THE INTERNATIONAL JOURNAL OF SCIENCE \& TECHNOLEDGE

Formation of Special Diophantine Quadruples with Property $D(6 k p q)^{2}$

K. Meena
Former VC, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
S. Vidhyalakshmi
Professor in Mathematics, Shrimati Indira Gandhi College, Trichy, Tamil Nadu, India
M. A. Gopalan
Professor in Mathematics, Shrimati Indira Gandhi College, Trichy, Tamil Nadu, India
G. Akila
Research Scholar, Department of Mathematics, Shrimati Indira Gandhi College, Trichy, India
R. Presenna
PG Student, Department of Mathematics, Shrimati Indira Gandhi College, Trichy, Tamil Nadu, India

Abstract:
This paper concerns with the study of constructing a special non-zero integer quadruple (a, b, c, d) such that the product of any two elements of the set increased by a square is a perfect square. Different relations between the elements of the quadruple and special numbers are presented.

Key words: Diophantine Quadruple, System of Equations
2010 Mathematics subject classification number: 11D99

1. Introduction

The problem of constructing the sets with property that product of any two of its distinct elements is one less than a square has a very long history and such sets were studied by Diophantus [1]. For an extensive review of various articles one may refer [2-17]. In this paper, starting with the Diophantine pair (a, b) with the property $D\left(k^{2} s^{2}\right)$, we extend it to Diophantine triple with property $D\left(k^{2} s^{2}\right)$ and quadruple with property $D(6 k p q)^{2}$.

2. Notations

$t_{m, n} \quad$: Polygonal Number of rank n with size m
$S O_{n} \quad$: Stella Octangular Number of rank n
$\operatorname{Pr}_{n} \quad$: Pronic Number of rank n
$O H_{n}$: Octahedral Number of rank n
$P t_{n} \quad:$ Pentatope Number of rank n
$P_{p}^{3} \quad:$ Triangular Pyramidal Number of rank p
$P_{p}^{4} \quad$: Square Pyramidal Number of rank p
$P_{p}^{5} \quad:$ Pentagonal Pyramidal Number of rank p

3. Method of Analysis

Let $a=r-k s, b=r+k s$, where r and s are non-zero distinct integers and the product $a b$ is square free, be any two non-zero integers and $r \neq k s$. Observe that (a, b) is a Diophantine double with property $D\left(k^{2} s^{2}\right)$
Let c be any non-zero integer such that

$$
\begin{align*}
& a c+k^{2} s^{2}=\alpha^{2} \tag{1}\\
& b c+k^{2} s^{2}=\beta^{2} \tag{2}
\end{align*}
$$

where $\alpha=2 r-k s$ and $\beta=2 r+k s$
Eliminating c between (1) and (2) we get

$$
\begin{align*}
& b \alpha^{2}-a \beta^{2}=k^{2} s^{2}(b-a) \\
& \alpha=X+a T, \beta=X+b T \tag{3}
\end{align*}
$$

The choice
leads the above equation to the Pell equation

$$
\begin{equation*}
X^{2}=a b T^{2}+k^{2} s^{2} \tag{4}
\end{equation*}
$$

whose initial solution is

$$
\begin{equation*}
T_{0}=1, X_{0}=r \tag{5}
\end{equation*}
$$

Using (5) in (3) and employing either (1) or (2) we get

$$
c=4 r
$$

Therefore (a, b, c) is a Diophantine triple with the property $D\left(k^{2} s^{2}\right)$
The triple can be extended to a quadruple as follows.
Let d be any non-zero integer such that

$$
\begin{align*}
& a d+k^{2} s^{2}=\bar{\alpha}^{2} \tag{6}\\
& b d+k^{2} s^{2}=\bar{\beta}^{2} \tag{7}\\
& c d+k^{2} s^{2}=\bar{\gamma}^{2} \tag{8}
\end{align*}
$$

Eliminating d between (7) and (8) w get

$$
\begin{equation*}
c \bar{\beta}^{2}-b \bar{\gamma}^{2}=k^{2} s^{2}(c-b) \tag{9}
\end{equation*}
$$

Taking the linear transformations

$$
\begin{equation*}
\bar{\beta}=X+b T, \bar{\gamma}=X+c T \tag{10}
\end{equation*}
$$

in (9) it becomes

$$
\begin{equation*}
X^{2}=b c T^{2}+k^{2} s^{2} \tag{11}
\end{equation*}
$$

whose initial solution is

$$
T_{0}=1, X_{0}=\beta
$$

Substituting the above values in (10) and employing (7) we get

$$
\bar{\beta}=\beta+b
$$

which gives $\quad b d=(3 r+3 k s)(3 r+k s)$
and hence

$$
\begin{equation*}
d=9 r+3 k s \tag{12}
\end{equation*}
$$

Using (12) in (6) and simplifying we have

$$
\begin{equation*}
(3 r-k s)^{2}=3 k^{2} s^{2}+\bar{\alpha}^{2} \tag{13}
\end{equation*}
$$

which is satisfied by

$$
\begin{equation*}
k s=2 p q, \bar{\alpha}=3 p^{2}-q^{2}, 3 r-k s=3 p^{2}+q^{2} \tag{14}
\end{equation*}
$$

Since our thrust is on integers, note that r and s are integers when q is replaced by $3 q k$ Thus,

$$
\begin{aligned}
& r=p^{2}+3 k^{2} q^{2}+2 k p q \\
& s=6 p q \\
& d=9 r+3 k s=9 p^{2}+27 k^{2} q^{2}+36 k p q
\end{aligned}
$$

Therefore (a, b, c, d) is a Diophantine quadruple with the property $D(6 k p q)^{2}$, where

$$
\begin{aligned}
& a=p^{2}+3 k^{2} q^{2}-4 k p q \\
& b=p^{2}+3 k^{2} q^{2}+8 k p q \\
& c=4 p^{2}+12 k^{2} q^{2}+8 k p q
\end{aligned}
$$

Some numerical examples are presented below.

k	p	q	(a, b, c, d)	Property $D(6 k p q)^{2}$
3	2	1	$(7,79,172,495)$	$D(36)^{2}$
1	4	5	$(11,251,524,1539)$	$D(120)^{2}$
1	6	7	$(15,519,1068,3159)$	$D(252)^{2}$

Denoting a, b, c, d by $a(k, p, q), b(k, p, q), c(k, p, q), d(k, p, q)$ respectively, the following relations are observed.

1. $d(k, p, q)=6 b(k, p, q)+3 a(k, p, q)$
2. $c(k, p, q)=2 a(k, p, q)+2 b(k, p, q)$
3. $d(k, p, q)=a(k, p, q)+4 b(k, p, q)+c(k, p, q)$
4. $6 c(k, p, q)=9 a(k, p, q)+6 b(k, p, q)+d(k, p, q)$
5. $4 b(k, p, p+1)-c(k, p, p+1)=48 k t_{3, p}$
6. $4 b(k, p(p+1), p+2)-c(k, p(p+1), p+2)=144 k P_{p}^{3}$
7. $4 b(k, p(p+1), 2 p+1)-c(k, p(p+1), 2 p+1)=144 k P_{p}^{4}$
8. $b(k, p, k p(p+1))-a(k, p, k p(p+1))=24 k^{2} P_{p}^{5}$
9. Each of the following expressions is a Nasty Number

- $c(k, k p, p)$
- $2 b(k, k p, p)$
- $d(k, 3 k q, q)$
- $4 b(k, p, k p)-c(k, p, k p)$
- $\quad b(k, 2 k q, q)-a(k, 2 k q, q)$

Note: One may also write the solution of (13) as

$$
\begin{aligned}
& s=2 p q \\
& r=\frac{3 k^{2} p^{2}+q^{2}+2 k p q}{3} \\
& \bar{\alpha}=3\left(k^{2} p^{2}\right)-q^{2}
\end{aligned}
$$

For this choice, the corresponding quadruple with property $D(6 \mathrm{kpq})^{2}$ is
$\left((k p)^{2}+3 q^{2}-4 k p q,(k p)^{2}+3 q^{2}+8 k p q, 4(k p)^{2}+12 q^{2}+8 k p q, 9(k p)^{2}+27 q^{2}+72 p q\right)$ Some numerical examples of the above with $k=2$ are presented below.

p	q	(a, b, c, d)	Property $D(6 k p q)^{2}$
1	3	$(32,272,608,1728)$	$D(36)^{2}$
4	9	$(19,883,1804,5355)$	$D(432)^{2}$
5	11	$(23,1343,2732,8127)$	$D(660)^{2}$
6	13	$(27,1899,3852,11475)$	$D(936)^{2}$
7	15	$(31,2551,5164,15399)$	$D(1260)^{2}$

Denoting a, b, c, d by $a(p, q), b(p, q), c(p, q), d(p, q)$ respectively, the following relations are observed.

1. $b\left(n^{2}, n+1\right)-a\left(n^{2}, n+1\right)-48 \operatorname{Pr}_{n}^{5}=0$
2. $c(n, 1)-a\left(n^{2}, n+1\right)-t_{20, n}-16 \operatorname{Pr}_{n}^{5}-18 p-9=0$
3. $d(n, n)-9 a(n, 1)-t_{200, n}=-27(\bmod 106)$
4. $c(n, n+1)-b\left(n, 2 n^{2}-1\right)-t_{146, n}-16 \operatorname{Pr}_{n}^{5}+160 S O_{n}+12 t_{4, n^{2}} \equiv 9(\bmod 44)$
5. $d\left(n, 2 n^{2}+1\right)-c(n, n+1)-t_{234, n}+16 \operatorname{Pr}_{n}-216 O H_{n}-108 t_{4, n^{2}} \equiv 15(\bmod 91)$
6. $b(n(n+1),(n+2)(n+3))-a(n(n+1),(n+2)(n+3))-576 P t_{n}=0$
7. $c(1, n)-t_{26, n}-5 p-16=0$
8. Each of the following expressions is a Nasty Number

- $2 c(2 n, n)$
- $b(4 n, 4 n)-c(2 p, 2 p)$
- $\quad b(n, n)-a(n, n)$

4. Conclusion

In the construction of the quadruple we have assumed the product $a b$ is square free. One may assume that the product $a b$ is a perfect square and search for Diophantine quadruples with suitable property.

5. References

1. I.G.Bashmakova (ed.), Diophantus of Alexandria, "Arithmetics and the Book of Polygonal Numbers", Nauka, Moscow, 1974.
2. N.Thamotherampillai, "The set of numbers \{1.2.7\}", Bull. Calcutta Math.Soc.72 (1980), 195-197.
3. E.Brown, "Sets in which $x y+k$ is always a square", Math.Comp. 45 (1985), 613-620.
4. H.Gupta and K.Singh, "On k - triad sequences", Internet.J. Math. Sci., 5 (1985), 799-804.
5. A.F.Beardon and M.N.Deshpande, "Diophantine triples", The Mathematical Gazette, 86 (2002), 258 - 260.
6. M.N.Deshpande, "One interesting family of Diophantine triples", Internet. J. Math. Ed. Sci.Tech. 33 (2002), 253-256.
7. M.N.Deshpande, "Families of Diophantine triplets", Bulletin of the Marathwada Mathematical Society, 4 (2003), 19-21.
8. Y.Bugeaud, A.Dujella and Mignotte, "On the family of Diophantine triples
$\left(k-1, k+1,16 k^{3}-4 k\right) "$, Glasgow Math. J. 49 (2007), 333-344.
9. Tao Liqun "On the property p_{-1} Electronic Journal of combinatorial number theory 7(2007)" \# A47
10. Y.Fujita, "The extensibility of Diophantine pairs $(k-1, k+1)$ ", J. Number Theory 128 (2008), 322-353.
11. G.Srividhya, "Diophantine Quadruples for Fibbonacci numbers with property D (1)" Indian Journal of Mathematics and Mathematical Science, Vol. 5, No.2, (December 2009): $57-59$.
12. M.A.Gopalan, V.Pandichelvi, "The Non Extendibility of the Diophantine triple $\left(4(2 m-1)^{2} n^{2}, 4(2 m-1) n+1,4(2 m-1)^{4} n^{4}-8(2 m-1)^{3} n^{3}\right) "$, Impact J. Sci. Tech. Vol.5, No.1, 25 -28, 2011.
13. Yasutsugu Fujita, Alain Togbe,"Uniqueness of the extension of the $D\left(4 k^{2}\right)$ - triple" $\left(k^{2}-4, k^{2}, 4 k^{2}-4\right)$ " NNTDM 17 (2011), 4, 42-49.
14. M.A.Gopalan, G.Srividhya, "Two Special Diophantine Triples", Diophantus J. Math., 1 (1) (2012), 23 - 27.
15. M.A.Gopalan, G.Srividhya, "Some non-extendable p_{-5} sets", Diophantus J. Math., 1 (1) (2012), 19-22.
16. M.A.Gopalan, G.Srividhya "Diophantine Quadruple for Fibonacci and Lucas Numbers with property D(4)", Diophantus J. Math., 1 (1) (2012), 15-18.
17. A.Filipin, Bo He, A.Togbe, "On a family of two parametric D (4) triples" Glas. Mat. Ser. III 47 (2012) 31 - 51
