THE INTERNATIONAL JOURNAL OF SCIENCE \& TECHNOLEDGE

Relations between M-Gonal Numbers through the Solution of The Equation $Z^{2}=8 X^{2}+Y^{2}$

K. Meena
Former VC, Bharathidasan University, Tiruchirappalli, Tamilnadu, India
S. Vidhyalakshmi
Professor, Department of Mathematics, Shrimati Indira Gandhi College, Tamilnadu, India S. Divya
M. Phil student, Department of Mathematics, Shrimati Indira Gandhi College, Tamilnadu, India
M. A. Gopalan
Professor, Department of Mathematics, Shrimati Indira Gandhi College, Tamilnadu, India

Abstract:

The ternary quadratic equation given by $Z^{2}=8 X^{2}+Y^{2}$ is considered. Employing its non-zero integral solutions, relations among few special polygonal numbers are determined.

Key words: Pell Equations, Ternary Quadratic Equation
2010 Mathematics Subject Classification: 11d09

1. Introduction

In [1-3], different patterns of m-gonal numbers are presented. In [4] explicit formulas for the rank of Triangular numbers which are simultaneously equal to Pentagonal, Decagonal and Dodecagonal numbers in turn are presented. In [5] the relations among the pairs of special m-gonal numbers generated through the solutions of the ternary quadratic equation $X^{2}=8 \alpha^{2}+Y^{2}$ are determined. In [6] the relations among few polygonal and centered polygonal numbers generated through the solutions of $y^{2}=2 x^{2}+z^{2}$ are determined.
In this communication, we consider the ternary quadratic equation given by $Z^{2}=8 X^{2}+Y^{2}$ and obtain the relations among the pairs of special m -gonal numbers different from [5] generated through the solutions of the equation under consideration.

2. Notations

- $T_{m . n}$: Polygonal number of rank n with m sides
- $C t_{m, n}$: Centered Polygonal number of rank n with m sides

3. Method of Analysis

Consider the Diophantine equation

$$
\begin{equation*}
Z^{2}=8 X^{2}+Y^{2} \tag{1}
\end{equation*}
$$

whose general solutions are
$\left.\begin{array}{l}X=8 r s \\ Y=8 r^{2}-s^{2} \\ Z=8 r^{2}+s^{2}\end{array}\right\}$
where r and s are non-zero positive integers.

Case (1):

The choice,

$$
\begin{align*}
& 2 M+1=8 r^{2}+s^{2}, 4 N-1=8 r^{2}-s^{2} \tag{3}\\
& \text { in (1) leads to the relation that }
\end{align*}
$$

$$
\text { " } T_{3, M}{ }^{-T_{6, N}}=\text { a square integer" }
$$

From (3), the values of ranks of the Triangular numbers and Hexagonal numbers are respectively given by

$$
M=\frac{8 r^{2}+s^{2}-1}{2}, N=\frac{8 r^{2}-s^{2}-1}{4}
$$

For integer values of M and N , choose $s=2 k+1$

Examples:

\boldsymbol{r}	\boldsymbol{k}	\boldsymbol{M}	\boldsymbol{N}	$\boldsymbol{T}_{\mathbf{3}, \boldsymbol{M}}-\boldsymbol{T}_{\mathbf{6}, \boldsymbol{N}}$
$2 k$	k	$18 k^{2}+2 k$	$7 k^{2}-k$	$[4 k(2 k+1)]^{2}$
$3 k$	k	$38 k^{2}+2 k$	$17 k^{2}-k$	$[6 k(2 k+1)]^{2}$
$k+1$	k	$6 k^{2}+10 k+4$	$k^{2}+3 k+2$	$\left[4 k^{2}+6 k+2\right]^{2}$
Table $\boldsymbol{1}$				

Case (2):
The choice,
$2 M+1=8 r^{2}+s^{2}, 6 N-1=8 r^{2}-s^{2}$
in (1) leads to the relation that

$$
\sqrt{T_{3, M}-3 T_{5, N}=} \text { a square integer" }
$$

From (4), the values of ranks of the Triangular numbers and Pentagonal numbers are respectively given by

$$
M=\frac{8 r^{2}+s^{2}-1}{2}, N=\frac{8 r^{2}-s^{2}+1}{6}
$$

For integer values of M and N , choose r and s as follows.

Examples:

\boldsymbol{r}	\boldsymbol{s}	\boldsymbol{M}	\boldsymbol{N}	$\boldsymbol{T}_{\mathbf{3}, \boldsymbol{M}}-\mathbf{3 T} \boldsymbol{5}, \boldsymbol{N}$
$6 k-4$	$6 k-3$	$162 k^{2}-210 k+68$	$42 k^{2}-58 k+20$	$\left[72 k^{2}-84 k+24\right]^{2}$
$6 k$	$6 k+1$	$162 k^{2}+6 k$	$42 k^{2}-2 k$	$[12 k(6 k+1)]^{2}$

Table 2
Case (3):
The choice,
$10 M-3=8 r^{2}-s^{2}, 3(2 N+1)=8 r^{2}+s^{2}$
in (1) leads to the relation that

$$
\sqrt{9 T_{3, N}-5 T_{7, M}}=\text { a square integer" }
$$

From (5), the values of ranks of the Triangular numbers and Heptagonal numbers are respectively given by

$$
M=\frac{8 r^{2}-s^{2}+3}{10}, N=\frac{8 r^{2}+s^{2}-3}{6}
$$

For integer values of M and N , choose r and s as follows.

Examples:

\boldsymbol{r}	\boldsymbol{s}	\boldsymbol{M}	\boldsymbol{N}	$\mathbf{9 T}_{\mathbf{3}, \boldsymbol{N}}-\mathbf{5 T} \mathbf{7 , \boldsymbol { M }}$
$10 k-9$	$10 k-9$	$70 k^{2}-126 k+57$	$150 k^{2}-270 k+12$	$\left[200 k^{2}-360 k+162\right]^{2}$
$10 k-1$	$10 k-1$	$70 k^{2}-14 k+1$	$150 k^{2}-30 k+1$	$\left[200 k^{2}-40 k+2\right]^{2}$

Table 3

Case (4):

The choice,

$$
\begin{equation*}
2 M+1=8 r^{2}-s^{2}, 2 N+1=8 r^{2}+s^{2} \tag{6}
\end{equation*}
$$

in (1) leads to the relation that

$$
\text { ، }\left(C t_{3, N}-1\right)-3 T_{3, M}=3 \alpha^{2}
$$

From (6), the values of ranks of the Centered triangular numbers and Triangular numbers are respectively given by

$$
M=\frac{8 r^{2}-s^{2}-1}{2}, N=\frac{8 r^{2}+s^{2}-1}{2}
$$

For integer values of M and N , choose $s=2 k+1$

Examples:

\boldsymbol{r}	\boldsymbol{k}	\boldsymbol{M}	\boldsymbol{N}	$\left(\boldsymbol{C t}_{\mathbf{3 , N}}-\mathbf{1}\right)-\mathbf{3 T}_{\mathbf{3 , M}}$
$2 k$	k	$14 k^{2}-2 k-1$	$18 k^{2}+2 k$	$3[4 k(2 k+1)]^{2}$
$3 k$	k	$34 k^{2}-2 k-1$	$38 k^{2}+2 k$	$3[6 k(2 k+1)]^{2}$
$k+1$	k	$2 k^{2}+6 k+3$	$6 k^{2}+10 k+4$	$3\left[4 k^{2}+6 k+2\right]^{2}$

Table 4

Case (5):

The choice,

$$
\begin{equation*}
4 M-1=8 r^{2}-s^{2}, 2 N+1=8 r^{2}+s^{2} \tag{7}
\end{equation*}
$$

in (1) leads to the relation that

$$
،\left(\left[C t_{4, N}-1\right)-4 T_{6, M}=4 \alpha^{2},\right.
$$

From (7), the values of ranks of the Centered quadrilateral numbers and Hexagonal numbers are respectively given by
$M=\frac{8 r^{2}-s^{2}+1}{4}, N=\frac{8 r^{2}+s^{2}-1}{2}$
For integer values of M and N , choose $s=2 k+1$

Examples:

\boldsymbol{r}	\boldsymbol{k}	\boldsymbol{M}	\boldsymbol{N}	$\left(\boldsymbol{C t}_{\mathbf{4 , N}}-\mathbf{1}\right)-\mathbf{4 T _ { 6 , M }}$
$2 k$	k	$7 k^{2}-k$	$18 k^{2}+2 k$	$4[4 k(2 k+1)]^{2}$
$3 k$	k	$17 k^{2}-k$	$38 k^{2}+2 k$	$4[6 k(2 k+1)]^{2}$
$k+1$	k	$k^{2}+3 k+2$	$6 k^{2}+10 k+4$	$4\left[8 k^{2}+12 k+4\right]^{2}$

Table 5

4. Conclusion

To conclude, we may search for other relations to (1) by using special polygonal numbers.

5. References

1. Dickson, L.E., History of theory of numbers, Chelisa publishing company, New York, Vol.2,(1971).
2. Kapur, J.N., Ramanujan's Miracles, Mathematical sciences Trust society, (1997).
3. Shailesh Shirali, Mathematical Marvels, A primer on Number sequences, University press,(2001).
4. Gopalan, M.A., Devibala, Equality of Triangular numbers with special m-gonal numbers, Bulletin of the Allahabad mathematical society, (2006), 25-29.
5. Gopalan, M.A., Manju somanath and Vanitha, N., Observations on $X^{2}=8 \alpha^{2}+Y^{2}$, Advances in Theoretical and Applied Mathematics, 1(3)(2006), 245-248.
6. Gopalan, M.A., and Srividhya,G., Observations on $y^{2}=2 x^{2}+z^{2}$ Archimedes J.Math, 2(1),2012, 7-15
