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1. Introduction 
A Poisson stream of customer with rate   arrives at a service system which consists of two single-server queues in 
parallel[3].The service time of the customers are independent and exponentially distributed with rate µ.Both servers serve at an 
equal rate of 1.Each server has an associated queuing space of unlimited capacity. An arriving customer joins the shorter of the 
two queues, if their sizes are unequal, otherwise he joins any queue. Jockeying between the queues is not allowed. 
This system, which is known as the ‘shortest queue’, has received a lot of attention in the literature, because it (with its 
generalizations to many servers and to general service times) models many real-life situations such as vehicles going through toll 
booths, jobs scheduled on a multiprocessor system, etc, .On the other hand, no simple method for analyzing this system is known. 
The problem was originally introduced by Haight (1958).Kingman (1961) proved that an equilibrium distribution exists 

whenever 2
  .Both he and Flatto and  McKean(1977)treated the problem by applying techniques of complex-function  

theory to obtain representation for the general functions of the state  probability .The above –mentioned papers derive some 
asymptotic  approximations for the state probabilities for large number of customers in the system, and for heavy 
traffic.Conolly(1984) discussed the finite –waiting –room version of the problem. In the current paper we derive upper and lower 
bounds for the state probabilities, tail probabilities, and mean number of customers in the system, in equilibrium. The bounds are 
derived by considering a subset of the balance equation, which gives rise to linear programs which in turn produce the bounds .We 
also derive lower bounds for the tail distribution by comparison with an M/M/2 system. These rather elementary techniques 

produce bound which are within 10% of the true values for 1≤   <2, and which are asymptotically tight in heavy traffic. Some 

notation is introduced in section 2, and preliminary results which are needed for the probability are obtained in section3.In section 
4 we derive formulae for the probability distribution of the total number of customers in the system, and introduce our main 
vehicle - the linear program which generates the bounds. We calculate explicit solutions for the upper bounds [6] and treat the 
lower bounds. Bounds for the tail of the   distribution of the total number of customers in the system are discussed, and the quality 
of the bounds is examined deals with bounds for the mean number in the system.  
 
2. Notation 
The  state space consists of pairs (i,j) where i,j=0,1,2,3………,and i≥j.we say  that the  system is  in  state (i,j) if number of 
customers in the longer queue is i and the number in the shorter queue  is j. Note that under this description, servers  are  not  
associated  with a particular Component of the state vector, and, there is no need to specify what happens when a customer finds 
that both queues are of equal length. Clearly the system behaves as a Markov chains on the state space, with transition, intensities 
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as described in following Figure.Let a=   .We assume that a <2, which implies that the system in stable. Let ijp  be the 

equilibrium probability of the state (i, j). 
Let ,n ij

i j n
p

 
   n=0, 1, 2……..Thus n is the probability that there are exactly n customers in the system in equilibrium. 

Denote by kq  the sum of the probabilities in the kth diagonal. 
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And let q*=
1

k
k
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  be the probability that the queues are unequal. 

 

 
Figure 1 

 
3. Preliminary Results 
It is well known that for a Markov chain in  equilibrium, if the state space is divided into two disjoint subsets, then the ‘intensity 
flows’ from one subset into the other are equal for both subsets. 
First, for a fixed i, we divide the states into those with first component less than i, and those with first component greater than or 
equal to i. We get  

1
1 1

0
, 1, 2,.....

i
i i ij

j
p p i 



 


    ……………….  .  (3.1) 

Summing (3.1) over i we get  

0 *q q              …………………………                       (3.2) 

since 0 * 1q q  ,we can solve  them: 

0
1 , * .

1 1
aq q

a a 
 

 . ………………………………………..(3.3) 

Next, define the ‘diagonals’ 

0
( , )k

i
D i k i




  , k=0,1,……………………………………..…(3.4) 

And let us separate the diagonals 0 1, ,............ kD D D from 1 2, ..........k kD D   
The resulting cut yields  

1 0 00(1 ) (2 ) 2 ,a q a q p     for k=0,………………….(3.5) 

1 0,(1 ) k k ka q q p    for k=1,2,3,…………………..….(3.6) 
Summing (3.5) and (3.6) over k we get  

0 00 0
1

(1 ) * (2 ) * (2 ),k
k

a q a q q p p



        

 and subtracting the values of q0 and q* ,we get the following result . 
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3.1. Lemma 

00 0
1

2 2 , 0 2k
k

p p a for a



     . ………………(3.7) 

It is introduce to note that 0 1, ,............q q exist even when a≥2,if we interpret kq  as the limit of the probability of being in kD  
at time t ,when t→∞, independent of the initial conditional. To see that, when a≥2 the probability that any queue is empty at time t 
converges to 0 for t→∞. Thus the processes behaves asymptotically as birth-and-death process on the diagonals Dk,with the birth 
rate being  µ and the death rate being   for k>0,and for k=0 the birth rate  being 2   and the death rate 0. 
Thus a limiting distribution exists, independent of the initial conditions, and it can be calculated explicitly as follows. 
 
Theorem1. 
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4. The Total Number in the System 
Let us divide the state space into those states with n or more customers, and those with n-1 or less. The intensity flow equation, 
over these cuts yields: 

1 0
1

2 2n n n
a

p  
  ,   n=1, 2……………………………………………………………………………………… (4.1) 

Iterating (4.1) by substituting 1 2, ,.............n n   and noticing that 

0 00p  1 2
00 10 20 0),1( ) (( ) ( ) .....2 2 2 2

n n n
n na a ap p p p       n=0,1,2,……(4.2) 

 
We are now going to use (4.2) to derive bounds for the nS , by employing the relation found in section 3.From(3.3),(3.5)and 
(3.6)we get  
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0 1(1 )i i ip q a q    ,   i=1,2,……n, 
Substituting in(4.3) and rearranging we get  
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   , n=0,1…………………..…(4.3) 

Consider the linear program with n+ 1 variable 1 2 1, ,....... ,nX X X   with the objective function  

f(X)= 2
1

1

1 1(2 ) ( ) ,24 2

n
n i

i n
i

aaa a X X





     …………………………………………………………(4.4) 

and with the constraints: 
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5. Conculsion 
We have developed a method to obtain bounds for the shortest queue problem by using a subset of the balance equation and 
deriving the corresponding linear program. The system discussed about the finite number of customer finds queue when both 
queues are equal length, the state of Markov chain is equilibrium.  
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