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1. Introduction 
In recent years, the revival of LDPC  codes has breathed new life into  the ability of  Forward  Error  Control  (FEC)  codes  to  
enable  communication  systems  to reach the Shannon performance bound. Having been dismissed after discovery by Gallagher in 
1963  due  to  their  practical  unfeasibility,  LDPC  codes  have  recently  proven invaluable,  enabling  communication  systems  
to  perform  within  0.04  dB of the Shannon limit. Up to the rediscovery of LDPC codes by McKay and Neal turbo codes, 
discovered in 1993 was the class of codes that offered the best performance. LDCP codes are linear block codes constructed by 
designing a sparse parity check matrix. Contrary  to  conventional  decoding  algorithms,  the  iterative  decoding  algorithm  of 
LDPC codes is low in  complexity, given that the parity check matrix is sparse. The complexity of this decoding algorithm is linear 
in the codeword length and exponentially related to the sparseness of the parity check matrix. When discovered, the  decoding  of 
this class  of  codes  was  not  practically  possible,  but  with  the processing power available today, these codes are practical and 
very promising.  
 
1.1. Error Correction Using Parity-Checks 
When we consider binary messages and so the transmitted messages consist of strings of 0’s and 1’s. The essential idea of forward 
error control coding is to augment these message bits with deliberately introduced redundancy in the form of extra check bits to 
produce a codeword for the message. These check bits are added in such a way that codewords are sufficiently distinct from one 
another that the transmitted message can be correctly inferred at the receiver, even when some bits in the codeword are corrupted 
during transmission over the channel. The simplest possible coding scheme is the single parity check code (SPC). The SPC 
involves the addition of a single extra bit to the binary message, the value of which depends on the bits in the message. In an even 
parity code, the additional bit added to each message ensures an even number of 1s in every codeword. 
 
1.2. Low Density Parity check Codes (LDPC) 
As their name suggests, LDPC codes are block codes with parity-check matrices that contain only a very small number of non-zero 
entries. It is the sparseness of H which guarantees both a decoding complexity which increases only linearly with the code length 
and a minimum distance which also increases linearly with the code length. 
LDPC codes are constructed by defining the parity check matrix H. If the parity check matrix A has N columns and M rows, any 
codeword generated for this LDPC code consists of N bits which satisfy  M  parity  checks,  where  the  location  of  a  1  in  the  
parity  check  matrix  indicates  that  a  bit  is involved in a parity check. The total length of the codeword is N bits, the number of 
message bits is K= N - M, and the rate of the code is R = K / N, assuming that the matrix is full rank. 
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Abstract: 
This thesis is about FPGA implementation of LDPC codes and their performance evaluation. Low-density parity-check (LDPC) 
codes are forward error-correction codes, first proposed in the 1962 PhD thesis of Gallager at MIT. At the time, their 
incredible potential remained undiscovered due to the computational demands of simulation in an era when vacumm tubes were 
only just being replaced by the first transistors.  
Our codes are found by optimizing the degree structure of the underlying graphs. We develop several strategies to perform this 
optimization. We also present some simulation results for the codes found which show that the performance of the codes is very 
close to the asymptotic theoretical bounds. 
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Figure 1: Tanner graph made for a simple parity check matrix H 

 
1.3. Encoding  
As stated, LDPC codes are linear block codes constructed with a parity check matrix with special roperties.  Known from the 

theory  of  linear  block  codes,  given  a systematic block code , the generator matrix is given by  
 

                                                         
 
Also written as 

 
 
where P is  the k×(n-k) parity  sub-matrix  and identity  matrix.  The systematic form of the parity check matrix H is 
                                                   

 
 
Also written as,  

 
The generated codeword with message vector m of length k, 
C = m.H 
 
1.4. Decoding  
The decoding algorithm is called the sum-product algorithm, or belief propagation algorithm.  This algorithm  determines  the a 
posteriori probability  of  each  message symbol,  based  on the  received  signal  and  the connectivity  properties  of  the  sparse 
parity check matrix H. This algorithm attempts to satisfy the parity check equations with maximum likelihood do produce the 
optimal estimate for the original message m. The functioning of this algorithm will be described with an example. 
By using a linear block code C (12,4) of code rate 1/3, with 
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and sparse parity check matrix 
 

 
 
Here we receives the corrupt codeword vector.  
 
2. Bounded Distance and Maximum Likelihood Decoding 
For any linear code, A= 1, meaning that there is precisely one codeword of weight zero. For good codes, A = 0 for all j less than 
some value d, called the minimum distance. A code with minimum distance d can always correct  
[(d-1)/2] errors using a bounded distance decoder  (BDD).  Imagine the codeword vectors as points in space. No two words are 
closer together than the minimum distance, d. If we draw spheres around each codeword of radius [(d-1)/2], no two spheres will 
overlap. If no more than errors  are  made  by  the  channel,   
the  received  word  will  lie  within  the  sphere  of  the transmitted word, and thus be correctly decoded.  
Figure below illustrates this decoding. The smaller circles  represent  codewords,  and  the  large  circles  a  radius  of . The  
codeword  in centre  was transmitted. 
If less than [(d-1)/2] errors are made, the received word resembles the small circle labelled A and is clearly within the sphere for 
the desired codeword. If slightly more errors are made, the result could be something like small circles B or C. A bounded distance 
decoder would make an error in both of these cases. However, the circle labelled C, though outside the sphere of radius [(d-1)/2] 
closer to the transmitted  codeword  than  any  other  codeword.  
A  maximum  likelihood  decoder  always  finds  the closest codeword to the received word. Because of this, it can decode more 
than [(d-1)/2] errors some of the time. 
 

 
Figure 2:  message received on bounded region map 

 
For a code of rate R and length n, there are 2^Rn codewords. A maximum likelihood decoder has to find the distance between the 
received word and each of the codewords in order to choose the 
smallest one. So, while the maximum likelihood decoder can correct the most errors, its complexity grows  exponentially  with  the  
length  of  the  codewords.  For  this  reason,  iterative  decoding  methods, which have complexity that still grows linearly with the 
length of the codewords, are much preferred. 
 
3. Message Passing Decoding 
Message passing is easiest to understand on the binary erasure channel (BEC). This channel introduces no errors,  but  erases  some  
message  bits.  In the Tanner  graph  representation,  then,  each variable node either knows with certainty what its value is, or it 
does not. Decoding starts when the variable nodes send messages to their adjacent check nodes that indicate whether or not the 
variable node  knows  its  value.  The  check  nodes  examine  the  messages  they  received  from  their  adjacent variable nodes. If 
all the adjacent variables but one knew their value, the check node can determine the value of the remaining node because even 
parity is required. A round is completed when all the check nodes that can make this calculation send a message to the last variable 
node, letting it know its value. 
Check  nodes  connected  to  variables  that  all  know  their  value  can  be  removed  from  the  decoding process. The cycle then 
repeats. With every round, more variable nodes learn their true values, until all is known or no more progress can be made. When 
no more progress can be made, the set of erasures remaining is known as a stopping set. Since the deep space channel is very close 
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to BEC characteristics, and is suitable for large size codes, the message passing decoding (sum product algorithm) was taken for 
implementation. 
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