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1. Introduction 
The health sector is central to Ghana's developmental agenda, while improving health is intrinsically desirable, it is 

broadly recognized that health is a necessary pre-requisite for socio-economic development. Improving health will improve 
human capital, productivity and wealth (MOH, 2004). As a result, many health care financing options have been explored and 
experimented by governments since independence. Among these includes the Cash and Carry system which existed since 
1980’s and the current Health Insurance Scheme which was piloted in 2001 and  finally enacted into law in 2003(NHI Act 
2003; Act 650). 

According to Atim, Grey and Apoya (2001), NHI Schemes based on the European Social Health Insurance (SHI) model, 
have tended to be unsuccessful. Conventional, Social Health Insurance models depend largely on the ability of government to 
enforce compulsory membership through the deduction of payroll taxes. They are therefore most suited to the context in 
which there are high levels of well paid, well regulated formal employment (Cichon, Newbrander, Yamabana,& Preker, 2003). 
This stands in stark contrast to Africa where labour markets tend to be dominated by poorly paid and unregulated informal 
employment. The health financing reforms that are taking place in Africa aim largely to address the problems of affordability 
and access to health care. Most African countries have positive expectations forsocial/national health insurance and this view 
has been largely propagated by the World Bank and other multilateral and bilateral organizations. However, thereis some 
evidence that, large scale implementation of health insurance scheme is a complex task, and in some instances, perpetuates the 
very iniquities it is intended to correct (Nguyen  &Akal, 2003). There is equally anecdotal evidence to suggest that poorly 
designed schemes can have very negative consequences. 

As noted by Bennett, Creeseand Monasch (1998) and cited in Atim Grey and Apoya (2001) have expressed a similar 
view and are even less optimistic of Community Health Insurance. They argued that, their risks pools are often too small, 
adverse selection problems are frequent and the schemes are heavily dependent on subsidies, which are most often infrequent 
and unreliable. Jutting (2003) noted that, the scheme that experiences managerial and  financial difficulties most are those in 
the environment of rural and remote areas where unit transaction costs of contracts are often too high. 
         The financial viability of national health insurance scheme is also a matter of concern. For example, Mossialos, Dixon, 
Figueras, and Kutzin (2002) report that, France social insurance contributions reached an untenable 55% of wages costs and 
government had to propose a gradual shift to taxation, which is being implemented. It is worthy to note that there is no 
universal model for the design of national health insurance schemes and that explains why countries like Germany, France and 
the Netherlands that started social health insurance schemes almost a century ago are still evolving design paradigms that 
would ensure equity as well as financial viability of the schemes. 
 
1.1. Brief History 

National Health Insurance became a law in August 2003. The law puts in place a national health insurance system that 
aims at enabling residents of Ghana to obtain essential health care services without having to pay for services on demand. The 
passing of the insurance law was against the background that the government funded about eighty percent(80%) of the public 
health services bill through taxation and donor funding and the rest from user fees, which was unsustainable as levels of 
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poverty dwindled tax base. This was also compounded with diminished foreign aid which further reduces the capacity of 
vulnerable in the society to have access to health care services (GOG, 2003). 
 
1.2. Structure and Functions 

The directorate of administration which was responsible for projects, procurement and human resource 
requirements of the Authority has had carved out of it directorate for projects and procurement, headed by a well-qualified 
professional in the field and a human resource directorate headed by a Deputy Director. Another unit which has been 
strengthened to place it in good stead to perform its functions better is the Internal Audit Directorate. It is headed by a well-
qualified Chartered Accountant as Chief Internal Auditor of the Authority. The unit has generally been strengthened with 
qualified accounting professionals in the regions and the schemes across the country. The lessons learnt from snap audits 
under- taken across the country revealed horrendous fraudulent practices in the schemes leading to large financial bleeding of 
the schemes and great loss to the Ghanaian tax payer (2011 Audit Report). 

The newest of the creations to strengthen the Authority in its right against fraud is the Clinical Audit Unit (CAU) which 
is headed by a qualified medical doctor.Clinicians are being recruited to staff the unit in order to properly vet claims submitted 
by healthcare service providers. The National Health Insurance Scheme has come to be accepted as a welcome relief for 
Ghanaians in the area of health care financing. The challenge now is how to sustain the system and make it viable into the 
future. That is the challenge facing the new management of the authority and the current Government. 
 
1.3. Inflows 

The National Health Insurance Scheme has one of the most stable sources of funds. Inflows into the funds are of two main 
sources. 

 Contributions from members 
  Revenue generated from tax 

 
1.3.1. Contributions 

Contributions are recovered directly from pension fund, that is, two and one half per cent of each person’s contribution to 
the Social Security and Pensions Scheme Fund of some members levy every month by the finance officer and paid into the 
accounts of the scheme. These contributions are made with respect to each at a rate of two and one half per cent fixed by 
government and authorities of the scheme. All persons in the informal sector will have to make direct contributions into their 
District Health Insurance Fund to either register or renew their subscription. Other contribution includes; 

 Such monies as may be allocated to the Fund by Parliament. 
 Grants, donations, gifts and any other voluntary contribution made to the Fund and Money that may accrue to the 

Fund from investments made by the National Health Insurance Council. 
 
1.3.2. Tax Revenue 

The National Health Insurance Levy (NHIL) is a levy on goods and services supplied in or imported into Ghana. All 
goods and services are subject to the levy unless they are exempt. The Levy is charged at a rate of two and one half percent on 
the VAT-excusive selling price of the goods supplied or services rendered. The levy is collected by the Domestic Tax Revenue 
Division of the Ghana Revenue Authority through VAT-registered persons in the same way that VAT is collected. The Ghana 
Revenue Authority (GRA) will pay the collected levy directly into the National Health Insurance Fund within thirty days of 
collection. The levy is to partly finance the National Health Insurance Scheme (NHIS). More than sixty percent (60%) of the 
resources of the Fund are expected to be obtained from the National Health Insurance Levy. 
 
1.3.3. Communications Service Tax 

The Communications Service Tax (CST) is a tax levied on charges for the use of communications services that are 
provided by communications service operators. CST is imposed under Section 1 of the Communications Service Tax Act 2008, 
(Act 754). It is paid by consumers to the communications service providers, who in turn pay all CST collected to the Domestic 
Tax Revenue Division of the Ghana Revenue Authority on a monthly basis. The GRA is required under the law, to pay the CST 
collected into the Consolidated Fund. It is important to note that at least twenty one (20%) of the Revenue generated from the 
CST is used by government to finance the National Youth Employment Programme (NYEP) now GYEEDA in particular and 
support the national development agenda of the country in general. 
 
1.3.4. VAT and NHIL Account 

To simplify record keeping, VAT and NHIL are to be combined into one account. This account should be treated in 
exactly the same way as the previous VAT account which it replaces. 
 
1.3.5. Submission of Returns 

VAT registered persons are expected to submit a monthly VAT and NHIL return on the modified VAT return on the 
same basis as the previous VAT return was being submitted. 

http://www.theijst.com


 The International Journal Of Science & Technoledge  (ISSN 2321 – 919X) www.theijst.com 
 

49                                                            Vol 6  Issue 1                                            January, 2018 
 

 

1.3.6. Other Sources 
The other sources includes; interest on bank accounts, dividend from investment and donations made to the fund. 

 
1.4. Outflows 

Outflows from the scheme are in the form of payment to service providers, bank charges, and management expenses. 
Management expenses can be predictable and anticipated well in advance of the date payment must be made from the scheme, 
however, payment to service providers are less predictable, but these demands normally represent a large percentage of the 
fund outflow. 
 
1.5. Statement of the Problem 

Under Act 650, the Ghana Health Service (GHS) has been mandated to provide accessible, affordable and quality 
services to the clients of the National Health Insurance Scheme. Providers are therefore an essential part of the insurance 
program. The law provides for provider- purchaser split, where payers and providers of health service are dependent on each 
other. This calls for the payer to enter into contract with accredited providers to provide the agreed minimum benefit package. 

However, nearly thirty five percent of Ghanaians fall below the stipulated poverty line (WHO, 2000), while the 
national health insurance policy framework indicated that hundred percent collection premium cannot be realized from forty 
percent of the seventy percent of the population of the informal sector (MOH, 2004). Such situation affects sustainability and 
increases dependency burden on the scheme. To improve on the health service delivery is a collective responsibility of both 
the government and the governed. In the light of this, failure of the free medical system under Nkrumah's government was 
partly blamed on the low-participation by the end-user. In recognition of that fact and its consequences on the health service 
delivery system, the end-user was required to pay money at point of service delivery which came to be known as Cash and 
Carry system. This payment system compounded the utilization problem by creating a financial barrier to health care access 
especially for the poor. 

From the point of observation, the NHIS in Ghana is bedeviled with several challenges and this development has 
affected various health providers’ ability to increase client’s patronage as well as provide quality health service in the country. 
In order to contribute to understanding and solving these problems an empirical research is necessary to assess the optimal 
funds flow of the Scheme. 
 
1.6. Objectives of the Study 

The purpose of the study was to identifyan appropriate measure for the financial sustainability of the Health 
Insurance Scheme. 

Specifically, the study intends to examine: 
 The state of the National Health Insurance fund by considering a mathematical model for the fund flow. 
  The stability and sustainability of the funds flow. 

 
2. Literature Review 
 
2.1. Theoretical Framework of Time Series Model 

A time-series model uses past data as the basis for estimating future results. The models that fall into this category 
include decomposition, moving average, exponential smoothing, and Box-Jenkins. The premise of a causal model is that a 
particular outcome is directly influenced by some other predictable factor. These techniques include regression models. 
Judgmental techniques are often called subjective because they rely on intuition, opinions, and probability to derive the 
forecast. These techniques include expert opinion, Delphi, sales force composite, customer expectations (customer surveys), 
and simulation (Kress, 1985; Wilson and Keating, 1994) among others. 
 
2.2. Model Based Prognostics 

Autoregressive moving average (ARMA) models are used in time series analysis to describe time series data. Once the 
ARMA model is determined, it is used to estimate and predict future values of time series with the past values. 
ARMA model consists of two parts: an autoregressive (AR) part and a moving average (MA) part. The model is usually referred 
to as the ARMA (p, q) model, where p is the order of the autoregressive part and q is the order of the moving average part. The 
notation ARMA (p, q) refers to the model with p autoregressive terms and q moving average terms and is formulated as 
follows: 

푋 = 푐 + 	휀 + 휑 푋 + 휃 휀  

The summation expression with p number of terms with white noise (휀  ) comes from AR (p) model while the 
summation expression with q number terms and a constant (c) comes from MA (q) model. 
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Generally, ARMA models are commonly used when modeling the conditional mean of a (strictly) stationary time 
series. In conventional terminology (Brock-well and Davis (2006)), an ARMA process is called causal if, at each point in time, 
its components can be expressed as a weighted sum of present and past error terms.  

On the other hand, it is called invertible if these error terms can be represented as a weighted sum of the present and 
past components of theprocess. Stationarity and invertibility are typically expressed by requiring the autoregressive and 
moving average polynomials to have their roots outside the unit circle. If causality (invertibility) does not hold, the model is 
called noncausal or noninvertible (Rosenblatt 2000). Much of the literature on ARMA models considers only the conventional 
stationary and invertible case. A reason for this is that if the error terms are independent and identically distributed (IID) with 
a Gaussian distribution, the observed process forms a Gaussian sequence, and in this case a noncausal or noninvertible ARMA 
model will be statistically indistinguishable from a particular causal and invertible ARMA model (Rosenblatt 2000). Therefore 
in the Gaussian case, causality and invertibility are often imposed to ensure identification.  

However, in many applications, it seems more reasonable to allow the observed process to be potentially non-
Gaussian. Alternatively, after fitting a causal and invertible ARMA model to an observed time series one may find that the 
residuals appear non-Gaussian. In such cases, noncausal or noninvertible ARMA models may be more appropriate and can be 
distinguished from their conventional causal and invertible counterparts (Lanne& Saikkonen 2009), allowing for the 
possibility of non-causality or noninvertibility can in such cases also lead to better fit and increased forecast accuracy (Breidt  
2003). Noncausal or noninvertible ARMA models have found applications in various fields. Many of the early applications were 
in natural sciences or engineering, but recently there have also been applications to economic and financial time series (Huang 
and Pawitan 2000, Breidt, Davis&Trindade,2001). 

Maximum likelihood (ML) estimation in noncausal or noninvertible ARMA models has been studied in a number of 
papers. Brockwell and Davis (1996) discussed the case of noncausal AR models whiles Lii and Rosenblatt (1996) discussed 
noninvertible MA models, and Lii and Rosenblatt (1996) looked at noncausal or noninvertible ARMA models. However, 
Andrews, Davis and Breidt (2007) consider the “all-pass models”, which are noncausal or noninvertible ARMA models, in 
which all the roots of the autoregressive polynomial are reciprocals of the roots of the moving average polynomial and vice 
versa. Estimation of all-pass models based on the least absolute deviation criterion and rank-based methods are considered in 
Andrews, Davis and Breidt (2007). All of the above-mentioned literature on noncausal or noninvertible ARMA models 
considers the case in which the errors are IID. Unlike in the causal and invertible case, the observed process will nevertheless 
be conditionally heteroskedastic. 

Indeed, Breidt, Davis, and Trindade (2001) motivate all-pass models as alternatives to nonlinear models with time 
varying conditional variances, such as Autoregressive Conditionally Heteroskedastic (ARCH) models. However, they note that 
“while all-pass models can generate examples of linear time series with nonlinear behavior, their dependence structure is 
highly constrained, limiting their ability to compete with ARCH”. It is therefore of interest to consider noncausal or non- 
invertible ARMA models with errors that are not IID but themselves conditionally heteroskedastic, such models may be more 
appropriate in many applications, especially those in economics and finance. 

This paper is in an attempt in combining noncausal or noninvertible ARMA models and Savings/investment-type 
models. The work considered a particular noninvertible ARMA model with errors that are not IID, but dependent, following a 
standard MA model. As discussed above, such models may be particularly appealing in economic and financial 
applications.There are a number of methods (Box, Jenkins& Reinsel, 1994) for estimating the parameters of an ARMA model. 
Although these methods are equivalent asymptotically, in the sense that estimates tend to the same normal distribution, there 
are large differences in finite sample properties. In a comparative study of software packages, Huang & Pawitan (2000)and 
cited in Andrews, Davis and Breidt (2006)showed that this difference can be quite substantial and, as a consequence, may 
influence forecasts. They recommended the use of full maximum likelihood.  

Landsman (1989) presented evidence that the James-Stein ARIMA parameter estimator improves forecast accuracy 
relative to other methods. If a time series is known to follow a univariate ARIMA model, forecasts using disaggregated 
observations are at least as good as forecasts using aggregated observations. However, in practical applications, there are 
other factors to be considered, such as missing values in disaggregated series.  

The problem of incorporating external (prior) information in the univariate ARIMA forecasts has been considered 
(Rosenblatt, 2000; Lanne&Saikkonen, 2009). As an alternative to the univariate ARIMA methodology, Parzen (1982) proposed 
the ARARMA methodology. The key idea is that a time series is transformed from a long-memory AR filter to a short memory 
filter, thus avoiding the bharsher Q differencing operator. In addition, a different approach to theconventional T Box Jenkins 
identification step is used. In the M-competition Makridakis, Andersen, Carbone, Fildes, Hibon, Lewandowski, Newton, 
Parzen& Winkler, 1982), the ARARMA models achieved the lowest MAPE for longer forecast horizons. Hence, it is surprising to 
find that, apart from the paper by Meade and Smith (1991), the ARARMA methodology has not really taken off in applied work. 
Its ultimate value is better judged by assessing the study of Meade (2000) who compared the forecasting performance of an 
automated and non-automated ARARMA method. Automatic univariate ARIMA modelling has been shown to produce one-
step-ahead forecasts as accurate as those produced by competent modellers (Parzen, 1981). Several software vendors have 
implemented automated time series forecasting methods including multivariate methods (Brockwell&Davis, 1996). Often 
these methods act as black boxes. 
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The technology of expert systems (Mefilard & Pasteels, 2000) can be used to avoid this problem. Instead of adopting a 
single AR model for all forecast horizons, Kang (2003) empirically investigated the case of using a multi-step-ahead forecasting 
AR model selected separately for each horizon. The forecasting performance of the multi-step-ahead procedure appears to 
depend on, among other things, optimal order selection criteria, forecast periods, forecast horizons, and the time series to be 
forecast. 
 
3. Methodology 
 
3.1. Introduction 

In this chapter we look at autoregressive time series model. This was extended to vector autoregressive time series 
model of order one and income and expenditure model together with linear programming model. The vector autoregressive 
time series model of order one [VAR (1)] is given as 

푋 = 퐴푋 + 휀  
Where 푋  is a vector time series, A is a constant matrix and 휀  is an error term. The deterministic part of the equation 

leads us to a system of linear discrete time dynamical autonomous system and vector difference equations. Stability and 
solutions to discrete time dynamical autonomous system for the homogenous and non-homogenous cases was given much 
attention. 
 
3.2. Time Series Analysis 

Given that the time series values observed are the realizations of random variables 푦 , 	푦 , 	푦 , … 	푦  which are in turn 
part of a stochastic process푦 : 푡	 ∈ 푍. Although it is best to distinguish the observed time series from the underlying stochastic 
process, the distinction is usually blurred and the term time series is used to refer to both the observations and the underlying 
process that generates them. 
 
3.2.1. Mean and Auto covariance Function 

The mean function of time series is defined as 휇 = 퐸(푌 )and the autocovariance function is defined to be 
훾(푠, 푡) = 퐶표푣(푌 ,푌 ).The mean and autocovariance functions are fundamental parameters and it would be useful to obtained 
sample estimates for them. For general time series there are 2푇 + 푇(푇 − 1)/2parameters associated with 푦 , 	푦 , 	푦 , … 	푦 and 
it is not possible to estimate all these parametersfrom T data values. In this case we must impose constraints on the time 
series.The most common constraint is the stationarity. 
 
3.2.2. Stationarity 

A time series 푋  is strictly stationary if 푋 , 	푋 = 푋 , 푋 for all r and s.  In practice, we often relax the requirement 
of stationarity by considering only the weak stationarity. A time series 푋   is weakly stationary if 

 퐸(푋 ) = 	휇, a constant 
 퐶표푣(푋 ,푋 ) = 	 훾 , a function depending only on k. 

 
 
3.2.3. Autocorrelation Function 

For the given observed time series 푋 , 	푋 ,푋 , … 	푋   the sample autocorrelation function (ACF) was defined as; 

푟 =
∑ (푥 − 푥)(푥 − 푥)

∑ [(푥 − 푥)]
 

Where 푥 = 	
∑

is the sample mean of the series,푥 are the observations in the time series and 1 ≤ 푟 ≥ 1; where 푟 is 
the autocorrelation function of time lag j; 푟 = 0indicates a purely random time series showing that the observations in the 
series are completely independent of each other. 

The ACF is an important guide to the properties of a time series. It measures the correlation between observations at 
different distances apart. This behavior is a powerful tool to identify a preliminary model for the time series. Bartlett (1946) as 
cited in Gabriel (2002) indicates that if there is no correlation among observations that are more than q steps apart 
휌 = 0	푓표푟	푗 > 푞,	the variance of 푟 can be approximated. 
 
3.3. Autoregressive Models 

An autoregressive model of order p [AR(p)] states that 푦  is the linear function of the previous p values of the series 
plus an error term 

푦 = 휑 푦 + 휑 푦 + 휑 푦 + …+휑 푦 + 휀  
Where 휑 ,휑 , … ,휑  are weights that determined and 휀 are normally distributed with zero mean. Thus the model says 

that 푦  is normally distributed with a mean ∑ 휑 푦 and variance 휎  
 

http://www.theijst.com


 The International Journal Of Science & Technoledge  (ISSN 2321 – 919X) www.theijst.com 
 

52                                                            Vol 6  Issue 1                                            January, 2018 
 

 

3.3.1. Autoregressive Series of Order One; AR (1) 
The generating process of the simplest model is, AR (1) where 

푦 = 휑 푦 + 휀  
For fitting an AR (1) model, we have the observations푦 , 	푦 , … 	푦   that defines thelinear system of n-1 equations: 

 
푦 		= 휑 푦 	+ 	 휀 	 
푦 	= 휑 푦 	+ 	휀  
⋮						= 	⋯ 							 ⋮ 

푦 = 휑 푦 + 휀  
 

For a lagged series defined by 푥 		= 푦 for푖 = 2, … ,푛.The AR(1) model is then푦 = 휑 푥 + 휀 .  We say that the 
generating process of the AR(1) model is regressedon x. This is just the linear lagged series that will give us the best values for 
theparameter 휑 and an estimate 

휎 =
	( )∑

∀	푖 > 푞. 

If all the observations in the series are uncorrelated, then휌 = 0∀	푖 > 0. The above equation reduces to휎 ≈  
  Since 푦 and 휀  are uncorrelated, the variance of the series is: 

푉푎푟	(푦 ) = 휑 	푉푎푟(푦 + 휎  
If 푦 is stationary, then 
var(푦 ) = 푣푎푟(푦 ) = 	 휎 and so  휎 = 휑 휎 + 휎  
Implying that 

1 > 휑  
Using the alternative formulation of equation 3.2, that is, 

(1− 휑퐿)푦 = 휀  
It is possible to invert the autoregressive operator to obtained 

(1 −휑퐿) = ∑ 휑∞ 퐿 . 
Applying this to the series 휀 produces 

푦 = ∑ 휑∞ 휀 ……………………….3.3 
If  휑 < 1,the series converges in mean square because ∑휑 < ∞ .The limit series is stationary and satisfies equation 

3.2. 
 
3.3.2. Theorem 

If  휑 < 1, there is a stationary solution to 푦 = 휑 푦 + 휑 푦 + 휑 푦 + …+휑 푦 + 휀 . 
However, if 휑 > 1, the series does not converge and if 휑 = 1, there is no stationary solution. 
For the purpose of modeling and forecasting stationary time series, we restricted our attention to series for 

which	휑 < 1. 
 
3.4. Vector Autoregressive Process 

Unlike the univariate case, the vector autoregressive processes have a column vector with n variables that is lagged 
by, say p, previous values. A vector autoregressive process of order p [VAR (p)] for a system of H variables 
푥 = (푥 ,푥 ,푥 , …퐻 ) is 

푥 = 훼 + 훽 푥 + 휀  

In this system of H equations, 훼 = 훼 ,훼 , …훼 is an H dimensional vector, 

훽 =

훽 , 훽 , 훽 , … 		훽 ,
훽 , 훽 , 	훽 , …		훽 ,
⋮						⋮								⋮ 				⋯ 				 ⋮

훽 , 훽 , 훽 , … 		훽 ,

 

are H × H coefficient matrices and 휀 = (휀 , 휀 , … 휀 )same properties as the shock term in the scalar case. The 
parameters 훼,훽 ,훽 , …훽   were unknown and were estimated by the ordinary least squares method from the available data 
before the process in equation 3.1 was used for the analysis. The stationarity of the VAR were useful in deriving the asymptotic 
properties of the parameter estimators. 
 
3.4.1. Income and Expenditure Model Using Vector Autoregressive Process 

In many instances a single equation model cannot describe the relationship between the variable in a dynamic system. 
Instead, a system of equations may be required to describe the data generation process adequately. For instance, using 
monthly variables, the consumption expenditure 푋  was assumed to depend on income 푦   on the consumption expenditure of 
the previous period푥 . Thus, we specify the consumption function as 
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푋 = 훼 + 훽 푦 + 훽 푥 + 휏  
Since increased consumption will stimulate economic growth and thereby generate an increase in future income, an 

income equation could be expressed as 
푦 = 훼 + 휏 푥 + 휏 푦 + 휀  

Income is assumed to depend on lagged consumption and in addition on the income of the previous period. The inter 
temporal relationship between the consumption and income variables is dynamic and yield 

푋 = 훼 + 훽 ∝ + (훽 휏 + 훽 )푥 + 훽 휏 푦 + (휀 + 훽 휏 ) 
Setting 

푦 = 훼 + 훽 ∝ , 휃 = 훽 휏 + 훽  and 휃 = 훽 휏 the system was express more compactly as 
 

푋
푌 =

훾
훼 + 휃 휃

휏 휏
푥
푦 +

휀
휀 and is said to be Bivariate VAR (1). 

 
4. Results 
 
4.1. Data Collection 

Secondary data was used in respect with accounting variables from NHIA office covering a period of 2009 to 2017. 
The variables selected for the study of the NHIA system was classified into inflows and outflows as shown in table 6. 
 
4.2. Classification of Variables 

The National Health Insurance fund can be view as a system of inflows and outflows. The study identified six variables 
for both inflows and outflows. However, we chose the net inflows and outflows as state variables (see Appendix 1). 
 
4.3. Statistical Identification of the System 

We assume a model and fit the categorized data into the model. We also estimate the parameters in the model and the 
adequacy of the model was then checked using ordinary least squares method. 
 
4.3.1. Construction of Model 

We first identify the system by fitting both the inflow and outflow data into the homogenous model 
푋 = 퐴푋 + 	 휀  ……………………………………………….4.1 

The system matrix A was then analyze for stability issues. However, the model constructed for the NHIA system was 
of the form: 

푋 = 퐴푋 + 퐵푈 + 	 휀  …………………………………….4.2 
Where 푋  is state vector of the 푖   year and 푈  is control variable of NHIA system. A is the system matrix and B a 

control matrix. Since the NHIA system has both inflow and outflow as state variables. Since the NHIA system has both inflow 
and outflow as state variables, the state vector 푋  is given by  

푋 =
푥
푦  

Where 푥  is inflow at the 푖  year and 푦  is corresponding outflow at the 푖  year. We also considered type of 
investment as the control variables. Thus, investment in Money Market Funds (Treasury Bills), investment in Growth or Equity 
Funds (Shares) and investment in Fixed Income Funds. The control vector for the 푖  year is 

푈 =
푀
퐸
퐹

 

Where 푀  is investment in Money Market Funds, 퐸  is investment in Equity Funds and 퐹  is investment in fixed income 
funds. Next we fitted the data into the forced system in 4.2 and the equation becomes; 

푥
푦 =

훽 , 훽 ,
훽 , 훽 ,

푥
푦 +

휌 , 휌 , 휌 ,
휌 , 휌 , 휌 ,

푀
퐸
퐹

+
휀
휀  

And the parameters were estimated and the following results were obtained. 
 

Parameter Estimate 
훽 ,  0.8100 
훽 ,  0.7946 
훽 ,  0.8388 
훽 ,  0.8242 

Table 1: Parameters of the homogenous model 
Source: Authors Construct with Data from NHIA, (2017) 
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The matrix representation of the forced system is: 
 

푥
푦 = 0.8100 0.7946

0.8388 0.8242
푥
푦 ……………………………………4.1.1 

The error term being zero, which is a homogenous vector difference equation representing a deterministic dynamic 
model. 
 

Parameter Estimate 
훽 ,  0.6219 
훽 ,  0.9204 
훽 ,  0.4926 
훽 ,  -0.7280 
휌 ,  0.3246 
휌 ,  0.4988 
휌 ,  0.8746 
휌 ,  0.5932 
휌 ,  0.0053 
휌 ,  0.9382 

Table 2: Parameters of the Unforced System 
Source: Authors Construct with Data from NHIA, (2017) 

 
Similarly, the matrix representation of the unforced system is: 

푥
푦 = 0.6219 0.9204

0.4926 −0.7280
푥
푦 + 0.3246 0.4988 0.8746

0.5932 0.0053 0.9382
5.3782569 × 10
7.6074112 × 10
9.6680057 × 10

 

Where 
5.3782569 × 10
7.6074112 × 10
9.6680057 × 10

 is the mean of each of the investment used as the control vector. 

The system was written as: 
푥
푦 = 0.6219 0.9204

0.4926 −0.7280
푥
푦 + 1.3996 × 10

1.2301 × 10
……………………………………4.2.1 

 
4.4. Stability of the System 

We examined the stability of both the forced and the unforced systems by determining the eigen values of the system 
matrix. A particular stability behavior depends upon the existence of real and imaginary components of the Eigen values, along 
with the signs of the real components and the distinctness of their values. We examine each of the possible cases in the model. 
 
4.4.1. The Unforced System 

The Eigenvalues of the system matrix were of the form 푎 + 푏 (i.e. -0.5132 and 2.1474). With the real part being 
positive, the system is unstable and behaves as an unstable oscillator. (That is, since a > 0, the trajectories spiral away from the 
origin, and (0,0) is an Unstable Equilibrium). This can be visualized as a vector tracing a spiral away from the fixed point. The 
plot of response with time of this situation would look sinusoidal with ever increasing amplitude, as shown below. 

This situation is usually undesirable when attempting to control a process or unit. If there is a change in the process, 
arising from the process itself or from an external disturbance, the system itself will not go back to steady state. 

 

 
Figure 1: Phase portrait of the unforced system 

Source: Authors Construct with Data from NHIA, (2017) 
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4.4.2. The Forced System 
The eigenvalues of the force system matrix were of the form −푎 + 푏  with ƛ = 0.9003 and ƛ = −1.0064. Since the 

real part is negative, then the system is stable and behaves as a damped oscillator. This can be visualized as a vector tracing a 
spiral toward the fixed point. The plot of response with time of this situation looks sinusoidal with ever-decreasing amplitude, 
as shown below. 
 

 
Figure 2: Phase portrait of the force system 

Source: Authors Construct with Data from NHIA, (2017) 
 
4.5. Model Diagnostics 

A run sequence plot of the response variables indicates the presence of outliers and seasonal patterns as shown 
below. 

 

 
Figure 2 & Figure 3: Run sequence plot of inflows and outflows 

Source: Authors Construct with Data from NHIA (2017) 
 

Figure 1 shows a time series plot of the original data. It is clear from thisfigure that there is an increasing trend in this 
time series, so we conclude that the original time series is not trend-stationary. That is, there does not seem to be a significant 
trend or any obvious seasonal pattern in the data. So a run sequence plot of differenced data was examined. That is, we 
consider difference-stationarity. An Augmented Dickey-Fuller (ADF) test was applied to test for the presence of a unit root in 
the time series. 

The ADF test on the original data provided evidence of the presence of a unit root (p-value0.5203; where the null 
hypothesis assumes that the data is non-stationary i.e. there is a unit root present in the data). We difference the data to 
counteract the effect of this unit root. Again we apply the ADF test to formally test for the presence of a unit root. We also test 
for consistency in the joint distribution of samples of the first-differenced time series. The ADF test (p-value: 0.0835) failed to 
reject the null hypothesis of stationarity at the 5% level (though it is a borderline rejection). These tests, alongside the 
graphical evidence seen in the time series plot of the first-difference of the time series provide sufficient evidence that the 
first-difference of the time series is non-stationary (See Appendix). Therefore the data is differenced for a second time. 
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Figure 4: Stationary time series 

Source: Authors Construct with Data from NHIA, (2017) 
 

The run sequence plot of the differenced data shows that the mean of the differenced data is around zero, with the 
differenced data less auto correlated than the original data. The next step was to examined the sample autocorrelations of the 
differenced data. 

A Plots of Autocorrelation Function of Residuals of both Inflows and OutflowsA plot of autocorrelation of the two set 
of series (inflows and outflows) were examined for stationarity and the order of the series respectively. The autocorrelation 
plot together with run sequence of the differenced data suggests that the differenced data are stationary. Based on the 
autocorrelation plot, an MA (1) model was suggested for the differenced data. 

 

 
Figure 5: Autocorrelation plot of the difference data 

Source: Authors Construct with Data from NHIA(2017) 
 
4.5.1. Partial Autocorrelation Plots of Residuals of both Inflows and Outflows 

To examine other possible models, we produce the partial autocorrelation plot of the differenced data. The time 
series, ACF and PACF plots of the second-differenced time series indicates that the second-differenced time series is stationary 
(constant mean and approximately constant variance). The ADF test also confirm this (p-values = 0.01). This situation is what 
is generally desired when attempting to control a process or unit. This system is stable since steady state will be reached even 
after a disturbance to the system. The oscillation will quickly bring the system back to the set point, but will over shoot, so if 
overshooting is a large concern, increased damping would be needed. 
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Figure 6: Partial Autocorrelation plot of the difference data 

Source: Authors Construct with Data from NHIA, (2017) 
 
4.6. Model Identification 

Having determined the stationarity characteristics of the original data (i.e. the original data is an I (2) time series), we 
than apply graphical techniques to determine the initial ARIMA model for the original time series. 

The ACF and PACF plots (Figure 3 and 4) of the stationary data (the second- differenced data) were used here. There 
is evidence of decay on the PACF plot. The ACF plot show two non-zero values. (The first value represents 휌  and is identically 
equal to one. It is therefore ignored within the analysis.) These plots indicate that an MA (1) model would be appropriate for 
the second-differenced data. This is equivalent to fitting an ARIMA(0, 2, 1) to the original time series. An ARIMA(0, 2, 1) model 
may be written as follows: 

푌 = 휖 − 휃 휖  
Where 푌  represents the quarterly inflows time series. Following this, an ARIMA(0,2,1) model was fitted to the original 

time series. The estimate of the coefficient was reported in Table 3 alongside the standard error and AIC of the estimate. 
 

ARIMA(0,2,1) Estimate SE AIC 
휃  39.83 0.3214 203.11 

Table 3: ARIMA (0,2,1) model - Estimated Model 
Source: Authors Construct with Data from NHIA,(2017) 

 
However, residual diagnostic tests and the over fitting process were used to determine the goodness-of-fit of the 

ARIMA (0, 2, 1) model to the original time series. 
 
4.6.1. Residual Diagnostics 

We first consider the residuals of the model. Figure 7 shows three diagnostic plots that are useful here. Firstly, the 
time series plot of the model residuals allow us to look for trends and heteroscedasticity in the residuals. It is clear from the 
time series plot shown in Figure 7 that the series of residuals are a stationary series (with constant mean and variance). The 
ACF of the residuals is also used as a diagnostic tool. We see that the ACF values are all within the 95% zero-bound, indicating 
that there is no correlation amongst the residuals. This plot is used as an indicator of the independence of the residual terms. 

 

 
Figure 7: Residual Diagnostic plots - Time Series plot, ACF plot, and Histogram of the ARIMA (0,2,1) residuals 

Source: Authors Construct with Data from NHIA (2017) 
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The histogram plot tests the normality. Since it shows a bell-shaped distribution, this is good indicator of Normality 
within the residuals. These three plots (and associated tests) confirm that the residuals of the ARIMA (0, 2, 1) model are 
distributed as white noise indicating that the model fits the data well. 
 
4.7. Over Fitting 

The over fitting process is a technique used to test for other possible significant terms (that may have been missed at 
the model identification stage of the analysis). We begin by over fitting an MA term on the model (i.e. we fit an ARIMA(0, 2, 2) 
to the original time series). This additional MA term is not significantly different from zero (Table 3). We therefore revert to 
our original model and over fit an AR term (i.e. we fit an ARIMA(1, 2, 1) to the original time series). Again, the additional term 
is not significant. 

 
ARIMA(2,2,1) Estimate SE Residual Variance AIC 

AR 1 0.1098 0.2067 39.65 206.49 
AR 2 0.0726 0.2017 
MA 1 0.9780 0.3592 

ARIMA(2,2,0)     
AR 1 0.7382 0.1722 54.61 211.7 
AR 2 0.2623 0.1692 

ARIMA (1,2,2)     
AR 1 0.1360 0.1925 40.51 204.62 
MA 1 0.9433 0.1530 

ARIMA(1,2,2)     
AR 1 0.4752 0.6439 40.18 206.49 
MA 1 0.6070 0.6786 
MA 2 0.3307 0.6650 

Table 4: Over fitting ARIMA(p,q,d) model –Estimated Model 
Source: Authors Construct with Data from NHIA, (2017) 

 
4.8. Final Model 

We therefore conclude that the ARIMA (0, 2, 1) model is the best-fit ARIMA model for the original time series being 
analysed here. The final model is of the following form: 

푌 = 휖 − 39.83휖  
Where the estimated MA coefficient 휃 has a standard error of 0.3214. 

 
4.8.1. Forecasting 

Forecasts of future income(inflow) for NHIA are of particular interest to the researcher. We used the final form of the 
best-fit ARIMA model for the time series to estimate future income values. The forecasted income for the next three quarters is 
displayed in Table 5 (alongside the standard errors of the estimates). 
 

Month Estimate Standard Error 
1 11.32258 6.411748 
2 11.64516 9.208172 
3 11.96774 11.447259 
4 12.29032 13.411133 
5 12.61290 15.206795 
6 2.93548 16.887988 
7 13.25806 18.485970 
8 13.58065 20.020676 
9 13.90323 21.505656 

10 14.22581 22.950564 
11 14.54839 24.362532 
12 14.87097 25.746979 

Table 5: Forecasted values using ARIMA(0, 2, 1) model 
Source: Authors Construct with Data from NHIA (2017) 

 
It is clear from these forecasts that the monthly inflow of NHIA is expected to follow the positive trend visible in the 

time series plot of the original data (Figure 1).  
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5. Conclusion 
The study found that the monthly inflows were non-stationary. In particular the original data is I (2). Overall it was 

determined that the ARIMA (0, 2, 1) was the most appropriate ARIMA model for the data. Future inflows values for the next 
twelve (12) months were estimated using this model. We found that the forecasted values followed the upward trend present 
in the data. This may be used as an indicator of the short- term future of the NHIA(where the estimated standard errors of the 
forecasts are taken into account). 

However, the sustainability of the fund depends on the excess cash flow and the expenditure pattern of the NHIA 
system. The excess cash flow for the system which is the inflow minus outflow of the state vectors is (GHs2, 
722,660.35).Comparing with the expenditure pattern over the period which lies around GHs297, 221,142.67 suggest a non-
sustainability of the scheme. 

Considering the fact that the outflow has two facets (expenditure and investment made), it suffix to reason that much 
attention should be given to the type of investment the system consider in order to have sufficient returns to boost up the 
inflow of the system. For now, little can be done about client contributions considering the economic situation of the country. 
Hence much attention should be placed on the type of investment options available to the scheme. 
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