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Abstract:
This paper concerns with the study of constructing a special non-zero integer quadruple (@,b,c, d) such that the product of

any two elements of the set increased by a square is a perfect square. Different relations between the elements of the quadruple
and special numbers are presented.
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1. Introduction
The problem of constructing the sets with property that product of any two of its distinct elements is one less than a square has a
very long history and such sets were studied by Diophantus [1]. For an extensive review of various articles one may refer [2-17].

In this paper, starting with the Diophantine pair (a,b) with the property D (k 252) , we extend it to Diophantine triple with
property D (k ?s?) and quadruple with property D (6kpq ) .

2. Notations
t, . :Polygonal Number of rank N withsize m
SO, :Stella Octangular Number of rank n
Pr,  :Pronic Number of rank n
OH , : Octahedral Number of rank n
Pt, : Pentatope Number of rank n
Pp3 : Triangular Pyramidal Number of rank p

p# : Square Pyramidal Number of rank p

P> : Pentagonal Pyramidal Number of rank p

3. Method of Analysis
Leta=r—Kks,b=r+Kks,where r and S are non-zero distinct integers and the product ab is square free, be any two

non-zero integers and I # Ks . Observe that (@, b) is a Diophantine double with property D (k *s?)
Let C be any non-zero integer such that
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ac +k’s’=a? )
bc + k?s® = B2 ()
where o = 2r — ks and 8 = 2r + ks
Eliminating C between (1) and (2) we get
ba?-apf?=k?s?’(b-a)

The choice a=X+al,f=X+bT (3)
leads the above equation to the Pell equation

X% =abT ?+k?s? @)
whose initial solution is

To,=LX,=r (5)
Using (5) in (3) and employing either (1) or (2) we get

c=4r

Therefore (@, b, ) is a Diophantine triple with the property D (k ®s?)

The triple can be extended to a quadruple as follows.
Let d be any non-zero integer such that

ad +k’s2=a ©)

bd +k2s2= 3" @)

cd +k2s2=yp" ®)
Eliminating d between (7) and (8) w get

cB’ —by =k2s2(c—b) ©)
Taking the linear transformations

B=X+bT,y=X+cT (10)
in (9) it becomes

X% =hbcT ? +k?s? (11)
whose initial solution is

T, =1L, X,=p
Substituting the above values in (10) and employing (7) we get

B=pB+b
which gives bd = (3r + 3ks)(3r + ks)
and hence

d =9r + 3ks (12)
Using (12) in (6) and simplifying we have

(3r —ks)? = 3k?s2 + o (13)
which is satisfied by

ks =2pq,a =3p>-q23r—ks =3p? +q? (14)
Since our thrust is on integers, note that I' and S are integers when ( is replaced by 3gk

Thus,
r=np°>+3k?q*+2kpq
s =6pq
d=9r+3ks =9p?+27k?°q® + 36 kpq
Therefore (a,b,c,d) is a Diophantine quadruple with the property D (6kpq )? , where
a=p?+3k’qg? - 4kpq
b=p?+3k2q? +8kpq
c=4p?+12k?q? + 8kpq
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Some numerical examples are presented below.

k p q (a,b,c,d) Property D (6kpq )*
3 2 1 (7,79 ,172 ,495) D (36)?
1 4 5 (11,251,524 1539 ) D (120 )2
1 6 7 (15,519 ,1068 ,3159 ) D (252 )3

Denoting a,b,c,d by a(k, p,q),b(k, p,q),c(k, p,q),d(k, p,q) respectively, the following relations are observed.
d(k, p.q)=6b(k, p,q)+3a(k, p,q)
c(k,p,q) =2a(k, p,q)+ 2b(k, p,q)
d(k,p.q)=a(k, p,q)+4b(k, p,q)+c(k, p,q)
6c(k, p,a) =9a(k, p.q)+6b(k, p,q)+d(k, p,q)
4b(k, p, p+1)-c(k,p, p+1)=48kt,,
4b(k,p(p+1), p+2)—c(k,p(p+1), p+2)=144kP;}
4b(k,p(p+1),2p+1)—c(k, p(p+1),2p+1) =144 kP
b(k, p.kp(p+1)) —a(k, p.kp(p+1)) = 24k*P;

Each of the following expressions is a Nasty Number
c(k.kp, p)

2b(k,kp, p)

d(k,3kq,q)

4b(k, p,kp) —c(k, p.kp)

b(k,2kq,q) —a(k,2kqg,q)

1.
2
3.
4.
5
6

7.

Note: One may also write the solution of (13) as

s=2pq
r_3k2p2+q2+2kpq

3

a =3(k*p*)-q°

For this choice, the corresponding quadruple with property D (6kpg )? is
((kp)® +3q° — 4kpq, (kp)? +3q% + 8kpq ,4(kp)? +12q* + 8kpq ,9(kp)? +27q° + 72 pq) Some

numerical examples of the above with K = 2 are presented below.

p (a,b,c,d) Property D (6kpq )*
1 (32,272,608 ,1728 ) D(36)°

4 (19,883 ,1804 ,5355 ) D (432)?

5 11 (23,1343 ,2732 ,8127 ) | D (660 )2

6 13 (27,1899 ,3852 11475 ) | D (936 )2

7 15 (31,2551 ,5164 ,15399 ) | D (1260 )2

Denoting a@,b,c,d by a(p,q),b(p,q),c(p,q),d(p,Qq) respectively, the following relations are observed.
b(n*,n+1)—a(n*,n+1)-48Pr> =0

1.

2. ¢(nl)-a(n®*,n+1)—t,,—-16Pr>—18p-9=0
3. d(n,n)-9a(nl)-t,, , =-27(mod 106)
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4 c(n,n+1)-b(n,2n*-1) —t, , —16 Pr;+160 SO, +12t, ., =9(mod 44)

5. d(n,2n*+1)—c(n,n+1)—ty,, , +16 Pr,— 216 OH , —108t, . =15(mod 91)
6. b(n(n+1),(n+2)(n+3))—-a(n(n+1),(n+2)(n+3))-576Pt, =0

7. c(ln)—-t,, -5p-16=0

8. Each of the following expressions is a Nasty Number

e 2c(2n,n)
e b(4n,4n)-c(2p,2p)
e b(n,n)-a(n,n)

4. Conclusion

In the construction of the quadruple we have assumed the product ab is square free. One may assume that the product ab is a
perfect square and search for Diophantine quadruples with suitable property.
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