# THE INTERNATIONAL JOURNAL OF SCIENCE & TECHNOLEDGE

## Mathematical Modelling of the Remediation of Total Petroleum Hydrocarbon in Soil Samples Case Study: Shell Spill Site

### Ipeghan Jonathan Otaraku

Senior Lecturer, Department of Chemical Engineering, University of Port Harcourt, Nigeria Anaele John Vitus

Lecturer, Department of Chemical Engineering, University of Port Harcourt, Nigeria

#### Abstract:

An oil spill is the release of a liquidpetroleumhydrocarbon into the environment, especially marine areas, due to human activity, and is a form of pollution. Environmental pollution is a common hazard in the Niger Delta Region. It is largely due to crude oil exploration and exploitation in the area. This work covered model of variation of total petroleum hydrocarbon (TPH) parameters with no deep consideration and performance of the experimental analysis of the parameters. Data from analyses done on different soil samples gotten from Shell Petroleum spill site were used in the modelling so as to validate mathematically, the field data. It also improved some statistical analysis of soil parameters by overcoming statistical limitations in the correlation of parameters. The study also confirmed and evaluated the possibility that a smaller group of soil sample parameter provide sufficient information for soil remediation assessment. The models for the amount of total petroleum hydrocarbon in the four samples were-0.005x^2+ 1.747x+2.581, 7.964e 0.064x, 7.266e0.068x and 10.56e 0.069x, respectively, where x is the retention time of TPH in the soil samples.

Keywords: Oil spill, modeling, remediation

#### 1. Introduction

The Major source of energy for industry and daily life are products from Petroleum-based., during the exploration, production, refining, transport, and storage of petroleum and petroleum products accidental spills and leakages occur regularly. Poor miscibility of crude oil accounts for accumulation of free oil on the surface of ground water and this may migrate laterally over a wide distance to pollute other zones very far away from the point of pollution. Industrial and municipal discharges as well as urban run-offs, atmospheric deposition and natural seeps also account for petroleum hydrocarbon pollution of the environment. The contamination of soil by these crude oil and petroleum products has become a serious problem that represents a global concern for the potential consequences on ecosystem and human health (Onwurah et al., 2007).

Crude oil spills have caused great negative impact on food productivity and affect plants by creating conditions which make essential nutrients like nitrogen and oxygen needed for plant growth unavailable to them (Adam and others, 2002). Toxic components in oil may exert their effects on man through inhibition of protein synthesis, nerve synapse function, and disruption in membrane transport system and damage to plasma membrane (Prescott, et al., 1996). Crude oil hydrocarbons can affect genetic integrity of many organisms, resulting in carcinogenesis, mutagenesis and impairment of reproductive capacity (Short and Heintz, 1997). The risk of drinking water contaminated by crude oil can be extrapolated from its effect on rats that developed haemorrhagic tendencies after exposure to water soluble components of crude oil (Onwurah, 2002). Volatile components of crude oil after a spill have been implicated in the aggravation of asthma, bronchitis and accelerating aging of the lungs (Kaladumo, 1996). Other possible health effects of oil spill can be extrapolated from rats exposed to contaminated sites and these include increased liver, kidney and spleen weights as well as lipid per-oxidation and protein oxidation (Anozie and Onwurah, 2001).

Among petroleum products, diesel oil is a complex mixture of alkanes and aromatic compounds that are frequently reported as soil contaminants leaking from storage tanks and pipelines or released in accidental spills (Gallego et al., 2001). The scale of hazards imposed on the natural environment depends on the surface of the area contaminated by the petroleum products, their chemical composition, and the depth at which pollutants occur (Wolicka et al., 2009).

The technology commonly used for soil remediation includes mechanical, burying, evaporation, dispersion, and washing. However, these technologies are expensive and can lead to incomplete decomposition of contaminants (Das and Chandra, 2011). For this reason an increasing attention has been directed toward the research of new strategies and environmentalfriendly technologies to be applied for the remediation of soil contaminated by petroleum hydrocarbons. Therefore, apart from the environmental problem caused by oil pollution, the agronomic and economic aspects are significant (Jobson et al., 1974; Kuhn et al., 1998). Cleanup or remediation and recovery from an oil spill is difficult and depends upon many factors, including the type of oil spilled, the temperature of the water (affecting evaporation and biodegradation), and the types of shorelines and beaches involved. Methods for cleaning up include bioremediation (use of microorganismsor biological agents to break down or remove oil), phytoremediation (the use of living green plants for the removal of contaminants and metals from soil), gas chromatography, infrared spectroscopy, controlled burning, dredging and the use of dispersants.

Total petroleum hydrocarbon (TPH) contamination is recognized as a serious threat to environmental ecosystems. TPHs are a complex mixture of chemical substances such as alkanes, aromatics and asphaltene fractions and are very toxic to living organisms. Phytoremediation has been proposed as a cost effective, non-intrusive, and environmental friendly technology for the restoration of soils contaminated with TPH.In order for remediation of TPH in soil samples to be carried out, accurate knowledge of the physico-chemical parameters of the soil must be known. These include soil pH, soil moisture levels, soil texture, electrical conductivity, salinity, soil bulk density and soil bulk density.

Bioremediation Kinetics Kinetic analysis is a key factor for understanding biodegradation process, bioremediation speed measurement and development of efficient clean up for a crude oil contaminated environment. The information on the kinetics of soil bioremediation is of great importance because it characterizes the concentration of the contaminant remaining at any time and permit prediction of the level likely to be present at some future time. Biodegradability of crude oil is usually explained by first order kinetics (Pala et al., 2006; Agarry et al., 2010b; Zahed et al., 2011) and this is given as in Eq. (1):

biodegradation rate constant (day<sup>-1</sup>) and t is time (day). Plotting the logarithm of TPH concentration versus time presents appropriate information about the biodegradation rate.

Biodegradation half-lives are needed for many applications such as chemical screening (Aroson et al., 2006), environmental fate modelling (Sinkkonen and Paasivirta, 2000) and describing the transformation of pollutants (Dimitrov et al., 2007; Matthies and Klasmeier, 2008). Biodegradation half-life times  $(t_{1/2})$  are calculated by Eq. (2) (Yeung et al., 1997; Zahed et al., 2011; Agarry et al., 2013):

rate of hydrocarbons positively correlated with the hydrocarbon pool size in soil (Yeung et al., 1997).

### 2. Methodology

#### 2.1. Model Conceptualization

The model conceptualizes the stretch of Total petroleum hydrocarbon determination data studied in four (4) stations; 28" Nkporu-Bomu TNP at Elelenwo community, 36" Rumuekpe-Nkporu D/L at Mgodo, Aluu Community, 36" Nkpoku-Bomu F/L at Atali Community and 6" Obigbo North-Komkom D/L at Komkom Community.

The parameters: retention time of each hydrocarbon component in each sample (Rettime) and the Amount of each component in each sample (Amount) from the four stations for the modelling is tabulated below.

Sample 1: 28" Nkporu-Bomu TNP at Elelenwo community.

Sample 2: 36" Rumuekpe-Nkporu D/L at Mgodo, Aluu Community.

Sample 3: 36" Nkpoku-Bomu F/L at Atali Community

Sample 4: 6" Obigbo North-Komkom D/L at Komkom Community.

| Name<br>Group | Rettime<br>(Minutes) | Sample 1<br>Amount(Ppm) | Rettime<br>(Minutes) | Sample 2<br>Amount(Ppm) |
|---------------|----------------------|-------------------------|----------------------|-------------------------|
| C8            | 3.133                | -                       | 3.133                | -                       |
| C9            | 4.614                | 289.98689               | 4.567                | -                       |
| C10           | 6.701                | 103.38001               | 6.725                | 754.09696               |
| C11           | 8.284                | 33.50863                | 8.349                | 833.50255               |
| C12           | 9.767                | 49.66969                | 9.689                | 353.92340               |
| C13           | 11.181               | 145.97399               | 11.144               | 1749.45425              |
| C14           | 12.471               | 249.89316               | 12.511               | 2121.24674              |
| C15           | 13.744               | 28.12555                | 13.789               | 673.27476               |
| C16           | 15.533               | 539.76027               | 15.518               | 288.87757               |
| Pristane      | 18.303               | 631.58647               | 18.151               | 560.37833               |
| C17           | 18.464               | 631.58647               | 18.504               | 517.62852               |
| Phytane       | 21.012               | 967.11536               | 21.026               | 950.63349               |

| Name  | Rettime   | Sample 1    | Rettime   | Sample 2    |
|-------|-----------|-------------|-----------|-------------|
| Group | (Minutes) | Amount(Ppm) | (Minutes) | Amount(Ppm) |
| C18   | 21.649    | 3116.63331  | 21.738    | 4356.74682  |
| C19   | 23.535    | 1064.23253  | 23.575    | 958.73220   |
| C20   | 25.827    | 1477.94817  | 25.838    | 916.66781   |
| C21   | 27.304    | 886.27984   | 27.934    | 625.49942   |
| C22   | 29.581    | 978.02756   | 29.631    | 534.21846   |
| C23   | 31.478    | 606.16183   | 31.465    | 420.08992   |
| C24   | 33.046    | 493.72997   | 33.059    | 498.56029   |
| C25   | 34.599    | 1025.97633  | 34.576    | 744.82557   |
| C26   | 36.473    | 1717.81572  | 36.141    | 441.73631   |
| C27   | 37.582    | 856.67228   | 37.583    | 611.92853   |
| C28   | 39.055    | 391.16185   | 39.036    | 321.67251   |
| C29   | 40.472    | 1610.94366  | 40.470    | 473.00190   |
| C30   | 41.740    | 82.46457    | 41.709    | 58.47198    |
| C31   | 43.006    | 48.24004    | 43.011    | 47.93117    |
| C32   | 44.185    | 56.82787    | 44.167    | 57.13137    |
| C33   | 45.361    | 57.46829    | 45.361    | 57.76138    |
| C34   | 46.546    | 57.91219    | 46.512    | 56.93223    |
| C35   | 47.338    | 56.07453    | 47.862    | 54.30729    |
| C36   | 49.500    | 58.23796    | 49.343    | 59.54750    |
| C36   | 51.322    | 72.72885    | 51.313    | 70.87669    |
| C38   | 52.322    | 92.31713    | 52.981    | 88.37785    |
| C39   | 54.834    | 71.60886    | 54.871    | 62.75592    |
| C40   | 57.053    | 124.74565   | 56.960    | 123.97062   |

Tables 1: Parameters of the Total Petroleum Hydrocarbon Samples Modelled

| Name     | Rettime   | Sample 3    | Rettime   | Sample 4    |
|----------|-----------|-------------|-----------|-------------|
| Group    | (Minutes) | Amount(Ppm) | (Minutes) | Amount(Ppm) |
| C8       | 3.133     | -           | 7.471     | 2.19424e-2  |
| C9       | 4.567     | -           | 10.060    | 1.77596e-3  |
| C10      | 6.740     | 743.36064   | 12.610    | -           |
| C11      | 8.353     | 801.95294   | 13.241    | -           |
| C12      | 9.693     | 322.89550   | 14.969    | -           |
| C13      | 11.143    | 1667.47583  | 15.228    | -           |
| C14      | 12.509    | 2015.19639  | 17.403    | -           |
| C15      | 13.782    | 661.90927   | 17.774    | -           |
| C16      | 15.698    | 1156.41393  | 20.186    | -           |
| Pristane | 18.141    | 694.34124   | 28.605    | 2.53288e-9  |
| C17      | 18.494    | 543.06134   | 28.730    | -           |
| Phytane  | 21.036    | 941.04979   | 30.455    | -           |
| C18      | 21.737    | 4268.91426  | 30.634    | -           |
| C19      | 23.578    | 900.36777   | 32.220    | -           |
| C20      | 25.838    | 1474.50399  | 33.903    | -           |
| C21      | 27.923    | 510.67943   | 35.519    | -           |
| C22      | 29.638    | 527.03252   | 37.067    | -           |
| C23      | 31.480    | 922.73104   | 38.554    | -           |
| C24      | 33.053    | 386.75914   | 39.983    | -           |
| C25      | 43.725    | 285.33151   | 41.358    | -           |
| C26      | 36.235    | 380.11716   | 42.682    | -           |
| C27      | 37.591    | 301.02766   | 43.962    | -           |
| C28      | 39.104    | 37.79009    | 45.203    | -           |
| C29      | 40.463    | 60.08606    | 45.647    | -           |
| C30      | 41.726    | 69.71040    | 46.396    | -           |
| C31      | 42.986    | 47.47585    | 47.560    | -           |
| C32      | 44.202    | 49.32558    |           |             |

| Name<br>Group | Rettime<br>(Minutes) | Sample 3<br>Amount(Ppm) | Rettime<br>(Minutes) | Sample 4<br>Amount(Ppm) |
|---------------|----------------------|-------------------------|----------------------|-------------------------|
| C33           | 45.380               | 55.43551                |                      |                         |
| C34           | 46.522               | 54.06229                |                      |                         |
| C35           | 47.871               | 55.17828                |                      |                         |
| C36           | 49.401               | 63.27888                |                      |                         |
| C36           | 51.293               | 72.19585                |                      |                         |
| C38           | 52.984               | 94.03612                |                      |                         |
| C39           | 54.838               | 73.21136                |                      |                         |
| C40           | 57.003               | 122.46252               |                      |                         |

Tables 2: Parameters of the Total Petroleum Hydrocarbon Samples Modelled

Statistical analysis of Total Petroleum hydrocarbon (TPC) data maybe very broadly classified into two groups:

- Descriptive statistics
- Inferential statistics

These classifications suggest that initially the task is to provide an accurate and reliable statistical description of the data set. Following that, it may be possible to give some account of how well the data set and/or its interactions conforms to some theories as to its origin, and so possibly identify potential means of modification. Therefore the data obtained was analyzed using method of least square which would fit two of the parameters by linear, quadratic, exponential, and logarithmic regression models so as to determine the best fit for the pair of the data set.

The simplest type of approximating curve is a straight line which can be represented by the equation.

Finding the estimates of a<sub>0</sub> and a<sub>1</sub> such that the line forms a good fit to the data, method of least square was applied.

The "goodness of fit" of the given data set is provided by the sum of the deviations. That is,

 $p_1^2 + p_2^2 + \dots + p_n^2$ , which must be minimum. Thus:

Mathematically, equation (4) is described as

 $sum = s = \sum_{i=1}^{n} (p_1^2)$ 

 $\sum_{i=1}^{n} [y_i - (a_0 + a_1 x_i)]^2....(5)$ 

Minimizing equation (5) to obtain  $a_0$  and  $a_1$  by taking the partial derivatives of S with respect to  $a_0$  and  $a_1$ , and setting them equal to zero respectively,

 $\frac{ds}{da_{0}} = \sum 2(y_{i} a_{0} + a_{1}x_{1})(-x_{i}) = 0....(6)$   $\frac{ds}{da_{1}} = \sum 2(y_{i} - a_{0} - a_{i}x_{i})(-x_{i}) = 0....(7)$ Rearranging equation (6) and (7) gives:  $na_{0} + a_{i}\sum x_{i} = \sum y_{i}....(8)$   $a_{0}\sum x_{i} + a_{1}\sum x_{i}^{2} = \sum x_{i} y_{i}....(9)$ 

Solving the above equations simultaneously by matrix techniques,  $\begin{bmatrix} n & \sum x_i \\ \sum x_i & \sum x_i^2 \end{bmatrix} \begin{pmatrix} a_o \\ a_1 \end{pmatrix} = \begin{pmatrix} \sum y_i \\ \sum x_i y_i \end{pmatrix}$ ....(10)

Applying Gaussian Elimination to equation (10), divide row 1 by n  $\begin{pmatrix} 1 & \frac{\sum x_i}{n} \\ \sum x_i & \sum x_{i2} \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \end{pmatrix} = \begin{pmatrix} \Sigma \frac{y_i}{n} \\ x_i y_i \end{pmatrix}$ 

Multiply row 1 by  $-\sum x$ , and add same to row 2,

 $\begin{bmatrix} 1 & \frac{\sum x_{i}}{n} \\ 0 & \sum x_{i} - \frac{(\sum x_{i})^{2}}{n} \end{bmatrix} \begin{pmatrix} a_{o} \\ a_{1} \end{pmatrix} = \begin{pmatrix} \frac{\sum x_{i}}{n} \\ \sum x_{i}y_{i} - \frac{\sum x_{i}\sum y_{i}}{n} \end{pmatrix} \dots \dots (11)$ Performing backward substitution on equation (11):  $\begin{bmatrix} \sum x_{i}^{2} - \frac{(\sum x_{i}^{2})}{n} \end{bmatrix} a_{i} = \sum x_{i} y_{i} - \sum x_{i} \sum y_{i}.$   $a_{1} = \frac{\sum x_{i}y_{i} - \sum x_{i}y_{i}}{\sum x_{i}^{2} - (\sum x_{i})^{2}}.$   $a_{1} = \frac{n \sum x_{i} \sum y_{i} - \sum x_{i} \sum y_{i}}{n \sum x_{i}^{2} - (\sum x_{i})^{2}}.$ (12)
From equation (8), making  $a_{o}$  the subject of the formular result to:  $a_{o} = \frac{\sum y_{i} - a_{i} \sum x_{i}}{n}.$ (13)
Equations (12) and (13) are used to find the constants parameters in linear regression of two set of the variables.
Now consider a polynomial of the form:

 $y = a_0 + a_1 x + a_2 x^2$  .....(14)

Given n set of measurements;  $(y_1, x_1)$ ,  $(y_2, x_2)$ ,  $(y_3, x_3)$  ...... $(y_n, x_n)$ , The least square estimates of  $a_0$ ,  $a_1$ , and  $a_2$  are obtained in a similar way to that previously presented for linear regression. The sum of squared deviations of the observed values of y from the predicted values is given by:  $S = \sum (y = a_0 - a_1 x - a_2 x^2)^2$ ......(15) Minimizing equation by setting its partial derivatives with respect to  $a_1, a_2$ , and  $a_3$  and equate to zero to obtain the following three simultaneous equations,

 $\sum_{x} y = n_{0} + a_{1} \sum_{x} x + a_{2} \sum_{x} x^{2}.$   $\sum_{x} xy = a_{0} \sum_{x} x + a_{1} \sum_{x} x^{2} + a_{2} \sum_{x} x^{3}.$   $\sum_{x} x^{2}y = a_{0} \sum_{x} x^{2} + a_{1} \sum_{x} x^{3} + a_{2} \sum_{x} x^{3}.$ (16) Solving equation (16) above for  $a_{0}, a_{1}$  and  $a_{2}$  gives a quadratic regression model of two set of variables. For goodness of fit,  $r^{2} = \frac{\sum(y_{east} - \tilde{y})^{2}}{\sum(y - \tilde{y})^{2}}.$ where  $y_{est}$  = estimated value of y from a regression equation.  $y = \frac{observed}{actual} value of independent variables.$   $\breve{y} = \text{mean of independent variables.}$ Taking:  $y_{east} = a_{0} + a_{1}x.$   $\breve{y} = \frac{\sum_{n} a_{n}d, n}{n = \text{number of observations,}}$ Then for a linear model,  $r^{2} = \frac{\sum(a_{0} + a_{1}x - \frac{(\sum y)^{2}}{n})}{\sum(y - \frac{(\sum y)^{2}}{n}}.$ (17)

Multiplying both the numerator and the denominator by y and summing the individual terms which takes care of the squared bracket, results as:

$$r^{2} = \frac{a_{0} \sum y + a_{1} \sum xy - \frac{(\sum y)^{2}}{n}}{\sum y^{2} - \frac{(\sum y)^{2}}{n}}.$$
 (18)

similarly, for a quadratic regression model,

Equation (17) and (18) are used to determine the coefficients of regression of two set of parameter variables. Owing to computational and approximation errors, Microsoft excel was applied to obtain the graph of the four set of the parameters by plotting Amount against Retention time using Linear, quadratic, logarithmic and exponential curves with the corresponding regression models and coefficient of correlation determined.

#### 3. Results and Discussion

The results for each sample analysis on the total petroleum hydrocarbon data are presented in Table 1 and Table 2 respectively. The measured data characteristics of the different hydrocarbon samples indicated that:

- The Retention time which is the time it takes for each component of the Total petroleum hydrocarbon to be detected in each sample from C8-C40 increases with time.
- The concentration of the hydrocarbon in each sample varied accordingly and also varies with the retention time. The Total petroleum hydrocarbon parameters given in Table 1 were subjected to statistical mathematical model using

data from sampling test at the stations. The regression relationships were made between Amount (ppm) and Retention time (min).

| Model Type  | Sample 1                            | R <sup>2</sup> |
|-------------|-------------------------------------|----------------|
| Linear      | 1.559x + 3.707                      | 0.992          |
| Polynomial* | $-0.005x^2 + 1.747 + 2.581$         | 0.998          |
| Exponential | 8.650e <sup>0.063x</sup>            | 0.900          |
| Logarithmic | 16.69In(x)-12.43                    | 0.853          |
|             | Sample 2                            |                |
| Linear      | 1.561x+2.139                        | 0.997          |
| Polynomial* | -0.006x <sup>2</sup> + 0.35x + 2.47 | 0.998          |
| Exponential | 7.964e <sup>0.064x</sup>            | 0.901          |
| Logarithmic | 19.41ln(x)-21.85                    | 0.899          |
|             | Sample 3                            |                |
| Linear*     | 1.570x + 2.246                      | 0.986          |

| Model Type  | Sample 1                            | <b>R</b> <sup>2</sup> |
|-------------|-------------------------------------|-----------------------|
| Polynomial  | -0.009x <sup>2</sup> + 1.889x+0.325 | 0.849                 |
| Exponential | 7.266e <sup>0.068x</sup>            | 0.868                 |
| Logarithmic | 17.30ln(x) -15.04                   | 0.785                 |
|             | Sample 4                            |                       |
| Linear      | 1.788x+ 6.373                       | 0.978                 |
| Polynomial* | 0.017x <sup>2</sup> + 2.198+ 4.732  | 0.981                 |
| Exponential | 10.56e <sup>0.069x</sup>            | 0.907                 |
| Logarithm   | 14.43In(x) – 4.107                  | 0.880                 |

Table 3: Summary of the Different Models (\* Implies Best Fit Model)



Figure 1: Plot of Amount versus Rettime for Sample 1

Comparison of the different models of Amount against time for Sample 1 shows that the best fit for the two parameters is the polynomial model (quadratic). Therefore the Amount against time of the different hydrocarbon samples of the area was related by:

 $Amount = -0.005x^2 + 1.747x + 2.581....(20)$ 



Figure 2: Plot of Amount versus Rettime for Sample 2



Figure 3: Plot of Amount versus Rettime for Sample 3



Figure 4: Plot of Amount versus Rettime for Sample 4

By comparison, the exponential model best fit Amount against time Thus. Amount = $10.56e^{0.069x}$ ......(23)

### 3.1. The Test of the Models

The validity of the predicted model is verified by analysis of variance (ANOVA). The second-order model quality is assessed by the correlation factor (R<sup>2</sup>) and the result analysis is carried out using regression model value (with 78-99% confidence level). Finally, the optimal values of tested variables are obtained by analyzing the surface curves and regression equation optimization. Standard shows that some of the activities such as dumping of refuse, defecation, and oil spillage (from pipeline) rendered the four sample sites unfit except they are treated.

#### 4. References

- Adam, G. and Duncan, H. J. (2002): Influence of Diesel Fuel on Seed Germination. Environ. Pollut., 120:363-370.
   Anozie, O., Onwurah, I. N. E., (2001). Toxic effects ofBonny light crude oil in rats after ingestion ofcontaminated diet. Nigerian J. Biochemistry and Molecular Biology (Proceedings Supplement ). 16 (3),1035-1085
- iii. Agarry SE, Owabor CN, and Yusuf RO, (2010). Bioremediation of soil artificially contaminated with petroleum hydrocarbon mixtures: Evaluation of the use of animal manure and chemical fertilizer. Bioremediation J.,14 (4): 189 195.
- iv. Yeung PY, Johnson RL, and Xu, JG, (1997). Biodegradation of petroleum hydrocarbons in soil as affected by heating and forced aeration. J. Environ. Quality 26: 1511 1576.
- v. Agarry SE, Aremu MO, and Aworanti OA, (2013). Kinetic modelling and half-life study on bioremediation of soil co-contaminated with lubricating motor oil and lead using different bioremediation strategies. Soil and Sediment Contam.- An Int. J. 22 (7): 800 816
- vi. Zahed MA, Abdul Aziz H, Isa MH, Mohajeri L, Mohajeri S, and Kutty SRM, (2011). Kinetic modelling and half life study on bioremediation of crude oil dispersed by
- vii. Corexit 9500. J. Hazard Mater. 185: 1027–1031.Matthies M, Witt J, and Klasmeier J, (2008). Determination of soil biodegradation half lives from simulation testing under aerobic laboratory conditions: a kinetic model approach. Environ. Poll. 156: 99 105
- viii. Dimitrov S, Pavlov T, Nedelcheva D, Reuschenbach P, Silvani M., Bias R., Comber M., Low L., Lee C., Parkerton T., and Mekentan O. (2007) A kinetic model for predicting biodegradation. SAR QSAR Environ. Res. 18: 443 457. Aronson D, Boethling R, Howard P, and Stiteler W, (2006). Estimating biodegradation half-lives for use in chemical screening. Chemosphere 63: 1953 1960 (2006).
- ix. Sinkkonen S, and Paasivirta J, (2000). Degradation half-life times of PCDDs, PCDF sand PCBs for environmental fate modelling. Chemosphere 40: 943 949.
- x. Pala, D.M.; de Carvalho, D.D.; Pinto, J.C. & Sant'Anna, Jr G.L. (2006). A suitable model to describe bioremediation of a petroleum-contaminated soil. International Biodeterioration and Biodegradation, Vol. 58, No. 3-4, pp. 254-260, ISSN 0964-8305.
- xi. Das, N. and Chandra, P. (2011). Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol. Res. Int.: 1-13.
- xii. Kaladumo, C. O. K., (1996). The implications of gas flaring in the Niger Delta EnvironmentProceedings of the 8th Biennial International NNPC Seminar . In: The Petroleum Industry and the Nigerian Environment ,Port Harcourt, Nigeria, 277-290.
- xiii. Kuhn, W., Gambino, R., Al-Awadhi, N., Balba, M. T., and Dragun, J. (1998). Growth of tomato plants in soil contaminated with Kuwait crude oil. J. Soil Contam., 7: 801-806.
- xiv. Wolicka, D., Suszek, A., Borkowski, A., and Bielecka, A. (2009). Application of aerobic microorganisms in bioremediation in situ of soil contaminated by petroleum products.
- xv. Bioresource. Technol., 100: 3221-3227.
- xvi. Onwurah, I. N. E., Ogugua, V. N., Onyike, N. B., Ochonogor, A. E. and Otitoju, O. F. (2007). Crude oil spills in the environment, effects and some innovative clean-up biotechnologies,
- xvii. Int. J. Environ. Res., 1: 307–320
- xviii. Onwurah, I. N. E., (2002b). Quantitative modelling ofcrude oil toxicity using the approach of cyberneticsand structured mechanisms of microbial processes.
- xix. Environ. Monit. Assess., 76, 157-166
- xx. Jobson, A. M., Mclaughin, M., Cook, F. D. and Westlake, D. W. S. (1974). Effects of amendments on microbial utilization of oil applied to soil. Appl. Microbiol., 27: 166-171.
- xxi. Gallego, J. R., Loredo, J., Llamas, J. F., Vazquez, F. and Sanchez, J. (2001). Bioremediation of diesel-contaminated soils: evaluation of potential in situ techniques by study of bacterial degradation.
- xxii. Biodegradation 12: 325–335
- xxiii. Short, J. W., Heintz, R. A., (1997). Identification of ExxonValdez oil in sediments and tissue from Prince WilliamSound and the North Western Gulf of William based ina PAH weathering model. Environ. Sci. Technol., 31,2375-2384.
- xxiv. Prescott, M. L., Harley, J. P., Klan, A. D., (1996): Industrial Microbiology and Biotechnology. In: Microbiology. 3rd.Ed. Wim C Brown Publishers, Chicago, 923-927