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1. Introduction 
The advent of DNA microarrays have resulted in There is an increasing acquisition of biological data in recent years due to 
advancements in molecular genetics technologies such as DNA Microarrays. [1-8]. The DNA Microarrays also called DNA Chips 
have given a global view of a cell for the first time. It is now possible to determine the molecular state of a cell due to 
simultaneous expression of thousands of genes using DNA microarrays. But, the challenge lies in the analysis of microarray data 
to interpret meaningful results. It is due to the fact that microarray data consists of small number of records with number of fields 
(i.e., number of genes) is in thousands which is in contrast to other data mining applications. This leads to a high likelihood of 
“false positives” in finding differentially expressed genes. The main types of data analysis needed to for biomedical applications 
include: Gene Selection – in data mining terms this is a process of attribute selection, which finds the genes most strongly related 
to a particular class ( [9-15]), Classification – classifying diseases or predicting outcomes based on gene expression patterns, and 
perhaps even identifying the best treatment for given genetic signature ([21-31]) and Clustering – finding new biological classes 
or refining existing ones ( [16-20]). 
Since only a small number of genes among tens of thousands show strong correlation with the targeted disease, some works 
address the problem of defining which the appropriate number of genes to select is. However, finding the optimal number of 
genes, is a difficult goal. While an excessively conservative estimate of the number of relevant genes may cause an information 
loss, an excessively liberal estimate may increase the noise in the resulting dataset. This paper describes a method which 
automatically selects the minimum number of genes to reach the best classification accuracy on the training set. Moreover, the 
genes belonging to the minimum subset can be used as genetic markers for further biomedical investigations. Two different 
strategies to select the minimum set of genes which maximize the training samples coverage are exploited. The performance of 
our method has been tested on publicly available datasets and experimentally compared to other feature selection algorithms. 
 
2. Pre-Processing 
A microarray dataset (M) is represented as a gene expression matrix, with each gene representing a row and column 
corresponding to sample. Each element (mij) in the matrix is the expression level of all the genes under study and each eij in E is 
the expression level of gene ‘i’ for sample ‘j’ where i=1…..N; j=1…….M (N is the number of genes and M is the number of 
samples). In a microarray data, each sample is associated with a class label which can be either the clinical condition of the patient 
or the biological state of the tissue. 
Each sample is also characterized by a class label, representing the clinical situation of the patient or the biological condition of 
the tissue. The domain of class labels is characterized by C different values and label ls of sample sn takes a single value in this 
domain. 
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Microarray data analysis is a widely used technique to unravel the gene expression and the ultimate aim is to find the 
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According to this representation we define: 

 Core expression interval. Definition of the range of expression values for a given gene in a given class. Two different 
approaches are exploited in the core expression interval definition. 

 Gene mask. A new representation, named gene mask, captures the capability of a gene in distinguishing the sample 
classes (i.e., classification power) is introduced. Definition of the gene mask as representatives of gene classification 
power, where the classification power is the capability of a gene in discriminating the sample classes. The gene mask is 
generated by analyzing the gene core expression intervals. These definitions will be used in the following chapters to 
identify the genes which have a high discriminative power among classes in order to improve classification accuracy and 
to evaluate the similarity among groups of genes under different experimental conditions (i.e., sample classes). 

The format of a microarray dataset conforms to the normal data format of machine learning and data mining, where a gene can be 
regarded as a feature or attribute and a sample as an instance or a data point. However, the main characteristics of this data type 
are the high number of genes (usually tens of thousands) and the low number of samples (less than one hundred). This peculiarity 
causes specific challenges in analyzing microarray data (e.g., complex data interactions, high level of noisy, lack of biological 
absolute knowledge) which have to be addressed by data mining methods. In recent years an abundance of microarray datasets 
become public available due to the increase of publication in bioinformatics domain. A large collection of public microarray data 
is stored by the ArrayExpress archive (http://www.ebi.ac.uk/microarray-as/ae/). The datasets, stored in MIAME and MINSEQE 
format, are all preprocessed, but also the raw data (for a subset of the collection) can be downloaded. One of the best features of 
this archive is the possibility to browse the entire collection or perform queries on experiment properties, submitter, species, etc. 
In the case of queries, the system retrieves summaries of experiments and complete data. Other datasets can be also downloaded 
from the author or tool websites (e.g., LibSVM software, GEMS software). 
 
3. Methodology 
The aim of identifying the minimum number of genes that is relevant for a particular target disease and is useful for correct 
classification of the samples in the data set. The method works in three phases: 

• Class interval definition: The class expression interval for gene i and class k is expressed in the form: 

  
where mini,k and maxi,k are the minimum and the maximum gene expression values for class k. 

• Gene mask computation. For each gene we define a gene mask, which is an array of S bits, where S is the number of 
samples. It represents the capability of the gene to classify correctly each sample, i.e., its classification power. Consider 
an arbitrary gene i. Bit s of its mask is set to 1 if the corresponding expression value e is belongs to the core expression 
interval of a single class, otherwise it is set to 0. Formally, given two arbitrary classes c1, c2 ∈ C = {1, . . . , k}, bit s of 
gene mask i is computed as follows. 

  
A sample might not belong to any core expression interval (i.e., it is an outlier). In this case, the value of the corresponding bit is 
set to 0 according to 2. The gene mask shows which training samples the gene can unambiguously assign to the correct class. It is 
a string of 0s and 1s, generated by analyzing the overlaps among the class expression intervals (i.e., the range of expression values 
of samples belonging to the same class) for each gene. 

• Minimum gene subset selection. The minimum number of genes needed to provide the best training set sample coverage 
is selected by analyzing the gene masks and exploiting the overlap scores. For this purpose two different searching 
algorithms (i.e., improved greedy approach and set covering) are exploited. 

The minimum subset of genes for classifying the maximum set of samples in the training set (i.e., for providing the best sample 
coverage) and avoiding redundant information is defined by analyzing the gene masks. 
Let G be a set of genes. We define a global mask as the logic OR between all the gene masks belonging to genes in G. The 
objective is the definition of the minimum set of genes G that holds enough discriminating power to classify the maximum 
number of samples in the training set. Thus, given the gene mask of each gene, we search for the global mask with the maximum 
number of ones. To this aim, we propose two different techniques: an improved  greedy approach and a set covering approach. In 
our proposed improved greedy approach we have employed, K means clustering approach to cluster the data and greedy algorithm 
for classification. 
 
4. K means Clustering with Greedy approach 
The improved greedy approach takes the number of preferred outliers as input and selects points as outliers in a greedy approach. 
At first, the set of outliers (represented by OS) is specified to be empty and all points are represented as non-outlier. Subsequently, 

scans are necessary over the dataset to choose  points as outliers. In every scan, for each point labeled as non-outlier, it is 
temporally removed from the dataset as outlier and the entropy object is re-evaluated. A point that accomplishes maximal entropy 
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impact, i.e., the maximal reduction in entropy experienced by removing this point, is taken as outlier in current scan and 
accumulated in OS. The algorithm ends when the size of OS reaches the total number of genes. 
This approach identifies at each step the gene with the best complementary gene mask with respect to the current global mask. 
Thus, it adds at each step the information for classifying most currently uncovered samples. The pseudo-code of our improved 
Greedy approach is reported in Algorithm 1. It takes as input the set of gene masks (M), the set of scores (OS) and produces as 
output the minimum subset of genes (G). The scores associated to each gene can be computed by different feature selection 
techniques. The variance of expression values is exploited as score. The first step is initializing G at Ø (line 2), the candidate set 
(C) at Ø (line 3), and clustering of gene data (lines 5 to 9). Initially, all the global mask is set to zeros (line 10). Then the following 
steps are iteratively performed. 
 

Algorithm : Minimum gene subset – 
K means clustering with Greedy approach 

Input: set M of all the mask i, set OS of score os i for each gene i 
Output: set G of genes 
1: /*Initialization*/ 
2: G = Ø 
3: C = Ø /*candidate gene set at each iteration*/ 
4: /*Clustering*/ 
5: For k=1: length(D)                 /* D is the input */ 
6: If k==1 
7: O=1                             /* identified clusters*/ 
8: b 
9: k=0 
10: global mask = all_zeros() /*vector with only 0s*/ 
11: /*Control if the global mask contains only 1s*/ 
12: while not global_mask_all_ones() do 
13: /*Determine the candidate set of genes with most ones*/ 
14: C = max_ones_genes() 
15: if C != Ø then 
16: /*Select the candidate with the best score (e.g., the minimum)*/ 
17: c = C[1] 
18: for all j in C[2 :] do 
19: if OSj is better OSc then 
20: c = j 
21: end if 
22: end for 
23: /*Update sets and global mask*/ 
24: G = G + c 
25: global mask = global mask OR maskc 
26: M=M− maskc 
27: /*Update the masks belongs to M*/ 
28: for all maski in M do 
29: maski = maski AND global mask 
30: end for 
31: else 
32: break 
33: end if 
34: end while 
35: return G 

 
 The gene mask with the highest number of bits set to 1 is chosen (line 14). If more than one gene mask exists, the one 

associated to the gene with the best score is selected (lines 15-22). The best score depends on the range values produced 
by the technique exploited. For example, if the variance is used as score the gene with the highest variance is selected. 

 The selected gene is added to set G (line 24) and the global mask is updated by performing the logical OR between the 
gene mask and the global mask (line 25). 

 The gene masks of the remaining genes (gene mask set M, line 26) are updated by performing the logical AND with the 
negated global mask (lines 27-30). In this way, only the ones corresponding to the classification of still uncovered 
samples are considered. 

 If the global mask has no zeros (line 12) or the remaining genes have no ones (line 15), the procedure ends. 
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5. Set Covering Approach 
The set covering approach considers the set of gene masks as a matrix of N × S bits and performs the following three steps. 

 Sample reduction. Each sample (i.e., column) that contains all 0 or 1 over the N gene masks is removed, because it is 
uninformative for the searching procedure. 

 Gene reduction. Each gene (i.e., row) whose gene mask is a subsequence of another gene mask is removed from the 
matrix. If two or more genes are characterized by the same gene mask, only the gene with the best score is kept in the 
matrix. At the end of these two steps a reduced matrix is obtained. 

 Reduced matrix evaluation. The reduced matrix is evaluated by an optimization procedure that searches the minimum set 
of rows necessary to cover the binary matrix. Since it is a min-max problem, it can be converted to the following linear 
programming problem. 

 i=N 
Min  Σgi 
 i=1 
 
 i=N 
 Σmaskij.gi>=1, j=1,..,S 
 i=1 
 gi ∈ {0, 1} 
The branch and bound implementation provided by the Symphony library [116] has been exploited to find the optimum solution. 
At the end of this phase, the minimum set of genes required to provide the best sample coverage of the training set is defined. The 
genes in the minimum subset are ordered by decreasing number of 1s in the gene mask. 
 
6. Experimental Results 
We validated our method by comparison with other feature selection techniques on public gene expression datasets. Classification 
accuracy is used as the performance metric for evaluation, while biological relevance of the selected genes is also discussed. 

 Data Set: We evaluated the performance of our algorithm on four microarray datasets, publicly available [32]. Two of 
them are multi-class (Brain1 and Brain2), and the other two are binary (SRBCT and DLBCL). Table 1 summarizes their 
characteristics. 

 
Dataset Samples Features Classes 
Brain1 90 5920 5 
Brain2 60 10364 4 
SRBCT 83 2308 2 
DLBCL 77 5469 2 

Table 1: Dataset characteristics 
 
7. Experimental Setting 
We compared the performance of our method with the following supervised feature selection methods implemented in RankGene 
software: Information Gain (IG), Twoing Rule (TR), Sum Minority (SM), Max Minority (MM), Gini Index (GI), Sum of Variance 
(SV). For each of these methods we performed experiments with a number of selected features in the range from 1 to 12 to allow 
the comparison with the number of features selected by our method. We exploited the libSVM classifier [33] with a 4-fold cross 
validation. Samples were randomly partitioned in a stratified manner into four folds of equal size. Three folds become the training 
set and the fourth the test set. Classification is repeated for four times, each time with a different fold as test set. To avoid the 
selection bias, feature selection algorithms were applied only to the training set, and accuracy was computed by applying the 
classifier to the test set. We repeated the cross-validation 50 times, changing the seed for the split generation. 
 
8. Classification Accuracy 
As shown in Table 2, the gene reduction step significantly reduces the number of considered features. In the second column the 
average value of remaining features over 50 repetitions of the 4-fold cross validation is reported. The reduction rate (i.e. the 
number of discarded features over the total number of features) in the third column highlights that there are between 60% and 
90% genes with a gene mask which is a subsequence of another gene mask. This affects the number of genes selected by our 
algorithm. For example, Brain2 and DLBCL, which have the highest reduction rates, also have the minimum number of selected 
genes, as shown in the fourth column of the table. This average value is always slightly less than the average number of features 
selected by the greedy approach reported in the fifth column of the table. 
The average accuracy over 50 repetitions of the 4-fold cross validation is reported in Figures 4.1, 4.2, 4.3 and 4.4, where the 
performance of the mask covering algorithm and the six RankGene methods are compared. Also the accuracy of the greedy 
approach is reported. For the mask covering and the greedy algorithm a single point is shown on the graph, because these methods 
automatically select the best number of features for the dataset. Instead, for the other methods, the behavior varying the gene 
number may be analyzed, as they require the gene number as input parameter. 
For the DLBCL dataset (Figure 1) our method needs only 3 or 4 genes, depending on the number of samples in the split (the 
diagram reports the average gene number value over all repetitions), to reach an accuracy higher than 88%, while other methods 
do not reach such accuracy even when using 10 or more genes. Also the greedy approach performs slightly worse than our 
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method, even if the number of selected genes is higher. For the Brain2 dataset (Figure 2) our method reaches a high accuracy 
(about 63%) with less than 5 genes, while the other methods reach a lower accuracy also with a higher number of genes. 
For the SRBCT dataset (Figure 3) our method selects the best small subset of genes. However classification accuracy may be 
further improved by increasing the cardinality of the gene set. Finally, in the Brain1 dataset (Figure 4) our method is less effective 
in detecting a very small set of high quality features and shows a behavior closer to other feature selection techniques. These 
differences in the accuracy levels depend on the dataset characteristics. 
The genes selected by each method are mostly different from the ones selected by the other methods. The percentage of common 
genes is about 10-20%. It means that there are a lot of genes which classify same samples and each method select different genes 
to reach a similar accuracy. We performed the Student’s t-test to assess the statistical significance of the results. We compared our 
method with each of the RankGene methods by setting as gene cardinality the integer number nearest to the mean value of genes 
selected by our method. We obtained a p-value less than 0.01 in 3 over 4 datasets (Brain2, SRBCT, DLBCL). In the case of 
Brain1 the p-value value is less than 0.05 for some methods. 
 

Dataset 
 

Remaining 
features 

Reduction 
rate 

Mask 
Covering 

Improved 
Greedy 

Brain1 1874 68% 6.76 7.80 
Brain2 847 92% 4.62 5.05 
SRBCT 660 71% 5.28 5.75 
DLBCL 1245 77% 3.50 3.79 

Table 2: Reduction rate and average number of selected features 
 
9. Biological Discussion 
We investigated the biological meaning of our selected genes. For the DLBCL dataset, the genes selected by the mask covering 
algorithm include the Tcell chemoattractant SLC and the DNA replication licensing factor CDC47 homolog, which are known to 
be related to lymphoma. Furthermore, the genes selected by the greedy approach include the DNA replication licensing factor 
CDC47 homolog, the Cancellous bone osteoblast mRNA for GS3955 and the Chloride channel (putative) 2163bp, which are listed 
as relevant for lymphoma. 
 

     
Figure 1: Mean Classification accuracy of six RankGene methods, Mask Covering and Enhanced Greedy on DLBCL dataset 
Figure 2: Mean Classification accuracy of six RankGene methods, Mask Covering and Enhanced Greedy on Brain2 dataset 

 

   
Figure 3: Mean Classification accuracy of six RankGene methods, Mask Covering and Enhanced Greedy on SRBCT dataset 
Figure 4: Mean Classification accuracy of six RankGene methods, Mask Covering and Enhanced Greedy on Brain1 dataset 
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10. Conclusion 
The proposed work has clearly established a better performance than any of the existing methods. The method selects the 
minimum number of genes required to a high accuracy level by using a new representation of the genes called mask covering to 
differentiate among classes. The usage of set covering approach has identified a small number of genes that have biological 
significance also. Thus the initial step of microarray data analysis, the selection of minimum number of differentially expressed 
genes has become more productive. 
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