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1. Introduction 

Traffic congestion is one of the greatest problems in Kenya like some other countries of the world. In this respect, countries managing 

traffic in congested networks requires a clear understanding of traffic flow operations. The aims of this project are principally 

represented by the maximization of vehicles flow, and the minimization of traffic congestions, accidents and pollutions among others. 

Macroscopic fluid-dynamic model which is characterized by representations of a bathtub traffic flow model was focused. Vehicles in 

traffic flow are considered as particles in fluid Haberman et al (1977). Further the behavior of traffic flow is modeled by the method of 

fluid-dynamics and formulated by hyperbolic partial differential equations (PDE).  

Some purely data-driven models have already been developed to improve the nature of traffic state. An example, a hybrid method 

combining Kohomen maps with ARIMA time series models which was developed to forecast short time traffic flow Der roort et al 

(1996). Suggestions have been given that different model specifications should be set for different time periods of the day 

Stathopoulos and Karlaftis (2003).Other than time series models, neutral network could model undefined and complex non-linear 

surface Smith and Demetsky (1994). A framework of traffic flow model combining wavelet transform was found useful to eliminate 

noise caused by random travel conditions Viao et al ( 2003). 

Bathtub model of traffic congestion in downtown areas builds on ideas put forward by William Vickrey (1969). Water flowing into 

the bathtub corresponds to cars entering the traffic stream, water flowing out of the bathtub to cars exiting from it and the height of the 

water in the bathtub to traffic density and outflow is proportional to the product of density and velocity. Above critical density, 

outflow falls as density increases (traffic jam situation). 

When demand is high relative to capacity, applying optimal time varying toll generates benefits that may be considerably larger than 

those obtained from other models and that exceeds the toll revenue collected. The results of these empirical studies were broadly 

supported by the current generation of bathtub  traffic simulation model, which incorporates elements permitting  flow to fall as 

density increases, Gonzales et al  (2011). While the project restricts attention on traffic congestion, the bathtub model of traffic 
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congestion can be adopted to other congestible facilities for which heavy loading results in decreased output such as brown-outs and 

black-outs in electrical systems and jammed switches in telephone circuits. 

 

1.1. Literature Review 

The smooth traffic flow is important for healthy business and community development in downtown areas. Traffic congestion haunts 

big towns and communities from various perspectives. It inflicts uncertainties, drains resources, reduces productivity, stresses 

commuters and harms environment. For instance we think of a downtown network of one way street with signalized intersections. 

Assuming that each intersection operates at capacity, if the queue in both directions of traffic are sufficiently long. As demand 

increases, an increasingly high proportion of intersections satisfy this condition and in the limit all intersections operate at capacity. In 

this simple model of downtown traffic congestion, flow increases as demand increases. 

One way of reducing congestion is to increase the capacity of existing roads by addition of more lanes Kimathi and Sigey (2006).This 

method is long term and very expensive, due to continuous deterioration of urban traffic conditions more models have been developed 

and implemented to help manage the highway and make the usage of the whole traffic flow more efficient.  

For  example ramp metering system Arnold (1998), advice usually consisting  of traffic light together with a signal control installed on 

the lamp has been implemented on some of the cities to control traffic flow. 

Vickrey (1969) describes congestion as occurring at a bottleneck, which is a point where traffic can only pass at a certain rate. Vickrey 

actually preceded Daganzo working on what he called a  bathtub model of congestion, which is based on the same intuition. The 

present model is  called a bathtub model since it uses sum an aggregate speed-density  to describe  urban congestion. Another 

important distinction between the Vickrey bottleneck model and the present model  was the role played by distance which was 

essentially ignored by the other model. 

 The relationship between speed and density is well established for a single point on a road Greenshields (1935). The speed was a 

strictly decreasing function of density. The fundamental identity of a traffic flow holds that flow  equals speed times density. All 

forms of congested traffic seem to have almost universal properties which are largely independent of the initial conditions and the 

average density. This universality arises from the highly correlated state of motion produced by traffic congestions. In particular, the 

out flow is related to the time interval between successive departures from traffic jam. Therefore, the outflow is almost independent of 

the kind and density of congested traffic. 

 Arnott (2013) developed a version of  bathtub model which is similar to the present model. In comparison, this project uses a more 

general congestion technology but of the same type as Vickrey. The present project also uses scheduling preferences that compose of 

the �	, �, � scheduling preferences of Vickrey as a limiting case. The main difference concerns the treatment of distance Arnott (2013), 

makes an assumption that can be interpreted as saying each driver’s distance was random with a certain distribution and that drivers 

do not know their distance at the time they make their departure decisions. 

This assumption was the way of obtaining analytical tractability Fosgerau and Small (2013).They also analyzed a bathtub  model, in 

their model all traffic driven the same distance and there was a bottleneck with a capacity that depends  on the number of cars 

queuing. 

 Tractability was achieved by simplifying the bottleneck capacity to a step function. The present model does not resort to such ad hoc 

devices and allows for a general distribution of distance. In the bottleneck model there was a wide range of time varying tolls that do 

not affect the timing of the first and last departures. Since all drivers achieve the same utility in equilibrium, such tolls can be used to 

extract revenue. Collete (2012) presented and discussed macroscopic traffic models and tried to solve the partial differential equations 

both analytically and numerically. 

Tom L.M (2014) studied how a continous modeling traffic flow can be derived. Jin (2000) looked at the bottleneck as being brought 

about by change in the number of lanes. Philipe G.(2002) looked at modeling of a car traffic flow using conservation laws and 

numerically discretization of the resulting hyperbolic differential equations. Zhang, H.M. (1998) discussed the Korens scheme for the 

partial differential equations that describes both non-linear propagation and the diffusive effects for partial differential equations with 

Cauchy and Neumann boundary condition. 

Olszewski and Suchorzewski (1987) presented a complex macroscopic model of traffic congestion in the city centre of Warsaw that 

relates aggregate traffic flow to average speed. Ardekani and Herman (1987) estimated the parameters of Herman and Prigogine 

(1979) macroscopic two fluid model of downtown traffic congestion of Astin and Dallars assuming a stable relation between mean 

density, mean flow, mean velocity and the fraction of vehicles stopped. 

Hall et al (1986) studied the flow-density relationship of Canada using an extensive data set collected on the Queen Elizabeth way in 

Ontario. Ohta and Harata (1989) developed the regression model for the three variable relationships for Japanese cities. Olszewki et al 

(1995) developed an area-wide traffic speed model for the Singapore CBD to get an analytical framework for traffic management 

measures evaluation. Nielsen et al (2008) explored the speed-flow relationship of different lanes under a given traffic condition and 

general level of service based on Chengdu expressway data of China. However most researchers focus on the character of the network 

roads of different types and lack to consider the evolution of traffic congestion and jams at the downtown areas that is an essential 

feature of a bathtub model of downtown traffic congestion.  

 

1.2. Specific Objectives 

i. To investigate the traffic wave phenomenon found within Kisii CBD using bathtub  model. 

ii. To use the bathtub model of downtown traffic congestion to investigate the vehicle flow density by applying it in Kisii CBD. 

iii. To explain how the county government could minimize congestion by using optimal-time varying tolls. 
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1.3. Assumptions of the Study 

To achieve the objectives stated, the following assumptions and approximations have to be made. 

i. There traffic flow was considered to be incompressible. 

ii. Under the same conditions, drivers were to behave the same way. 

iii. The traffic flow was considered to be laminar. 

iv. The flow is one dimensional. 

v. Pre-braking if the vehicle a head is much slower. 

vi. Desire not to exceed significantly the speed limit.  

 

1.4. Geometry of the Problem 

The Kinematic wave model of a traffic flow theory is the simplest dynamic traffic flow that reproduces propagation of traffic waves. 

The fundamental diagram wave model relates traffic flow with density as in the figure below. 

 

 
Figure 1: Fundamental diagram of traffic flow. 

 

The fundamental diagram shows that flow is an inverse U-shaped function of density. On the upward sloping part we talk about 

congestion as higher density leads to higher flow but reduced speed. On the downward sloping part we talk about hypercongestion, 

here higher density is associated with both lower flow and reduced speed. A recent range of contributions have indicated that such a 

fundamental diagram of traffic flow also applies at the level of an urban  neighborhood (Geroliminis and Daganzo, 2008; Daganzo et 

al, 2011). The underlying mechanism is that drivers continuously adapt their route choices to avoid more congested places in the 

network applied in the Kisii CBD. 

In the next section we formulate the mathematical problem of this study and the equations governing the flow are discussed and non- 

dimensionalised. 

 

2. Mathematical Formulation 

 

2.1. Macroscopic Traffic Models 

At macroscopic level, traffic can be continuum flow because the number of vehicles is conserved. Therefore, macroscopic traffic 

models are based on the continuity equation for the vehicle density �(	�,t) per lane at position	� and time t: 
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Where V (�,t) is	the average vehicle velocity. According to Eq. (1), the temporal change / tρ∂ ∂  of the vehicle density is given by the 

spatial change /Q x−∂ ∂
 
of the traffic flow    Q(�,t) = ρ (	�,t )V(�,t) and the rate v

±
(	�,t) ≥ 0 of vehicles entering (+) or leaving (−) 

the CBD at on or off ramps. To describe time and spatially varying velocities such as occur in emergent traffic jams and stop-and-go 

traffic, we need a dynamic velocity equation. For most continuous models, this equation can be written as; (Helbing D.1996) 
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According to Eq. (2), the change / tρ∂ ∂ of the average vehicle velocity is given by three terms. The transport term originates from 

the propagation of the velocity profile with the velocity V of the vehicles. The pressure term reflects either an anticipation of spatial 

changes in the traffic situation or dispersion effects due to a finite variance of the vehicle velocities. The relaxation term describes the 

adaptation to a dynamic equilibrium velocity Ve with a relaxation time τ . 

 

2.2. First Order LWR Model  

 Lighthill and Whitham (1955) and Richards (1956) considered that traffic was an inviscid but compressible fluid (fluid-dynamic 

model). Densities, speed values and flows were defined as continuous variables in each point in time and space (continuum, 

macroscopic model). The first order partial differential equation (PDE) from this model is: 

                           

q

t x

ρ
β

∂ ∂
+ =
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(3) 

Where β  is the flux of vehicles entering the traffic or exiting the traffic stream. 

Crucial to the approach of Lighthill, Whitham and Richards was the fundamental hypothesis, i.e. flow is a function of density and 

speed: Greenshields et al ( 1935). 
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(4)

 
Lighthill and Whitham assumed that the fundamental hypothesis holds at all traffic densities, not just for light-density traffic but also 

for congested traffic conditions. Relating the two dependent variables in the left-hand side of (3) (density ρ  and flow q) to one 

another, it is possible to solve the partial differential equation, given initial and boundary conditions.  

Equation (4) can be made simpler by assuming a constant speed. In this project a constant speed is assumed, i.e. ( )'
ou u q ρ= =

Therefore, (4) becomes  

                                    ( )'q
t x

ρ ρ
ρ β

∂ ∂
+ =
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(5) 

It is worth mentioning that Lighthill, Whitham and Richards noted that because of the continuity assumption, the theory only holds for 

a large number of vehicles (long crowded roads).In the next chapter the non- dimensionalised governing equations are discretized and 

then solved using the finite difference method. 

 

3. Method of Solution 
In this study we have developed numerical scheme and used finite difference method to solve the model equations i.e (2) and (5). The 

method obtains a finite system of linear or nonlinear algebraic equations from the PDE by discretizing the given PDE and coming up 

with the numerical schemes analogues to the equation. We have solved the equations subject to the given boundary conditions. 

MATLAB software was used to generate solution values in this study. 

 
3.1. Discretization of Model Equation 

The finite difference technique basically involves replacing the partial derivatives occurring in the partial differential equation as well 

as in the boundary and initial conditions by their corresponding finite difference approximations and then solving the resulting linear 

algebraic system of equations by a direct method or a standard iterative procedure. The numerical values of the dependent variable are 

obtained at the points of intersection of the parallel lines, called mesh points or nodal point.  

 
3.2. The Governing Equations 

The traffic flow theory is the simplest dynamic traffic flow model that reproduces the propagation of traffic waves. It made up of the 

dynamic velocity equation and the density equation with the initial and boundary conditions. 
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3.3.1. Dynamic Velocity Equation 
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The implicit scheme for the equation above is obtained as follows 

  
( ) ( ) ( )

( )VV
x

pp

x

VV
V

x

VV
e

jijijijijiji
−+

∆

+
−=

∆

−
+

∆

− −+−++

τρ

11 ,1,1,1,1

2

,1,

             
(7)

 

Taking Ve= 110 Km/hr, V= 30Km/hr, 32τ = seconds 160ρ = vehicles/Km and 1t x∆ = ∆ =  

 

1 , 1 , 1 1 , 1 , , 1 ,4 8 0 0 9 5 4 0 4 8 0 0 1 6 0 1 2 8 0 0i j i j i j i j i j i jV V V V P P+ + + − + −− + = + − +

               (8)

 

Taking and  i= 1, 2, 3…….8 and j= 1 we form the following systems of linear algebraic equations. 

2,2 1,2 0,2 1,1 1,1 0,1

3,2 2,2 1,2 2,1 2,1 1,1

4,2 3,2 2,2 3,1 3,1 2,1

5,2 4,2 3,2 4,1 4,1 3,1

4800 9540 4800 160 12800

4800 9540 4800 160 12800

4800 9540 4800 160 12800
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V V V V P P

V V V V P P

V V V V P P

V V V V P P

− + = + − +

− + = + − +

− + = + − +

− + = + − +

6,2 5,2 4,2 5,1 5,1 4,1

7,2 6,2 6,2 6,1 6,1 5,1

8,2 7,2 7,2 7,1 7,1 6,1

9,2 8,2 8,2 8,1 8,1 7,1
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− + = + − +

− + = + − +

− + = + − +

− + = + − +
 

Taking the initial and boundary conditions  

( ) ( ) ( ) 0,,0,0,0, === txPtPtxV

 The above algebraic equations can be written in matrix form as 
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3.3.2 Traffic Density Equation  
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The implicit scheme for the equation above is obtained as follows 
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Taking , 0.4,0.3,0.2λ = seconds 5β = vehicles/Km and 60t∆ =  

( ), 1 , 1,1i j i j i j tρ λ ρ λρ β+ −= − + + ∆                                           (13) 
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Taking and  i=1, 2, 3…….8 and j=1we form the following systems of linear algebraic equations 

1,2 1,1 0,1

2,2 2,1 1,1

3,2 3,1 2,1

4,2 4,1 3,1

5,2 5,1 4,1

6,2 6,1 5,1

7,2 7,1 6,1

8,2 8,1 7,1

0.6 0.4 330

0.6 0.4 300

0.6 0.4 300

0.6 0.4 300

0.6 0.4 300

0.6 0.4 300

0.6 0.4 300

0.6 0.4 300

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ
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Taking the initial and boundary conditions,  

( ) ( )4
0, 25sin 30xxρ = +

 
 

( ),0 21/ 0.1t Kmρ =
 

The above algebraic equations can be written in matrix form as,
 

1,2
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0.6 0 0 0 0 0 0 0 330

0.4 0.6 0 0 0 0 0 0 300

0 0.4 0.6 0 0 0 0 0 300

0 0 0.4 0.6 0 0 0 0 300

0 0 0 0.4 0.6 0 0 0 300

0 0 0 0 0.4 0.6 0 0 300

0 0 0 0 0 0.4 0.6 0 300

0 0 0 0 0 0 0.4 0.6
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 
 
  

   (14)          

 

The results obtained are discussed in the next section.

  

4. Results and Discussion 
The model was tested within the CBD in a selected section. The selected section was 1km long and was partitioned as a piece of 

roadway.  

 

4.1. Effect of vehicle flow density on Dynamic velocity profiles 

 

We solve equation (14) using Matlab and get the results as in table one below 

 

 
120ρ =  160ρ =  200ρ =  

X=0 11.781 13.824 14.34023 

X=1 20.74808 21.5482 25.53579 

X=2 26.78913 27.98913 33.21348 

X=3 29.82866 30.98913 37.11739 

X=4 29.82866 30.98913 37.11739 

X=6 26.78913 27.98913 33.21348 

X=7 20.74808 21.5482 25.53579 

X=8 11.781 13.824 14.34023 

Table 1: Dynamic velocity profiles V(�, �) values for varying vehicle density ρ  at constant and 45.0=eV
 

 

The results in the table 1 are represented graphically as seen in Fig.2 in the next page. 
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Figure 2: The changes in dynamic velocity with distance for varying vehicle flow density. 

 

 Figure 2 displays dynamic velocity as a function of distance varying vehicle flow density. Dynamic velocity increase with increase in 

distance until it reaches a maximum point called the critical point .At this point dynamic velocity starts to decrease with increase in 

distance .We also observe that with vehicle flow density of 200veh/km, the dynamic velocity at the peak is 37.11739km/hr. For 

vehicle flow density of 160veh/km and 120veh/ we experience a denser traffic flow, thus increase in vehicle flow density but reduced 

speed. After the critical point, higher vehicle flow density is associated with both lower traffic flow and reduced speed.      

 

4.2. Effect of vehicle velocity on Dynamic velocity profiles 

 

 
V=30km/h V=40km/h V=50km/h 

X=0 14.34023 8.651823 5.661522 

X=1 25.53579 15.33735 10.00981 

X=2 33.21348 19.88944 12.95791 

X=3 37.11739 22.1943 14.44685 

X=4 37.11739 22.1943 14.44685 

X=6 33.21348 19.88944 12.95791 

X=7 25.53579 15.33735 10.00981 

X=8 14.34023 8.651823 5.661522 

Table 2: Dynamic velocity profiles V(	�, t) values for varying vehicle  

 

The results in the table 2 above is represented graphically as seen in Fig.3 below 

 

 
Figure 3: The changes in dyanamic velocity with distance for varying vehicle velocity. 
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Figure 3 displays dynamic velocity as a function of distance varying vehicle velocity. We note that decrease in vehicle velocity leads 

to increase in dynamic velocity to a maximum point being 37.11739km/hr for a vehicle velocity of 30km/hr. Whereas with the higher 

vehicle velocity of 50km/hr, dynamic velocity is at a point of 14.44685km/hr. Figure 3 gives the same information as that of Fig. 2. 

but illustrates how less denser traffic flow is when varying vehicle velocity.  

 

4.3. Effect of λ on Vehicle flow density 

We solve equation (14) using matlab and get the results as in table three below 

 

 
0.4λ =  0.3λ =  0.2λ =  

x=0 550 471.4286 412.5 

x=1 133.3333 226.5306 271.875 

x=2 411.1111 331.4869 307.0313 

x=3 225.9259 286.5056 298.2422 

x=4 349.3827 305.7833 300.4395 

x=6 267.0782 297.5215 299.8901 

x=7 321.9479 301.0622 300.0275 

x=8 285.3681 299.5448 299.9931 

Table3: Vehicle flow density ( ),x tρ  values for varying λ  at constant 5β =  

 

The results in the table 3 above is represented graphically as seen in Fig. 4 below 

 

 
Figure 4: The changes in density of vehicles with distance for varying lambda 

 

 Figure 4 displays density of vehicles as a function of distance varying lambda. Density of vehicles decreases rapidly reaching a 

minimum value of 133.3333veh/0.1km when lambda is 0.4 seconds. Vehicle density again it increases as it continuously slightly 

fluctuates with the minimal transition of density values oscillating around 285.3681, 299.5448 and 299.9931 respectively indicating 

that when the vehicles accelerates out of a congested region and density decreases smoothly. 

 

4.4. Effect of flux of vehicles β  entering or exiting congestion point on Vehicle flow density 

 

 5β =  10β =  15β =  

X=0 412.5 787.5 1162.5 

X=1 271.875 553.125 834.375 

X=2 307.0313 611.7188 916.4063 

X=3 298.2422 597.0703 895.8984 

X=4 300.4395 600.7324 901.0254 

X=6 299.8901 599.8169 899.7437 

X=7 300.0275 600.0458 900.0641 

X=8 299.9931 599.9885 899.984 

Table 4: Vehicle flow density ( ),x tρ  values for varying β  at constant 0.2λ =  
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The results in the table 4 above is represented graphically as seen in figure 5 below 

 

 
Figure 5: The changes in density of vehicles with distance varying for varying beta. 

 

 Figure 5 displays density of vehicles/0.1km as a function of distance, varying Beta. Density of vehicles drops and then slightly 

increases to a given level where it continuously remains almost in the same situation. When the number of vehicles entering the 

congestion point increases, density becomes too high the vehicles cannot move fast, so traffic flow is slower, when the number of 

vehicles is small density is too lower, so the traffic flow is also lower.Therefore, we experience very minimal fluctuations in the 

vehicle flow density. Finally a standing wave on the road hence a situation where vehicles are moving smoothly at almost a constant 

speed.  

The conclusions and recommendations for further research are presented in the next chapter. 

 

5. Conclusion and Recommendations 

 

5.1. Conclusion 

This project presented a modified model of traffic congestion called the bathtub model of downtown traffic congestion that is 

particularly well suited to congested downtown areas. The fundamental diagram in traffic flow theory describes the relation between 

the macroscopic flow variables of flow, density and speed profiles at certain points within the CBD using assumed initial and the 

density at the boundary.The vehicle flow density and dynamic velocity profiles were analylised by varying various parameters. The 

outcome from these results are consistent with the values of the model presented. This model was applied in Kisii CBD. The model 

was studied and implemented numerically using a system of equations and it was observed that the dynamic velocity profiles depends 

on the vehicle flow density on the road. This project also indicated that, when demand is high relative to capacity downtown traffic 

congestion relief policy should focus on preventing traffic jams, which can be achieved through time varying tolls converting traffic 

jams into queues and regulating the entry rate of traffic into downtown areas. 

 

5.2. Recommendations 

The bathtub model provides a modified perspective on downtown traffic congestion that is consistent with recent theoretical and 

empirical development in transportation science. It is therefore recommended that; 

i. The development of traffic micro-simulation model that can do a better job of modeling the onset, growth and dissipation of 

traffic jams on experimentation with alternative policies as well as enrichment of the bathtub model of downtown traffic 

congestion. 

ii.  Other extensions can be, provide an integrated treatment of the three stage journey to work, sub-urban access, freeway travel 

to be modeled as a bathtub connecting to a neighborhood. 

  

 

 

 

 



 The International Journal Of Science & Technoledge  (ISSN 2321 – 919X) www.theijst.com 

 

229                                                         Vol 3  Issue 10                                             October, 2015 

 

 

6. References 
i. Ardekani and Herman (1987).Urban network-wide traffic variables and their relation. Transportation science 21:1-16. 

ii. Arnold, E. (1998), Ramp metering: Overview of the literature, Virginia transportation Research council Technical Report. 

iii. Arnott, R. (2013). A bathtub model of downtown traffic congestion : journal of Urban Economics 76:110- 121 

iv. Collete N. (2012) Numerical comparison of traffic flow model, TU, Kaiserslautern Germany. 

v. Daganzo, C.F., Gayah,V.V., and Gonzales, E.J. (2011). Macroscopic relations of urban traffic Methodological variables. 

Bifurcations, multivaluedness and instability. Transportation Research Part B: 45: (1),278-288. 

vi. Fosgerau,M. and Small,K.A. (2013). Hypercongestion in downtown metropolis, Journal of  Urban Economics 76: 122-134. 

vii. Fosgerau,M. and de Palma,A. (2012). Congestion in a city with a central bottleneck, Journal of Urban Economics 71 

:(3),269-277. 

viii. Geroliminis,N. and Daganzo,C.F. (2008).Existence of urban scale fundamental diagrams. Some experimental findings 

Transport Research Part B: Methodological 42 :(9),759-770. 

ix. Greenshields,B.D. (1935). A study of traffic capacity. Highway research Board 14: 448-477. 

x. Gonzales, E.J., Chavis, C. Li., Y., Daganzo, C.F. (2011). Multimodel transport modeling for Nairobi; Kenya. Insights and 

recommendations with an evidence based mode. Transportation research Board Washington DC, Paper 11-304. 

xi. Hall,F.L., Gunter, M.A. (1986) Emperical analysis of freeway flow-density relationship. Tranportation Research Part A 20: ( 

3), 213-222  

xii. Helbing, D. (1996) Derivation and empirical validation of a refined traffic flow model, Physica A 233: 253–282. 

xiii. Herman and Prigogine (1979).A two –fluid approach of town traffic Science 204 :148-151. 

xiv. Jin, W.N (2000) The in homogenous traffic model as a resonant Non-linear system; University of California, Davis 

,California 95616. 

xv. Kimathi M and Sigey J, (2006), Zhangs second order traffic flow model and its application to the Nairobi-Thika highway in 

Kenya.An MSC Thesis,JKUAT. 

xvi. Lighthill, M. and G. Whitman 1955. On Kinematic Waves II. A theory of traffic flow on long, crowded  roads. Proceedings 

of the royal society (London) A 229 : 317-345. 

xvii. Nielsen,O.A., Jorgensen,R.N. Estimation of speed-flow and flow-density relations on the motorway network in the greater 

Copenhagen region. Intelligent Transport Systems, IET 2: (2),120-131. 

xviii. Ohta,K.,Harata,N.( 1989) properties of aggregate speed-flow relationship for road networks. Proceedings 5-th world 

Conference onTransport Research, Yokohama,Japan.451-462  

xix. Olszewki,P., Fan,H.S.L. (1995). Area-wide traffic speed-flow model for the Singapore CBD. Transportation Research Part 

A: Policy and Practice, 29: ( 4) 273-281 

xx. Pilipe G. (2002) Hyperbolic systems of conservation laws. Polythechnique, Palaiseaw France. 

xxi. Richards ,P. (1956). Shock waves on highways, operations research 4 : 42 -51. 

xxii. Smith, B. and M. Demesky (1994) Short-term traffic flow prediction: neutral network approach, Transportation research 

Record: Journals of the Transportation Research Board 53 :98-104. 

xxiii. Stathopoulos, A. and M. Karlaftis (2003), A multivariate state space approach for urban traffic flow modeling and prediction. 

Transportation research Part C, Emerging Technologies, 11: 121- 135. 

xxiv. Tom L.M (2014) Traffic flow modeling Analogies, Transportation systems Engineering, TT Bombay. 

xxv. Van Der Voort, M .(1996),Combining Kohomen maps with ARIMA time series models to forecast traffic flow, 

Transportation research Part C:Emerging Technologies 4 : (5), 307-318.  

xxvi. Vickrey, W. (1969) Congestion theory and transportation investment. American Economic Review 59:251-260. 

xxvii. Zhang, H.M. (1998) A theory of No-equilibrium traffic Flow. Transportation research part B.32 485-498.  

 

 

 

 

 

 

 

 

 

 

 

 


