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Abstract:
We obtain infinitely many non-zero integer sextuples (X, Y, z,w, p,T) satisfying the non-homogeneous equation of eighth

degree with six unknowns given by X6 - y6 - 223 = (W2 - pZ)T6 . Various interesting relations between the solutions

and special numbers, namely, polygonal numbers, Pyramidal numbers, Star numbers, Stella Octangular numbers,
Octahedral numbers, Pronic number, Jacobsthal number, Jacobsthal-Lucas number, keynea number, Centered pyramidal
numbers are presented
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Notations:
Tm,n -Polygonal number of rank nwith size m
an- Pyramidal number of rank N with size m
SOy, -Stella octangular number of rank n
Sy, -Star number of rank n
PR}, - Pronic number of rank n
OH,, - Octahedral number of rank n
J, -Jacobsthal number of rank of n
Jn - Jacobsthal-Lucas number of rank n
KY,, -keynea number of rank n
CPn,g - Centered Triangular pyramidal number of rank n
CPn,G - Centered hexagonal pyramidal number of rank n

CPn,7 - Centered heptagonal pyramidal number of rank n

n_ pn 2 N
GFn(k,s)za Jij a=k+\/k +4s k—Vk< +4s

P = -Generalised Fibonacci sequence
a-p 2 2
2 2
GL,(k,s)=a"+B"| a= K+ k2 *as P = K k2 +as -Generalised Lucas sequence
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1. Introduction

The theory of diophantine equations offers a rich variety of fascinating problems. In particular, homogeneous and non-
homogeneous equations of higher degree have aroused the interest of numerous Mathematicians since antiquity [1-3].Particularly
in [4, 5] special equations of sixth degree with four and five unknowns are studied. In [6-9] heptic equations with three and five
unknowns are analysed. In [10-11] equations of eighth degree with five and six unknowns are analysed. This paper concerns with
the problem of determining non-trivial integral solution of the non- homogeneous equation of eighth degree with six unknowns

given by X6 - y6 - 223 = (W2 - pZ)T6 . A few relations between the solutions and the special numbers are presented.

2. Method of Analysis:
The Diophantine equation representing the non- homogeneous equation of degree eight is given by

x6—y6—223=(w2—p2)T6. @)
Introduction of the transformations

X=U+V,y=U—-V,Zz=2uv,W=uv+3, p=uv—-3 2
in (1) leads to

u+v2=T? 3)

The above equation (3) is solved through different approaches and thus, one obtains different
sets of solutions to (1)

2.1. Approach 1

Let T =a’+Db? 4
Substituting (4) in (3) and using the method of factorisation, define
(u+iv) = (a+ib)® (5)
Equating real and imaginary parts in (5) we get
u=a’-3ab’
o L3 (6)
v=3ab-b

In view of (2), (4) and (6), the corresponding values of X,Y,z,w, p,T are represented by

x =a° —3ab® +3a’b - b3

y= a® —3a’b-3ab? +b3

z =2(a% - 3ab?)(3a%h - b%)
w = (a® -3ab?)(3a%b —b%) +3
p=(a°-3ab%)(3a%h-b% -3

T =a®+b?

U]

The above values of X,Y,Z,W, p and T satisfies the following relations:

1.w(a,a)+ p(a,a)+z(a,a) —16[2T3,a3 -6 pg +6T3 4 +SO4 —2CP, 6]=0

2.6ps — x(a,1) 1= 0(mod5)

3.3 [I'(22n,22n)—2KY2n + Jon+2 —1] is a nasty number

4. 3[x(a,a)+y(a,a)+w(a,a)— p(a,a)+2(6 pg’ —6T3 4 +3T4 5 —Tg a)] isacubic integer.

5. 9[64T32,a3 —8CP, (2p3 ~Ts.a) —32(CPs6)° ~T3(a,a) - x(a,8).y(a,a) — w(a,a).p(a,a)] is

a biquadratic integer
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2.2. Approach 2
The solution of (3) can also be obtained as

u=a(a?+b?),v="b(a?+b?),T =a? +b? ®)
In view of (8) and (2), the integral solutions of (1) is obtained as
x = (2% +b?)(a+b)
y=(a*+b*)(@-b)
z = 2ab(a? +b?)?
W= 2ab(a2 + b2)2 +3
p=2ab(a®+b%)°-3

T =a’+b?

9)

Some interesting relations between the values of X, Yy, Z, W, p and T :
1.X(a,a)+Yy(a,a)—8CP, 3+8CP, 5 +450, =0

2.2x(2a,a).y(2a,a) - 75(2P§’.SOa +T4 a2 SOa.T4,a) =0.3.w(a,a)+ p(a,a) —16T3,a.T4 52 +8CP,6-T42=0
4.4%(a,b)[x?(a,b) + y?(a,b) + 2z(a, b)] is a cubic integer.

5. T(22",22") = 2K Y, + 2 jpp,q =0

6. 2(22n , 22n) —8KYg, + 24 jgn 41 is a biquadratic integer

2.3. Approach 3
Now, rewrite (3) as,

u>+v2=T3x1 (10)
Also 1 can be written as

1= ()" (i)" (11)
Substituting (4) and (9) in (8) and using the method of factorisation, define,

(u+iv) =i"(a+ib)’ (12)

Equating real and imaginary parts in (10) we get

u= cosn—ﬁ(a3 —3ab?) —sinn—ﬁ(3a2b -b?)
2 2 13)
V= cosn%(3a2b— b%) +Sinn7ﬂ-(3.3 —3ab?)

In view of (2), (4) and (11), the corresponding values of X, Y,z,w, p, T are represented
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x=cosn—”(a3
2

nmw, 4

=cos—(a
y 5 (

z=2[cosn—”(a
2

w=[cosn7ﬂ(a

nz
=[cos—(@°
p=[cos—~(

T =a’+b?

2.3.1. Properties

—3ab® +3a’h-b°) Jrsin%r(a3

_3ab? —3a2b+b3)—sin”—”(a3

—3ab* —3a’h +b°)

—3ab®+3a’h-b?)

2 3 3 ad— 2
—3ab”) - sin % (3a b-b )][cos (3a b-b )+S|n 5 ( 3ab“)] 1)
—3ab?) - sin % (3a b— b3)][cos (3a’h — b3)+sm 5 (a®-3ab*)]+3
—3ab?) - sin % (3a2b bg)][cos (3a’b-b® )+sm 5 7 (a®—3ab?)]-3

1. X(a,a)—y(a,a) —4CPa,6(cosn7”—sinn—n) =0

2. w(a,a)+ p(a,a)+4(coszn77r—sm2 nn)(SO 2CP, 53— 2T . +2T, 4]=0

3. z(a,a)— (-1)"

(3T4,2.50,

—13CPa 6 +9T4_ a _3T8 a] =0

4. x(a,a)+y(a, a)+(cos7+sm—)(12P4—12T3a+6T4a—2T8 al=0

2.4. Approach 4

(2mn+i(m2

—n2)(2mn

—i(m? -n?)

Writing 1 asl=

(m2 +n2)2

Following the same procedure as above we get the integral solution of (1) as

Where

f,(A B) = 2mn(A% —3AB?) — (m?

g1(A B) = (A3

2.4.1. Properties
1. 3(m2

2. 2a(m2 + n2)(2mn +m

integer

- n2)[6x(a, a)+ 2(m2 + n2)2 (m2

x = (m?+n?)°[f,(A B) +g,(A B)]
= (m2 + nz)z[ fl(A' B) - gl(A’ B)]
z=2(m*+n?)".f,(A B).g,(A B)

2

—n2)[x(a,a) +(a,a) +8(m2 + n2)2(2mn +m

w=(m®+n®)*[f,(A B).g,(A B)]+3 o
p= (m2 + n2)4[ fl(A: B)'gl(A' B)] -3
T =(m* +n?)*(A* +B?)
2\(2p2 3
_n?)(3A2B - B3) "
—3AB?)(m? —n?)+2mn(3A’B - B®)

2

- n2)(Sa +18(OH4) — 6T, 5)] is a nasty number

—nZ)Pg’] is a cubic
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3.x(a,a).y(a,a) +T3(a, a) —8(m2 + n2)4(2mn +m? —n2)2

[6F4,a5T4,a ~3CPa6.T4,a—2T, 21=0

4.T(a,1) — (6P2 —CPy 3 —4T3 4 +2T4 5) = 0(mod 3)

5. z(a,a)+w(a,a)+ p(a,a) = 32(m2 + n2)4(m4 +n* —6m2n2)[2P84 - 2T3 4 2T4 a4]
a ) )

2.4.2. Note
1 can also be written as

((m? =n?)+i2mn)((m? —n?) —i2mn)

1= 7)
(m2 +n2)2

Following the same procedure as above we get the integral solution of (1) as

x =(m*+n?)’[f,(A B)+0,(A B)]

y =(m*+n°)°[,(A B)-g,(A B)]

z=2(m*+n?)".f,(A B).g,(A B) )

w=(m?+n*)*[f,(A B).g,(A B)]+3

p= (m2 + n2)4[ f2 (A' B)-gz(A' B)]_3

T =(m* +n?)?*(A*+B?)
where
f,(A, B) =(m? —n?)(A®-3AB?)-2mn(3A%B - B) 9
9,(A B) = (A3 —3AB?)2mn +(m? —n?)(3A%B - B®)
2.5. Approach 5
The assumption
u=UT,v=VT (20)
in (3) yields to
U2+v2=T 1)
(i) Taking T =t2 (22)
in (21),we get the solution to(21) as
U=2pgV =p®-q¢*t=(p*+q°), p>q>0 (23)
U=p®-q*V=2pgt=(p*+q°),p>q>0 (24)
From (22), (20) and (23) we get

u=2pg(p* +q°)

v=(p® ~a?)(p +9%)° (25)

T=(p%+q%)?

In view of (25) and (2), we get the corresponding integral solution of (1).as
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x=(p*+0*)*(p*—q°+2pq)
y=(p*+0*)*(2pq - p*+q°)
z=4pq(p®+9°)*(p*-q°)
w=2pq(p®+9*)*(p*-q*)+3
p=2pq(p*+9*)*(p*-q*)-3
T=(p*+9°)?

2.5.1. Properties
3 —
1. X(a,a) —8(6Pa2 —6T3,a2 + PRaz —T4,a2) =0
5 -
2. w(a,a)+ p(a,a) _120CPa2,6(2Pa2 —T4'a2) =0

3. T(a,a) — 24F, 5 5 +12CP, g +8T; , =0
4.7(2a,8) ~30[3.80, OH, +T, ,]=0

(26)

Similarly by considering (22), (20), (24) and (2), we get the corresponding integral solution of (1).

(ii) Taking T =t"
in (21) and considering (20) and performing some algebra, we get

u =%[(a+ ib)" + (a—ib)"](a® +b?)"
v =%[(a+ ib)" — (a—ib)"](a2 +b2)"

T =(a?+b?)"

Using (28) and (2), we get the corresponding integral solution to (1).

x =(a’+b*)"[f (a,ib)+ g(a,ib)]
y=(a*+b?)"[f (a,ib)—g(a,ib)]
z=2(a*+b*)*".f(a,ib).g(a,ib)
w=(a’+b?)*".f(a,ib).g(a,ib)+3
p=(a?+b%)>.f(a,ib).g(a,ib) -3
T =(a’+b%)"

where

i =%[(a+ib)” +(a-ib)"]

g =L[(a+ib)" —(a—ib)"]
2i

@7)

(28)

(29)
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2.5.2. Properties
n-1 5 _
1. x(a,a)-2 (GLn (2,-2)+ 2GFn (2,-2))(2 Pa” - 2T3,a” + PRan - 43" )=0

1 3
2. y(a,a) - 2" (GL, (2, -2) - 2GF, (2,-2))(6P5, ~6T, 0 +2CP n < ~SO_;) =0

3.w(a,a)+ p(a,a) - 2"1GL, (2,-2).GF, (2,-2)

(3CPan,6-OHan _6F4'an '5 +3CPan’6 + 2T4’an ) = O

2N _ _ 5 _ _
4 2(a,2) = 27"GLn (2,-2) GF (2, -2)(4P7, CP o ;= 2T, 0.2CP 5 ( ~CPy )

5. The following expressions are cubical integers:

2n 2 2
@ 22"(GLy*(2,-2) +4GFy2(2.-2))[8CPy (OH o 2T, T, o +CP, ]

®) 324" 2GL,%(2,-2).GF,%(2,-2)(6F 4431 5 ~3CPan o~ 2T, 3n)-w(a,a).p(a, )]

6. 4x(a,a).y(a,a) — 22" (GL,%(2,-2) + 4GF,(2,-2))
3 _
(6F4'an’5.T4lan _18Pan.PRan +10T4]a2n +15CPanl6 +6T4lan) —0

2.6. Approach 6
Using (22) in (21) and arranging we get

(t-U)(t+U)=1xV? (30)

Writing (29) as a set of double equations in two different ways as shown below:
Setl:t+U =V 2 t-U =1,

Set2: t+U =1,t—-U =V 2
Solving set1, the corresponding values of U,V and tare given by

U=2k?+2kV =2k +1t = 2k? + 2k +1 (31)
In view of (30), (22), (20), (4) and (2), the corresponding solutions to (1) obtained from setl are represented as shown below:

X = (2k? + 4k +1)(2k? + 2k +1)2

y = (2k% —1)(2k? + 2k +1)?

z = 4(k? +K)(2k +1)(2k? + 2k +1)*
w=2(k? +K)(2k +1)(2k? + 2k +1)* +3
P=2(k? +k)(2k +1)(2k? + 2k +)* -3
T = (2k? + 2k +1)?

2.6.1. Properties
1. X(a)—(3T4 4 —Tg a)(4T3 5 +1)2 is a cubic integer

2. T(2)~ (8T, 2 +48P; —40T5 3 +10T, 5 ~2Tpp 5) =1

34T (22n) —KY4n41 —KYon11 — Jgn-3] is a biquadratic integer
4. w(a) + p(a)+2(a) - 48Py T2(a) =0

3(x(a) - y(a))
" 4CP, 3—2CP, g +1

is a nasty number
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Similarly, the solutions corresponding to set2 can also be obtained.

3. Remark
Using (22) in (21) and arranging we get

(t-V)(t+V)=1U? 32)

Using the same procedure as in approach6, two more sets of solutions to (1) can be obtained.

e All the above approaches satisfy the following interesting relations
1. The following are nasty numbers:

o, 2002
X+Yy

(). 12((W? + p?)—62°
(©). 6(x4 + x3y + x2y2 - xy3 - y4 —4T3(W+ p) —2xyz)
. 6(T3+w+ p)

2. The following are cubic integers:

@. 40 +y?) Py +2%)

(b). 6(z2 —4wp)

(©). 2x% =27 - y2 -W-p

@ ED 0 -y - 2w-3)x+y)
3. The following are sextic integers

(a). 32(2x2y2 +(w+ p)2 + 22)

®). (Py?+2°)
4. x? —y2—2w—2p=0

5. W2 — p2 _2T3 = 0(mod 6)
6. If u and V are the generators are of the Pythagorean triangle ABC, then

Xyz
(i). the area of the triangle ABC= %

(ii). the perimeter of the triangle ABC= Xy + z +T3
2 2 2 2 2 3 2 _
7. XS+ Y +2°+W 4+ p°—2T° —6(p+3)° =0(mod18)
8. 4(X+ y)(x3+ y3)—(x+ y)4 +2472 =0
9. x4—y4—4zx2+82(p+3)=0
10. x* + y* — 4w+ p)? - 2[2T3 - (x - y)?]? =0
1. M+(W_2)2 —xy— pw—T3-z=0(mod10)

12.4(x— y)(x° + y°) = 22(4xyT 2 +10(w—3) +6(x - y)*)
13. (W—3)[80T 3 + 4022 + (x— y)?{(x— y)? = 20}] - 4(x + y)(x° = y°) =0

4. Conclusion

In conclusion, one may search for different patterns of solutions to (1) and their corresponding properties.
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