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1. Introduction 
Error correction codes are commonly used to protect memories from so called soft errors, which change the logical value of 
memory cells without damaging the circuit. As technology scales, memory devices become larger and more powerful error 
correction codes are needed. These codes can correct a larger number of errors, but generally require complex decoders. To 
avoid a high decoding complexity, the use of one step majority logic decodable codes were first proposed in for memory 
applications.  One step majority logic decoding can be implemented serially with very simple circuitry, but requires long 
decoding times. In a memory, this would increase the access time, which is an important system parameter. Only a few 
classes of codes can be decoded using one step majority logic decoding Among those are some Euclidean geometry, low density 
parity check (EG-LDPC) codes which were used for the difference set of  low density parity check   (DSLDPC) codes. Low-
Density-Parity-Check (LDPC) codes. Error correction code is a technique used for controlling errors in data transmission over 
unrealizable in communication, errors can occur due to a lot of reasons: noisy channel, scratches on CD or DVD, power surge in 
electronic circuit. To prevent soft errors from causing data corruption, memories are typically protected with Error Correction 
Codes (ECCs). Some types of ECCs are Single Error Correction (SEC) Codes that can correct one error in a memory word are 
commonly used. Parity allows the detection of all single-bit errors (actually, any odd number of wrong bits). 
 
2. Majority Logic Decoding 
The One step (MLD) majority logic decoding can be implemented serially using the scheme in which corresponds to the decoder 
for the EG-LDPC code with First the data block is loaded into the registers. Then the check equations are computed and if a 
majority of them has a value of one, the last bit is inverted. Then all bits are cyclically shifted. This set of operations constitutes a 
single iteration: after iterations, the bits are in the same position in which they were loaded. In the process, each bit may be 
corrected only once. As in Figure 1, the decoding circuitry is simple, but it requires a long decoding time if N is large. If errors 
can be detected in the first few iterations of MLD, then whenever no errors are detected in those iterations, the decoding can be 
stopped without completing the rest of the iterations. 
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Abstract: 
Design of less decoding time of system is one of the largest areas of research in VLSI system design. The resent technology 
was proposed to accelerate the majority logic decoding of difference set low density parity check codes. This is useful as 
majority logic decoding can be implemented serially with simple hardware but requires large decoding time. For memory 
applications, this increases the memory access time. The method detects whether a word has errors in the first iterations of 
majority logic decoding, and when there are no errors the decoding ends without completing the rest of the iterations. Since 
most words in a memory will be error-free, the average decoding time is greatly reduced. In this brief the application of a 
similar technique to a class of Euclidean geometry low density parity check (EG-LDPC) codes that are one step majority logic 
decodable. The results obtained show that the method is also effective for EGLDPC codes. Extensive simulation results are 
given to accurately estimate the probability of error detection for different code sizes and numbers of errors 
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Figure 1: majority logic decoder EG-LPDC code 

 
In the first iteration, errors will be detected when at least one of the check equations is affected by an odd number of bits in error. 
In the second iteration, as bits are cyclically shifted by one position, errors will affect other equations such that some errors 
undetected in the first iteration will be detected. As iterations advance, all detectable errors will eventually be detected One step 
MLD can be implemented serially  which corresponds to the decoder for the EG-LDPC code with N=15. First the data block is 
loaded into the register. Then the check equations are computed and if a majority of them has a value of one, the last bit is 
inverted. Then all bits are cyclically shifted. This set of operations constitutes a single iteration, after each iteration the bits are in 
the same position in which they were loaded. In the process, each bit may be corrected only once. As can be seen, the decoding 
circuitry is simple, but it requires a long decoding time if N is large. 
The check equations must have the following properties  

 All equations include the variable whose value is stored in the last register (the one marked as c14). 
 The rest of the registers are included in at most one of the check equations. 

The DS-LDPC codes most errors can be detected in the first three iterations of MLD. Based on simulation results and on a 
theoretical proof for the case of two errors, the following hypothesis was made. Given a word read from a memory protected with 
DS-LDPC codes and affected by up to five bit-flips, all errors can be detected in only three decoding cycles The method proposed   
has been applied to the class of one step MLD EG-LDPC codes. To present the results, the conclusions are presented first in terms 
of a hypothesis that is then validated by simulation and also partially by a theoretical analysis presented in the appendix. The 
results obtained can be summarized  in the following hypothesis  Given a word read from a memory protected with one step MLD 
EG-LDPC codes, and affected by up to four bit-flips, all errors can be detected in only three decoding cycles.  For codes with 
small words and affected by a small number of bit flips, it is practical to generate and check all possible error combinations. As 
the code size grows and the number of bit flips increases, it is no longer feasible to exhaustively test all possible combinations. Therefore the 
simulations are done in two ways, by exhaustively checking all error combinations when it is feasible and by checking randomly 
generated combinations in the rest of the cases. 
 

N K J tML 

15 7 4 2 

63 37 8 4 

255 175 16 8 

1023 781 32 16 
Table 1: One step MLD EGLPDC codes 

 
The parameters for some of these codes are given in Table 1 where  N   is the block size, K the number of information bits, J the 
number of MLD check equations and tML the number of errors that the code can correct using one step MLD. Therefore the 
simulations are done in two ways, by exhaustively checking all error combinations when it is feasible and by checking randomly 
generated combinations in the rest of the cases.  
 

N 1 
error 

2 
error 

3 
error 

4 
error 

15 0 0 0 0 

63 0 0 0 0 

255 0 0 0 -- 

1023 0 0 -- -- 

Table 2: Undetected Error in Exhaustive Checking 
 
The results for the exhaustive checks are shown in Table 2. These results prove the hypothesis for the codes with smaller word 
size (15 and 63). For N=255 up to three errors have been exhaustively tested while for N=1023 only single and double error 
combinations have been exhaustively tested. The results for errors affecting more than four bits are shown in Table 3, since for 
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errors affecting up to four bits there were no undetected errors. It can be observed that for errors affecting more than four bits there 
is a small number of error combinations that will not be detected in the first three iterations. 
This number decreases with word size and also with the number of errors. The decrease with the word size can be explained as 
follows: the larger the word size, the larger the number of MLD check equations (see Table 3) and therefore it is more unlikely that 
errors occur in the same equation 
 

N 5 
Error 

6 
Error 

7 
Error 

8 
Error 

9 
Error 

10 
Error 

11 
Error 

12 
Error 

63 5672 5422 1079 1174 823 817 537 549 
255 23 10 0 0 0 1 0 0 
1023 0 1 0 0 0 0 0 0 

Table 3: Undetected Errors with One Billion Random Error Combinations 
 
3. Majority Logic Decoder and Detector (MLDD)  
A novel version of the ML decoder for improving performance with reference to the original ML decoder, the proposed ML 
Detector/Decoder (MLDD) has been implemented using the Euclidean geometry Low-Density Parity Check (EG-LDPC) codes. 
The EG-LDPC codes are based on the structure of Euclidean geometries over a Galois field. Among EG-LDPC codes there is a 
subclass of codes that is one step Majority Logic Decodable (MLD). The memory system schematic of proposed MLDD is shown 
in Figure 2.  
 

 
Figure 2: majority logic decoder and detector (MLDD) 

 
The proof of the hypothesis that all error will be detected in three cycles is very complex from the mathematical point of view. It 
is practical to generate and check all possible error combinations for codes with small words and affected by a small number of bit 
flips. When the size of code and the number of bit flips increases, it is difficult to exhaustively test all possible combinations. 
Therefore the simulations are done in two ways, the error combinations are exhaustively checked when it is feasible and in the rest 
of the cases the combinations are checked randomly. Since it is convenient to first describe the chosen design and also for 
simplicity, let us assume that the hypothesis is true, that only three cycles are needed to detect all errors affecting up to four bits in 
EG LDPC Codes. 
 
4. Majority Logic Decoder 
The ML decoder is powerful and simple decoder, which has the capability of correcting multiple random bit-flips depending on 
the number of parity check equations. 
 It consists of four parts: a cyclic shift registers, an XOR matrix, a majority gate, an XOR for correcting the codeword bit under 
decoding. The cyclic shift register is initially stored with the input signal x and shifted through all the taps. The results {Bj} of the 
check sum equations from the XOR matrix is calculated from the intermediate values in each tap. 
 

 
Figure 3: majority decode 

 
In the Nth cycle, the result would reach the final tap, producing the output signal, which is the decoded version of input. The input 
x might correspond to wrong data corrupted by a soft error or SEUs. The decoder is designed to handle this situation as follows. 
From the parity check sum equations hardwired in the XOR matrix the decoding starts at the very next moment after the codeword 
x are loaded into the cyclic shift register. The linear sum outputs {Bj} is then forwarded to the majority logic circuit which 
determines the correctness of the bit under decoding. If the majority of the Bj bits are “1” that is greater than the majority number 
of zeros then the current bit is erroneous and should be corrected, otherwise it is kept unchanged. The circuit implementing a 
serial one-step majority logic corrector for (15, 7, 5) EG-LDPC code is shown in Figure 2. 
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5. Majority Logic Decoder and Detector (MLDD)   
In general, the proposed version uses the same decoding algorithm as the one in plain ML decoder version. The advantage is that, 
proposed method stops intermediately in the third cycle when there is no error in data read, the whole code word size of N. The 
XOR matrix is evaluated for the first three cycles of the decoding process, and when all the outputs {Bj} is “0,”the codeword is 
determined to be error-free and forwarded directly to the output. the whole decoding process to eliminate the errors if the {Bj} 
contain at least a “1” in any of the three cycles. The input x might correspond to wrong data corrupted by a soft error or SEUs. 
The decoder is designed to handle this situation as follows. From the parity check sum equations hardwired in the XOR matrix the 
decoding starts at the very next moment after the codeword x are loaded into the cyclic shift register. The linear sum outputs {Bj} 
is then forwarded to the majority logic circuit which determines the correctness of the bit under decoding 
 

 
Figure 4: MLDD structure 

 
If the majority of the Bj bits are “1” that is greater than the majority number of zeros then the current bit is erroneous and should 
be corrected, otherwise it is kept unchanged.A detailed schematic of the proposed design for 15 bit code word is The figure shows 
the basic ML decoder with a 15-tap shift register, an XOR array to calculate the orthogonal parity check sums and a majority logic 
circuit which will decide whether the current bit under decoding is erroneous and the need for its inversion. The plain ML decoder 
shown in Figure 4 is also having the same schematic structure up to this stage. The algorithm for MLDD method is to detect the 
error and correct. The flow chart for MLDD method as shown in Figure.5 Iteration from 1 to 3 will be performed for detection of 
the error in the codeword.  
 

 
Figure 5: flow chart of MLDD method 

 
If the codeword is error free then output will be obtained in three iteration. Iteration from 4 to N will be preformed to correct the 
error in the codeword. Performances N+1 to N+3 iteration are to detect the error in codeword. If the error is detected then it will 
corrected. Otherwise retransmission will be processed. 
 
6. Result 
Simulation result of error detection logic is show in Figure 6. Then the simulation result presented suggest that all errors affecting 
three and four bits would be detected in the first three iterations for errors affecting a larger of bit there is a small probability of 
not being detected in those iterations for large word sizes, the probabilities are sufficiently small to be acceptable in many 
applications. 
 

 
Figu re 6:  Error Detect ion  
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7. Summary and Conclusion 
The simulation results show that all tested combinations of errors affecting up to four bits are detected in the first three iterations of 
decoding. These results extend the ones recently presented for DS-LDPC codes, making the modified one step majority logic 
decoding more attractive for memory applications. The designer now has a larger choice of word lengths and error correction 
capabilities. 
 Future work includes extending the theoretical analysis to the cases of three and four errors detected. More generally, determining 
the required number of iterations to detect errors affecting a given number of bits seems to be an interesting problem. A general 
solution to that problem would enable a fine-grained tradeoff between decoding time and error detection capability. 
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