}, v_{4}\right\}, W_{2}=\left\{v_{1}\right\}$ and $W_{3}=\left\{v_{5}, v_{6}\right\}$ then in $G_{p}^{3} v_{3}$ is adjacent to all other vertices. Therefore $\gamma_{s}-$ set is $\left\{v_{3}\right\}$. Hence $\gamma_{s}\left(G_{3}{ }^{p}\right)$ $=1$.
If $W_{1}=\left\{v_{3}, v_{4}, v_{5}\right\}, W_{2}=\left\{v_{1}, v_{2}\right\}$ and $W_{3}=\left\{\mathrm{v}_{6}\right\}$ then in $G_{p}^{3} \mathrm{v}_{4}$ is adjacent to all other vertices. Therefore $\gamma_{s}-$ set is $\left\{\mathrm{v}_{4}\right\}$. Hence $\gamma_{s}\left(G_{3}{ }^{p}\right)$ $=1$.
Proceeding like this, If $W_{1}=\left\{v_{1}, v_{2}\right\}, W_{2}=\left\{v_{3}\right\}$ and $W_{3}=\left\{v_{4}, v_{5}, v_{6}\right\}$ then in $G_{p}^{3} v_{5}$ is adjacent to all other vertices. Therefore $\gamma_{s}-$ set is $\left\{\mathrm{v}_{5}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=1$.
\rightarrow Case:2
If $W_{1}=\left\{v_{1}\right\}, W_{2}=\left\{\mathrm{v}_{3}, \mathrm{v}_{5}\right\}$ and $\mathrm{W}_{3}=\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{6}\right\}$ then in $\mathrm{G}_{\mathrm{p}}^{3}, \mathrm{v}_{1}$ is adjacent to $\mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}$. And v_{3} is adjacent to $\mathrm{v}_{1}, \mathrm{v}_{6}$. Also v_{5} is adjacent to $\mathrm{v}_{1}, \mathrm{v}_{2}$. Therefore $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{5}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=3$.

If $W_{1}=\left\{v_{2}\right\}, W_{2}=\left\{\mathrm{v}_{4}, \mathrm{v}_{6}\right\}$ and $\mathrm{W}_{3}=\left\{\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{5}\right\}$ then in $\mathrm{G}_{\mathrm{p}}^{3}, \mathrm{v}_{2}$ is adjacent to $\mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{v}_{6}$. And v_{4} is adjacent to $\mathrm{v}_{1}, \mathrm{v}_{2}$. Also v_{6} is adjacent to $\mathrm{v}_{2}, \mathrm{v}_{3}$. Therefore $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{6}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=3$.
If $W_{1}=\left\{v_{2}, v_{4}\right\}, W_{2}=\left\{v_{6}\right\}$ and $W_{3}=\left\{v_{1}, v_{3}, v_{5}\right\}$ then in G_{p}^{3}, v_{6} is adjacent to v_{2}, v_{3}, v_{4}. And v_{4} is adjacent to v_{1}, v_{6}. Also v_{2} is adjacent to $\mathrm{v}_{5}, \mathrm{v}_{6}$. Therefore $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{6}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=3$.
\rightarrow Case:3
If $W_{1}=\left\{v_{1}\right\}, W_{2}=\left\{v_{2}\right\}$ and $W_{3}=\left\{v_{3}, v_{4}, \ldots, v_{n}\right\}$ then in G_{p}^{3}, v_{1} is adjacent to $v_{3}, v_{4}, v_{5} \ldots, v_{n-1}$. And v_{2} is adjacent to $v_{4}, v_{5}, \ldots, v_{n}$. Therefore γ $\mathrm{s}-$ set is $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=2$.
If $W_{1}=\left\{\mathrm{v}_{1}\right\}, \mathrm{W}_{2}=\left\{\mathrm{v}_{3}\right\}$ and $\mathrm{W}_{3}=\left\{\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{v}_{6}\right\}$ then $\mathrm{G}_{\mathrm{p}}^{3}$ is a disconnected graph with two components. Here v_{2} is an isolated vertex.
And in the other component $v 5$ is adjacent to all other vertices. Therefore $\gamma_{s}-$ set is $\left\{\mathrm{v}_{2}, \mathrm{v}_{5}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=2$.
If $W_{1}=\left\{v_{1}\right\}, W_{2}=\left\{\mathrm{v}_{4}\right\}$ and $W_{3}=\left\{\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{5}, \mathrm{v}_{6}\right\}$ then in $\mathrm{G}_{\mathrm{p}}^{3}, \mathrm{v}_{1}$ is adjacent to $\mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}$. And v_{4} is adjacent to $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{6}$. Therefore $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{1}, \mathrm{v}_{4}\right\}$. Hence $\boldsymbol{\gamma}_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{P}}\right)=2$.
If $\mathrm{W}_{1}=\left\{\mathrm{v}_{1}\right\}, \mathrm{W}_{2}=\left\{\mathrm{v}_{5}\right\}$ and $\mathrm{W}_{3}=\left\{\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{6}\right\}$ then $\mathrm{G}_{\mathrm{p}}^{3}$ is a disconnected graph with two components. Here v_{6} is an isolated vertex. And in the other component v_{3} is adjacent to $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{5}$. Therefore $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{3}, \mathrm{v}_{6}\right\}$. Hence
$\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=2$.
If $W_{1}=\left\{\mathrm{v}_{1}\right\}, \mathrm{W}_{2}=\left\{\mathrm{v}_{6}\right\}$ and $\mathrm{W}_{3}=\left\{\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}\right\}$ then in $\mathrm{G}_{\mathrm{p}}^{3}, \mathrm{v}_{1}$ is adjacent to $\mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}$. And v_{6} is adjacent to $\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}$. And there exists a path from v_{2} to v_{5}. Therefore $\gamma_{s}-$ set is $\left\{v_{1}, v_{6}\right\}$. Hence $\gamma_{s}\left(G_{3}{ }^{p}\right)=2$.
Proceeding like this, if $W_{1}=\left\{v_{1}, v_{2}, v_{3}, \ldots v_{n-2}\right\}, W_{2}=\left\{v_{n-1}\right\}$ and $W_{3}=\left\{v_{n}\right\}$ then in G_{p}^{3}, v_{n} is adjacent to $v_{2}, v_{3}, \ldots, v_{n-2}$. And v_{1} is adjacent to $\mathrm{v}_{2}, \mathrm{v}_{\mathrm{n}-1}, \mathrm{v}_{\mathrm{n}}$. And there exists a path from v_{1} to $\mathrm{v}_{\mathrm{n}-2}$. Therefore $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{1}, \mathrm{v}_{\mathrm{n}}\right\}$. Hence
$\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}^{\mathrm{p}}\right)=2$.
Also if $W_{1}=\left\{v_{1}, v_{3}\right\}, W_{2}=\left\{v_{2}, v_{4}\right\}$ and $W_{3}=\left\{v_{5}, v_{6}\right\}$ then in G_{p}^{3}, v_{5} is adjacent to v_{2}, v_{3}, v_{6}. And v_{6} is adjacent to v_{2}, v_{3}, v_{4}. Therefore γ_{s} set is $\left\{\mathrm{v}_{5}, \mathrm{v}_{6}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=2$.

15. Theorem

Let G be a cycle with $n \geq 7$ vertices say $v_{1}, v_{2} \ldots \ldots . . v_{n}$ then

Then $\gamma_{\mathrm{s}} \quad\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=\left(1\right.$ if $\mathrm{W}_{\mathrm{k}}=\left\{\mathrm{v}_{\mathrm{s}}, \mathrm{v}_{\mathrm{s}+1}, \mathrm{v}_{\mathrm{s}+2}\right\}$ for $\mathrm{k}=1,2,3$.
3 if $\mathrm{W}_{\mathrm{i}}=\left\{\mathrm{v}_{\mathrm{k}}\right\}, 1 \leq \mathrm{k} \leq \mathrm{n}, \mathrm{W}_{\mathrm{j}}=\left\{\mathrm{v}_{1}\right\}$ where v_{1} is any vertex and v_{1} is an alternative vertex of
v_{k} or W_{k} contains 2 or 3 alternative vertices.
2 otherwise.
Proof:
If $W_{1}=\left\{v_{1}, v_{2}, v_{3}\right\}, W_{2}=\left\{v_{4}, v_{5}\right\}$ and $W_{3}=\left\{\mathrm{v}_{6}, \mathrm{v}_{7}, \ldots, v_{n}\right\}$ then in G_{p}^{3}, v_{2} is adjacent to all other vertices. Therefore $\gamma_{s}-$ set is $\left\{\mathrm{v}_{2}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=1$.
If $W_{1}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\}, \mathrm{W}_{2}=\left\{\mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{v}_{6}\right\}$ and $\mathrm{W}_{3}=\left\{\mathrm{v}_{7}, \mathrm{v}_{8}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ then in $\mathrm{G}_{\mathrm{p}}^{3}, \mathrm{v}_{2}$ is adjacent to all other vertices. Therefore $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{3}\right\}$. Hence $\gamma_{s}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=1$.
Proceeding like this, if $W_{1}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\}, \mathrm{W}_{2}=\left\{\mathrm{v}_{4}, \mathrm{v}_{5}, \ldots, \mathrm{v}_{\mathrm{n}-3}\right\}$ and $\mathrm{W}_{3}=\left\{\mathrm{v}_{\mathrm{n}-2}, \mathrm{v}_{\mathrm{n}}, \mathrm{v}_{\mathrm{n}}\right\}$ then in $\mathrm{G}_{\mathrm{p}}^{3}, \mathrm{v}_{\mathrm{n}-1}$ is adjacent to all other vertices. Therefore $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{\mathrm{n}-1}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=1$.
If $W_{1}=\left\{v_{1}, v_{2}\right\}, W_{2}=\left\{v_{3}, v_{4}, v_{5}\right\}$ and $W_{3}=\left\{v_{6}, v_{7}, \ldots, v_{n}\right\}$ then in G_{p}^{3}, v_{4} is adjacent to all other vertices. Therefore $\gamma_{s}-$ set is $\left\{\mathrm{v}_{4}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=1$.
If $\mathrm{W}_{1}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}\right\}, \mathrm{W}_{2}=\left\{\mathrm{v}_{5}, \mathrm{v}_{6}, \mathrm{v}_{7}\right\}$ and $\mathrm{W}_{3}=\left\{\mathrm{v}_{8}, \mathrm{v}_{9}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ then in $\mathrm{G}_{\mathrm{p}}^{3}, \mathrm{v}_{6}$ is adjacent to all other vertices. Therefore $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{6}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{P}}\right)=1$.
Proceeding like this, if $\mathrm{W}_{1}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}\right\}, \mathrm{W}_{2}=\left\{\mathrm{v}_{6}, \mathrm{v}_{7}, \ldots \mathrm{v}_{\mathrm{n}-3}\right\}$ and $\mathrm{W}_{3}=\left\{\mathrm{v}_{\mathrm{n}-2}, \mathrm{v}_{\mathrm{n}-1}, \mathrm{v}_{\mathrm{n}}\right\}$ then in $\mathrm{G}_{\mathrm{p}}^{3}, \mathrm{v}_{\mathrm{n}-1}$ is adjacent to all other vertices. Therefore γ_{s} - set is $\left\{\mathrm{v}_{\mathrm{n}-1}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{P}}\right)=1$.
If $\mathrm{W}_{1}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}-8}\right\}, \mathrm{W}_{2}=\left\{\mathrm{v}_{\mathrm{n}-7}, \mathrm{v}_{\mathrm{n}-6}, \mathrm{v}_{\mathrm{n}-5}, \mathrm{v}_{\mathrm{n}-4,}, \mathrm{~V}_{\mathrm{n}-3}\right\}$ and $\mathrm{W}_{3}=\left\{\mathrm{v}_{\mathrm{n}-2}, \mathrm{v}_{\mathrm{n}-1}, \mathrm{v}_{\mathrm{n}}\right\}$ then in $\mathrm{G}_{\mathrm{p}}^{3}, \mathrm{v}_{\mathrm{n}-1}$ is adjacent to all other vertices. Therefore γ_{s} - set is $\left\{\mathrm{v}_{\mathrm{n}-1}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=1$.
\rightarrow Case:2
If $W_{1}=\left\{v_{1}\right\}, W_{2}=\left\{v_{2}\right\}$ and $W_{3}=\left\{v_{3}, v_{4}, \ldots, v_{n}\right\}$ then in G_{p}^{3}, v_{1} is adjacent to $v_{3}, v_{4}, v_{5} \ldots, v_{n}$ and v_{2} is adjacent to $v_{4}, v_{5}, \ldots v_{n}$. And there exists a path from v_{3} to v_{n}. Therefore $\gamma_{s}-$ set is $\left\{\mathrm{v}_{1,} \mathrm{v}_{2}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=2$.
If $W_{1}=\left\{v_{1}, v_{2}\right\}, W_{2}=\left\{v_{3} . v_{4}\right\}$ and $W_{3}=\left\{v_{5}, v_{6}, \ldots, v_{n}\right\}$ then in G_{p}^{3}, v_{1} is adjacent to $v_{2}, v_{3}, v_{4} \ldots, v_{n-1}$ and v_{2} is adjacent to $v_{4}, v_{5}, \ldots v_{n}$. And there exists a path from v_{5} to v_{n}. Therefore $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=2$.
If $W_{1}=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}, W_{2}=\left\{\mathrm{v}_{5} . \mathrm{v}_{6}\right\}$ and $\mathrm{W}_{3}=\left\{\mathrm{v}_{7}, \mathrm{v}_{8}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ then in $\mathrm{G}_{\mathrm{p}}^{3}, \mathrm{v}_{5}$ is adjacent to $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{6}, \mathrm{v}_{7}, \ldots \ldots, \mathrm{v}_{\mathrm{n}}$ and v_{6} is adjacent to $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{v}_{8}, \mathrm{v}_{9}, \ldots \mathrm{v}_{\mathrm{n}}$. Therefore $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{5}, \mathrm{v}_{6}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=2$.
Proceeding like this, if $W_{1}=\left\{v_{1}, v_{2}, v_{3}, \ldots v_{n-3}\right\}, W_{2}=\left\{v_{n-2}\right\}$ and $W_{3}=\left\{v_{n-1}, v_{n}\right\}$ then in G_{p}^{3}, v_{n-1} is adjacent to $v_{1}, v_{2}, \ldots, v_{n-3}, v_{n}$ and v_{n} is adjacent to $\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4} \ldots, \mathrm{v}_{\mathrm{n}-1}$. Therefore $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{\mathrm{n}-1,1} \mathrm{v}_{\mathrm{n}}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=2$.
If $W_{1}=\left\{v_{1}\right\}, W_{2}=\left\{v_{4}\right\}$ and $W_{3}=\left\{v_{7}, v_{8}, \ldots, v_{n}\right\}$ then G_{p}^{3} is a connected graph. And v_{1} is adjacent to $v_{3}, v_{4}, \ldots \ldots, v_{n-1}$ and v_{4} is adjacent to $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{6}, \mathrm{v}_{7}, \ldots \mathrm{v}_{\mathrm{n}}$. Therefore $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{1}, \mathrm{v}_{4}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=2$.

If $W_{1}=\left\{\mathrm{v}_{1}\right\}, \mathrm{W}_{2}=\left\{\mathrm{v}_{5}\right\}$ and $\mathrm{W}_{3}=\left\{\mathrm{v}_{7}, \mathrm{v}_{8}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ then v_{1} is adjacent to $\mathrm{v}_{3}, \mathrm{v}_{4}, \ldots \ldots, \mathrm{v}_{\mathrm{n}-1}$ and v_{5} is adjacent to $\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{7}, \mathrm{v}_{8}, \ldots \mathrm{v}_{\mathrm{n}}$. Therefore γ_{s} - set is $\left\{v_{1}, v_{5}\right\}$. Hence $\gamma_{s}\left(G_{3}{ }^{p}\right)=2$.

Proceeding like this, if $W_{1}=\left\{\mathrm{v}_{1}\right\}, \mathrm{W}_{2}=\left\{\mathrm{v}_{\mathrm{n}}\right\}$ and $\mathrm{W}_{3}=\left\{\mathrm{v}_{2}, \mathrm{v}_{3}, \ldots, \mathrm{v}_{\mathrm{n}-1}\right\}$ then v_{1} is adjacent to $\mathrm{v}_{3}, \mathrm{v}_{4}, \ldots \ldots, \mathrm{v}_{\mathrm{n}-1}$ and v_{n} is adjacent to $\mathrm{v}_{2}, \mathrm{v}_{3}, \ldots \mathrm{v}_{\mathrm{n}-2}$. Also there exists a path from v_{2} to $\mathrm{v}_{\mathrm{n}-1}$. Therefore $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{1}, \mathrm{v}_{\mathrm{n}}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=2$.
If $W_{1}=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}, W_{2}=\left\{\mathrm{v}_{5} . \mathrm{v}_{6}, \mathrm{v}^{2}, \mathrm{v} 8\right\}$ and $\mathrm{W}_{3}=\left\{\mathrm{v}_{9}, \mathrm{v}_{10}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ then v_{2} is adjacent to $\mathrm{v}_{1}, \mathrm{v}_{3}, \mathrm{v}_{5}, \mathrm{v}_{6}, \mathrm{v}_{7}, \ldots \ldots, \mathrm{v}_{\mathrm{n}}$ and v_{3} is adjacent to $\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{v}_{5}, \ldots \mathrm{v}_{\mathrm{n}}$. Also there exists a path from v_{1} to $\mathrm{v}_{4}, \mathrm{v}_{5}$ to v_{8} and v_{9} to v_{n}. Therefore $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{2}, \mathrm{v}_{3}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=2$.
If $W_{1}=\left\{v_{1}, v_{3}\right\}, W_{2}=\left\{\mathrm{v}_{5} \cdot \mathrm{v}_{7}\right\}$ and $\mathrm{W}_{3}=\mathrm{V} \backslash\left(\mathrm{W}_{1} \cup \mathrm{~W}_{2}\right)$ then v_{1} is adjacent to $\mathrm{v}_{4}, \mathrm{v}_{5}, \ldots \ldots, \mathrm{v}_{\mathrm{n}-1}$ and v_{7} is adjacent to $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{5}, \mathrm{v}_{9}, \mathrm{v}_{10}, \ldots \mathrm{v}_{\mathrm{n}}$. Therefore $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{1}, \mathrm{v}_{7}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=2$.
If $\mathrm{W}_{1}=\left\{\mathrm{v}_{3}, \mathrm{v}_{5}\right\}, \mathrm{W}_{2}=\left\{\mathrm{v}_{7} \cdot \mathrm{v}_{9}, \mathrm{v}_{11}\right\}$ and $\mathrm{W}_{3}=\mathrm{V} \backslash\left(\mathrm{W}_{1} \cup \mathrm{~W}_{2}\right)$ then V_{3} is adjacent to $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{6}, \mathrm{v}_{7}, \ldots \ldots, \mathrm{v}_{\mathrm{n}}$ and v_{7} is adjacent to $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{5}, \mathrm{v} 9, \mathrm{v} 10, \ldots \mathrm{v}_{\mathrm{n}}$. Therefore $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{3}, \mathrm{v}_{7}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=2$.
Proceeding like this, if $W_{1}=\left\{v_{1}, v_{3}, v_{5}, \ldots v_{2 n-1}\right\}, W_{2}=\left\{v_{2} . v_{4}, v_{6}, v_{8}\right\}$ and $W_{3}=V \backslash\left(W_{1} \cup W_{2}\right)$ then v_{2} is adjacent to $v_{5}, v_{6}, \ldots . ., v_{2 n-1}, v_{2 n}$ and v_{10} is adjacent to $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{6}, \mathrm{v}_{8}, \mathrm{v}_{9}, \ldots \mathrm{v}_{2 \mathrm{n}-1}$. Therefore $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{2}, \mathrm{v}_{10}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=2$.
\rightarrow Case:3
If $W_{1}=\left\{v_{1}\right\}, W_{2}=\left\{v_{3}\right\}$ and $W_{3}=V \backslash\left(W_{1} \cup W_{2}\right)$ then $G_{3}{ }^{p}$ is a disconnected graph with two components. v_{2} is an isolated vertex. v_{1} is adjacent to $\mathrm{v}_{3}, \mathrm{v}_{4}, \ldots \ldots, \mathrm{v}_{\mathrm{n}-1}$ and v_{3} is adjacent to $\mathrm{v}_{5}, \mathrm{v}_{6}, \ldots \mathrm{v}_{\mathrm{n}}$. Also there exists a path from v_{4} to v_{n}. Therefore $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{1,}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\}$. Hence $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=3$.
If $W_{1}=\left\{v_{2}\right\}, W_{2}=\left\{\mathrm{v}_{4}\right\}$ and $\mathrm{W}_{3}=\mathrm{V} \backslash\left(\mathrm{W}_{1} \cup \mathrm{~W}_{2}\right)$ then $\mathrm{G}_{3}{ }^{\mathrm{p}}$ is a disconnected graph with two components. v_{3} is an isolated vertex. v_{2} is adjacent to $\mathrm{v}_{5}, \mathrm{v}_{6}, \ldots \ldots, \mathrm{v}_{\mathrm{n}}$ and v_{4} is adjacent to $\mathrm{v}_{1}, \mathrm{v}_{6}, \mathrm{v}_{7} \ldots \mathrm{v}_{\mathrm{n}}$. Therefore $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}\right\}$. Hence
$\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=3$.
Proceeding like this, if $W_{1}=\left\{v_{n-3}\right\}, W_{2}=\left\{v_{n-1}\right\}$ and $W_{3}=V \backslash\left(W_{1} \cup W_{2}\right)$ then in $G_{3}{ }^{p} \cdot v_{n-2}$ is an isolated vertex. v_{n-3} is adjacent to $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \ldots, \mathrm{v}_{\mathrm{n}-4, \mathrm{v}_{\mathrm{n}}}$ and $\mathrm{v}_{\mathrm{n}-1}$ is adjacent to $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{n}-4}$. Therefore $\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{\mathrm{n}-1,}, \mathrm{v}_{\mathrm{n}-2}, \mathrm{v}_{\mathrm{n}-3}\right\}$. Hence
$\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=3$.
If $W_{1}=\left\{\mathrm{v}_{\mathrm{n}-2}\right\}, \mathrm{W}_{2}=\left\{\mathrm{v}_{\mathrm{n}}\right\}$ and $\mathrm{W}_{3}=\mathrm{V} \backslash\left(\mathrm{W}_{1} \cup \mathrm{~W}_{2}\right)$ then $\mathrm{G}_{3}{ }^{p}$ is a disconnected graph with two components. $\mathrm{v}_{\mathrm{n}-1}$ is an isolated vertex. $\mathrm{v}_{\mathrm{n}-2}$ is adjacent to $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \ldots, \mathrm{v}_{\mathrm{n}-4}$ and v_{n} is adjacent to $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{n}-3}$. Therefore
$\gamma_{\mathrm{s}}-$ set is $\left\{\mathrm{v}_{\mathrm{n}-2,}, \mathrm{v}_{\mathrm{n}-1}, \mathrm{v}_{\mathrm{n}}\right\}$. Hence $\boldsymbol{\gamma}_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right)=3$.

16. Conjecture

For any complete graph $3 \leq \gamma_{s}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right) \leq \mathrm{n}-1$, the lower bound is attained when $\left|\mathrm{W}_{1}\right|=\left|\mathrm{W}_{2}\right|=1$ and the upper bound is attained when $\mathrm{n}=6$.

17. Theorem

If G and $G_{3}{ }^{p}$ are connected graphs then $2 \leq \gamma_{s}(G)+\gamma_{s}\left(G_{3}{ }^{p}\right) \leq n+1$.
Proof:
For any connected graph G and $G_{3}{ }^{p}, \gamma_{s}(G) \geq 1$ and $\gamma_{s}\left(G_{3}{ }^{p}\right) \geq 1$. Therefore $2 \leq \gamma_{s}(G)+\gamma_{s}\left(G_{2}{ }^{p}\right)$.
Also we can justify $\gamma_{\mathrm{s}}(\mathrm{G})+\gamma_{\mathrm{s}}\left(\mathrm{G}_{2}{ }^{\mathrm{p}}\right) \leq \mathrm{n}+1$ with the following examples.

Example:

The upper bound is attained at $n=8$ with a path. Here $\gamma_{s}(G)=7$ and $\gamma_{s}\left(G_{3}{ }^{p}\right) \leq 2$ for a connected graph G_{p}^{3}. Therefore $\gamma_{\mathrm{s}}(\mathrm{G})+\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right) \leq 9=\mathrm{n}+1$.

18. Conjecture

If any n partitions contain an isolated vertex then $\gamma_{s}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right) \geq \mathrm{n}+1$.
Proof:
If any two partition contains an isolated vertex then $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right) \geq 2$.
If any two partitions contain an isolated vertex then $\gamma_{\mathrm{s}}\left(\mathrm{G}_{3}{ }^{\mathrm{p}}\right) \geq 3$.
In general, If any n partitions contain an isolated vertex then $\gamma_{s}\left(G_{3}{ }^{p}\right) \geq n+1$

19. References

i. Hedetniemi. S.C., and Laskar,"Topics on Domination" Annals of Discrete Mathematics., 48., North Holland(1991)
ii. Teresa W. Haynes, Stephen T. Hedetniemi, Peter J. Slater."Fundamentals of Domination in Graphs", Marcel Dekker,Inc.,(1998).
iii. E.Sampathkumar and pushpalatha,"complement of a graph : A generalization Graphs and combinatories" (1998)
iv. 4. E.Sampathkumar and L.pushpalatha, "Generalized complement of a graph, Indian journal of Pure and Applied Mathematics "June(1999).

