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1. Introduction 
The concept of fuzzy sets was introduced by Zadeh [11]. Following the concept of fuzzy sets, fuzzy metric spaces have been 
introduced by Kramosil and Michalek [6], George and Veeramani [4] modified the notion of fuzzy metric space with the help of 
continuous t-norms. 
As a generalization of fuzzy sets and introduced and studied the concept of intuitionistic fuzzy sets. Using the idea of intuitionistic 
fuzzy sets Park [15] defined the notion of intuitionistic fuzzy metric space with the help of continuous t norm and continuous t co-
norm as a generalization of fuzzy metric space, George and Veeramani [4] had showed that every metric induces an intuitionistic 
fuzzy metric and found a necessary and sufficient condition for an intuitionistic fuzzy metric space to be complete. Choudhary 
[13] introduced mutually contractive sequence of self maps and proved a fixed point theorem. Kramosil and Michalek [6] 
introduced the notion of Cauchy sequences in an intuitionistic fuzzy metric space and proved the well known fixed point theorem 
of Banach spaces. Turkoglu et al. [12] gave the generalization of Jungek,s  common fixed point theorem [19] to intuitionistic 
fuzzy metric space.Recently Aamri and Moutawakil [20] introduced the property (IFE.A) and thus generalized the concept of 
noncompatible maps. The results obtained in in the metric fixed point theory by using the notion of noncompatible maps or the 
properties (IFE.A) are very interesting. The question arises whether, by using the concept of incompatibility or its generalized 
notion, that is the property (IFE.A), we can find equally interesting results in intuitionistic fuzzy metric space also our answer in 
affirmative. 
In this paper is to obtain a common fixed point theorem for weakly compatible self-maps satisfying the property (IFE.A) using 
implicit relation on a non complete Intuitionistic fuzzy metric space. Also our result does not require the continuity of the maps. 
Our result generalizes the result of Yao LAN. [22].  
   
2. Preliminaries 
Definition 2.1 [ 7 ] A binary operation ∗	∶ [0,1] × [0,1] 	 → [0,1]  is called a continuous t - norm if ( [0,1], ∗ ) is an abelian 
topological monoid with the unit 1 such that a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0,1] . 
Examples of t - norms are a ∗ b = ab and a ∗ b = min	{a, b} . 
 
Definition 2.2 [7] A binary operation ◊: [0,1] × [0,1] → [0,1] is continuous t-conorm if ◊ is satisfying the following condition 
(a) ◊ is commutative and associate, 
(b) ◊ is continuous, 
(c) a ◊ 0 = a for all a ∈ [0,1] , 
(d) a ◊ b ≤ c ◊ d Whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0,1] . 
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Definition 2.3 [4] The 3 - tuple (X , M , ∗) is called a fuzzy metric space (FM - space) if X is an arbitrary set ∗ is a continuous t-
norm and M is a fuzzy set in Xଶ × [0,∞] satisfying the following conditions for all x, y, z ∈ X and t, s > 0. 
(FM-1)	M(x, y, 0) > 0 , 
(FM-2)	M(x, y, t) = 1,∀	t > 0	iff	x = y , 
(FM-3)	ݔ)ܯ, ,ݕ (ݐ = ,ݔ,ݕ)ܯ  ,(ݐ
(FM-4)	ݔ)ܯ, ,ݕ (ݐ ∗ ,ݕ)ܯ ,ݖ (ݏ ≤ ,ݔ)ܯ ,ݖ ݐ +  , (ݏ
(FM-5) ݔ)ܯ, ,ݕ . ): [0,∞] → [0,1] is continuous.  
Remark 2.1 since ∗ is continuous, it follows from (FM-4)) that the limit of a sequence in FM-space is uniquely determined . 
 
Definition 2.4 [16]  A five –tuple (X, M, N, ∗, ◊) is said to be an intuitionistic fuzzy metric space if X is an arbitrary set ∗ is a 
continuous t – norm , ◊ is a continuous t-conorm and M , N are fuzzy sets on Xଶ × (0,∞) satisfying the following conditions for 
all x, y, z ∈ X, s, t > 0 
 (IFM-1) (ݔ, ,ݕ (ݐ + ,ݔ)ܰ ,ݕ (ݐ ≤ 1 , 
(IFM− ,ݔ)ܯ(2 ,ݕ (ݐ > 0 ,  
(IFM-3) ݔ)ܯ, ,ݕ (ݐ = 1 if and only if x = y , 
(IFM-4) (ݕ,ݔ, (ݐ = ,ݕ)ܯ ,ݔ  , (ݐ
(IFM-5) (ݕ,ݔ, (ݐ ∗ ,ݕ)ܯ ,ݖ (ݏ ≤ ,ݔ)ܯ ,ݖ ݐ +  , (ݏ
(IFM− ,ݕ,ݔ)ܯ	(6 . ): (0,∞) → (0,1) is continuous , 
(IFM-7)   ܰ(ݔ, ,ݕ (ݐ > 0 , 
(IFM-8) ܰ(ݔ, ,ݕ (ݐ = 1 if and only if x = y , 
(IFM-9) (ݕ,ݔ, (ݐ = ,ݔ,ݕ)ܰ  , (ݐ
(IFM-10) (ݔ, ,ݕ (ݐ ◊ ,ݕ)ܰ ,ݖ (ݏ ≥ ,ݔ)ܰ ,ݖ ݐ +  , (ݏ
(IFM− ,ݕ,ݔ)ܰ	(11 . ): (0,∞) → (0,1] is continuous . 
Then ( M , N) is called an intuitionistic fuzzy metric on X , the function ݕ,ݔ)ܯ, ,ݕ,ݔ)ܰ and (ݐ  denote the degree of nearness (ݐ
and the degree of non- nearness between x and y with respect to t respectively . 
 
Remark 2.1 In intuitionistic fuzzy metric spaces X, M(x,y,.) is non- decreasing and N( x , y,. ) is non -  increasing for all x, y ∈ X 
. 
Definition 2.5 A Sequence  xn in X convergent to x if and only if  
M( xn, x, t) → 1 and N( xn, x, t) → 0 . 
Example 2.1 Let (X , d) be a metric space  denote a ∗ b = ab and a ◊ b = min	{1, a + b} for 
all a, b ∈ [0,1] and let M, and N be fuzzy sets on Xଶ × (0,1) defined as follows 
,ݔ)ܯ ,ݕ (ݐ = ௧

௧ାௗ(௫,௬)
 , 

,ݔ)ܰ ,ݕ (ݐ =
,ݔ)݀ (ݕ

ݐ +  (ݕ,ݔ)݀

 
Then  (ܺ,ܯ,ܰ,∗,◊) is an intuitionistic fuzzy metric space. We call this intuitionistic fuzzy metric induced by a metric d the 
standard intuitionistic fuzzy metric space . 
 
emark 2.2  Note that the above example holds even with the t-norm a܀ ∗ b = min	{a, b} and the  
																		t-conorma ◊ b = max	{a, b} . 
 
۳xample 2.2 Let X = N define a ∗ b = max	{0, a + b − 1} and a ◊ b = a + b − ab for all a, b ∈ [0,1]    
																				 and let M and N be fuzzy sets on Xଶ × (0,∞) as follows  
 

M(x, y, t) = ൞

x
y 	if	x ≤ y,
y
x 	if	y ≤ x.

 

N(x, y, t) = ൞

y − x
y 	if	x ≤ y,

x − y
x 	if	y ≤ x.

 

 
for All x, y ∈ X and t > 0 then (X, M, N,∗,◊) is an intuitionistic fuzzy metric space. 
 
Remark 2.3 Note that in above example, t-norm ∗ and t- conorm ◊ are not associated, and there exist no metric d on X satisfying  
,ݔ)ܯ ,ݕ (ݐ = ௧

௧ାௗ(௫,௬)
  , 
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,ݔ)ܰ ,ݕ (ݐ = ௗ(௫,௬)
௧ାௗ(௫,௬)

  . 
Where ݕ,ݔ)ܯ, ,ݕ,ݔ)ܰ and (ݐ   are defined in above example, also note that the above functions (ݐ
(M, N) is not an intuitionistic metric space with the t-norm and t-conorm defined as 
a ∗ b = min	{a, b} a ◊ b = max	{a, b} . 
 
Definition 2.6 [1] Let (X, M, N,∗,◊) be an intuitionistic fuzzy metric space then  
(a) A sequence {x୬} in X is said to be convergent x in X if for each ε > 0 and each t > 0 there exists n଴ ∈ N such that 
௡ݔ)ܯ ,ݔ, (ݐ > 1 −  , ߝ
and                                                
,ݔ,௡ݔ)ܰ   (ݐ < For all n . ߝ ≥ n଴     
 
(b) An intuitionistic fuzzy metric space in which every Cauchy sequence is convergent is said to be complete . 
Definition 2.7 [19] Let A and B maps from a intuitionistic fuzzy metric space (X, M, N,∗,◊)into itself. The maps A and B are said 
to be compatible (or asymptotically commuting) if for all t > 0 
݈݅݉௡→∞ܯ൫ݔܤܣ௡ , BA୶౤ , ൯ݐ = 1 
and 
݈݅݉௡→∞ܰ൫AB୶౤ , BA୶౤, ൯ݐ = 0. 
Whenever {x୬} is a sequence in X such that ݈݅݉௡→∞ݔܣ௡ = ݈݅݉௡→∞Bx୬ = z for some z ∈ X . 
 
Definition 2.8 [21] Two mappings A and B of a intuitionistic fuzzy metric space (X, M, N,∗,◊) into itself are R-weakly commuting 
provided there exists some real number R such that 
M (ABx, BAx, t) ≥ M (Ax, Bx, ௧

ோ
 ) 

and 
N (ABx, BAx, t) ≤ N (Ax, Bx, ௧

ோ
 ) , for each ݔ ∈ ܺ and t > 0. 

Definition 2.9 [20] Let f and g be two self mappings of an intuitionistic fuzzy metric space 
 We say that A and S satisfy the property (IFE.A) if there exists a sequence {x୬} such that .(◊,∗,ܰ,ܯ,ܺ)
݈݅݉௡→∞fx୬ = ݈݅݉௡→∞gx୬ for some t . ݐ   = ∈ X . 
Lemma 2.4 In intuitionistic fuzzy metric space X , M(ݕ,ݔ, . ) is non decreasing and N (ݔ, ,ݕ . ) is  non increasing for all x, y ∈ ܺ . 
Lemma 2.5    
Let (X, M, N,∗,◊) be an intuitionistic fuzzy metric space if there exist k ∈ (0,1) such that  
				M(x, y, kt) ≥ M(x, y, t) 
and  
N(x, y, kt) ≤ N(x, y, t) , for all x, y ∈ X  
Then  ݔ =  .ݕ
 
IFW. 1 [22] Given {ݔ௡ } , x and y in X , 
lim௡→∞ܯ(ݔ௡ 	, x, t ) = 1,  lim௡→∞  ,0 = ( , x, t	 ௡ݔ)ܰ
and  
lim௡→∞ܯ(ݔ௡ 	, y, t ) = 1,	lim௡→ஶܰ(ݔ௡ 	, y, t ) = 0, 
⟹ x = y . 
 
IFW. 2[22]  Given {ݔ௡} ,  {ݕ௡  }and x in X , 
lim௡→ஶܯ(ݔ௡ 	, x, t ) = 1,  lim௡→ஶܰ(ݔ௡ , x, t ) = 0, 
and  
lim௡→ஶݔ)ܯ௡ 	,		 ݕ௡ ,   t ) = 1,	lim௡→ஶ ௡ݕ 	,	 ௡ݔ)ܰ , t ) = 0, 
⟹ lim௡→ஶܯ(ݕ௡ 	, x, t ) = 1,  lim௡→ஶܰ(ݕ௡  	, x, t ) = 0 . 
 
Definition 2.10[22]  Let ݂ and ݃ be self – mappings of an intuitionistic fuzzy metric space  (X, M, N)  ݂ and ݃ are called 
compatible if  
lim௡→ஶܯ(݂݃ݔ௡ , ݂݃ݔ௡, t ) = 1,  lim௡→ஶ ܰ(  .௡, t ) = 0ݔ݂݃ ,௡ݔ݂݃
Whenever {ݔ௡} is a sequence in X such that 
lim௡→ஶܯ(݂ݔ௡ , y, t ) = 1,  lim௡→ஶ  ,0 = ( ௡, y, tݔ݂ )ܰ
and  
lim௡→ஶܯ(݃ݔ௡ , y,   t ) = 1,	lim௡→ஶܰ(݃ݔ௡ , y, t ) = 0. 
For some y ∈ X . 
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Definition 2.11  [22] Let  ݂  and ݃ be self –mappings of an intuitionistic fuzzy metric space  (X, M, N)  ݂ 	and ݃ ar݁ called  
weakly compatible if  they commute at their coincidence points i.e. if 
ݑ	 for some	 ݑ݃  =	 ݑ݂  ∈ X , then ݂݃ݑ 	= 	ݑ݂݃.   
 
Definition 2.12[22]   Let  ݂ ݂	and  ݃݃ be self –mappings of an intuitionistic fuzzy metric space   
 (X, M, N) We say that   ݂ and ݃ satisfy the property (IFE.A) if there exists a sequence   
   such that {௡ݔ}
               
lim௡→ஶݔ݂)ܯ௡  , y, t ) = 1,  lim௡→ஶ  ,0 = ( ௡ , y, tݔ݂)ܰ
and  
lim௡→ஶܯ(݃ݔ௡, y,   t ) = 1,	lim௡→ஶ  .0 = ( ௡ , y, tݔ݃)ܰ
For some y ∈ X . 
 
Definition 2.13 [22] Let (X , M, N) be an intuitionistic fuzzy  metric space .   
We say that  (X, M, N) satisfy the property (IFHE) if there exists   sequences {ݔ௡}  , {ݕ௡}  such that   
lim௡→ஶܯ( ݔ௡, x , t ) = 1,  lim௡→ஶܰ( ݔ௡, x , t ) = 0, 
and 
lim௡→ஶݕ )ܯ௡ , x , t ) = 1,  lim௡→ஶܰ( ݕ௡ , x , t ) = 0 , 
Implies that lim௡→ஶ M( ݔ௡ ௡ݔ )௡ , t ) = 1,  lim௡→ஶܰݕ	,	  . ௡, t ) = 0ݕ 	 ,	
 
Remark 2.6 Let Ф be the sets of increasing and continuous and Ψ be the sets of decreasing and continuous function ߮,ߖ ∶
[0, 1] → [0, 1] such that (߮)  > t and (	ߖ	)߮ > t for all ∈ (0, 1) . 
 
3. Main Results 
Theorem 3.1 Let(X, M, N,∗,◊) be an intuitionistic fuzzy symmetric space, which satisfies (IFW.1) and (IFHE). Let ݂ and ݃ be two 
weak compatible self mappings of an IFM-space (X, M, N, ) such that  
(3.1.1)   ݂ܺ ⊂ ݃ܺ , 
(3.1.2)  ݂ and ݃ satisfy the property (IFEA), 
 
(3.1.3) 		M(	݂x, ݂y, kt) ≥ M(	݃x,݃y, t)and	N(	݂x,݂y, kt) ≤ N(	݃x,݃y, t)	, k ≥ 0 , 

,x݂)ܯ		(3.1.4) ݂݂x, t) > ߮(݉݅݊ ቐ
M(݃݃x,݂݃x, t), sup୲భା୲మୀమౡ	୲

	min{M(݂x,݃x, tଵ), M(݃x, f ଶx, tଶ)},

sup୲యା୲రୀమౡ	୲
	max{M(f ଶx,݂݃x, tଷ), M(݂x,݂݃x, tସ)} ቑ and 

 

,ݔ݂)ܰ ,ݔ݂݂ (ݐ < ቐݔܽ݉)ߖ
,ݔ݂݃,ݔ݃݃)ܰ ,(ݐ ௧	௧భା௧మୀమೖ݌ݑݏ

,ݔ݃,ݔ݂)ܰ}݊݅݉	 ,ݔ݃)ܰ,(ଵݐ ݂ଶݔ, ,{(ଶݐ

௧	௧యା௧రୀమೖ݌ݑݏ
,ݔ݂݃,ݔଶ݂)ܰ}ݔܽ݉	 ݔ݂)ܰ,(ଷݐ ,ݔ݂݃, {(ସݐ ቑ   

Whenever 	݂ݔ ≠ ݂ଶݔ , for all ݕ,ݔ ∈ ܺ, ݐ > 0. If the range of ݂  or ݃ is a complete subspace of X. then ݂ and ݃  have a common 
fixed point . 
Proof: Since ݂ and ݃ satisfy the property (IFE.A) there exists a sequence {x୬} in X such that   
lim௡→ஶݔ݂ )ܯ௡ , z , t ) = 1,  lim௡→ஶ  .0 = ( ௡, z , tݔ݂ )ܰ
and 
lim௡→ஶܯ( ݃ݔ௡, z, t ) = 1,  lim୬→ஶ N(gx୬, z, t ) = 0, 
and for some ݖ ∈ ܺ. By (IFHE), it follows 
lim௡→ஶܯ(݂ݔ௡ , ݃ݔ௡,   t ) = 1,	lim୬→ஶ N(fx୬ , 	gx୬ ,t ) = 0. 
Suppose that ݃X is a complete subspace of X. Then z = ݃ݑ for some ݑ ∈ ܺ. 
If ݂ݑ ≠  , ௡ and y = uݔ = Then, Using (3.1.3) putting x .ݑ݃
௡ݔ݂)ܯ ,ݑ݂, (ݐ݇ ≥ ௡ݔ݃)ܯ ,ݑ݃, ௡ݔ݂)ܰ	݀݊ܽ(ݐ (ݐ݇,ݑ݂, ≤ ,ݑ݃,௡ݔ݃)ܰ  ,(ݐ
taking limit as ݊ → ∞, we get 
,ݑ݃)ܯ (ݐܭ,ݑ݂ ≥ ,ݑ݃,ݑ݃)ܯ (ݐܭ,ݑ݂,ݑ݃)ܰ	݀݊ܽ(ݐ ≤ ,ݑ݃,ݑ݃)ܰ    (ݐ
Therefore by lemma 2.5݂ݑ =  .ݑ݃
Since ݂ and ݃ are weakly compatible so ݂݃ݑ = ݑ݂݃ and therefore ݑ݂݃ = ݑ݂݂ = ݑ݂݃ =   ݑ݃݃
If ݂݂ݑ ≠  ଴ thenݐ = then by contractive condition we have, Using (3.1.4) putting x = u and t ݑ݂
 

,ݑ݂݂,ݑ݂)ܯ (଴ݐ > ߮(݉݅݊ ቐ
,ݑ݂݃,ݑ݃݃)ܯ ,(଴ݐ ݌ݑݏ

௧భା௧మୀ
ଶ
௞	௧బ

,ݑ݃,ݑ݂)ܯ}݊݅݉	 ,ݑଶ݂,ݑ݃)ܯ,(ଵݐ ,{(ଶݐ

݌ݑݏ
௧యା௧రୀ

ଶ
௞	௧బ

,ݑ݂݃,ݑଶ݂)ܯ}ݔܽ݉	 ,ݑ݂݃,ݑ݂)ܯ,(ଷݐ {(ସݐ ቑ 
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=	߮(݉݅݊ ቐ
,ݑ݂݂)ܯ ,ݑ݂݂ ,(଴ݐ ݉݅݊ ቄݑ݂,ݑ݂)ܯ, ,ݑଶ݂,ݑቀ݂ܯ,(ߝ ଶ

௞
଴ݐ	 − ቁቅߝ ,

ݔܽ݉	 ቄܯ(݂ଶݑ݂݃,ݑ, ,ݑቀ݂ܯ,(ߝ ,ݑ݂݂ ଶ
௞
଴ݐ	 − ቁቅߝ

ቑ   

and 

,ݑ݂݂,ݑ݂)ܰ (଴ݐ < ቐݔܽ݉)ߖ
,ݑ݂݃,ݑ݃݃)ܰ ,(଴ݐ ݌ݑݏ

௧భା௧మୀ
ଶ
௞	௧బ

,ݑ݃,ݑ݂)ܰ}݊݅݉	 ,ݑଶ݂,ݑ݃)ܰ,(ଵݐ ,{(ଶݐ

݌ݑݏ
௧యା௧రୀ

ଶ
௞	௧బ

,ݑ݂݃,ݑଶ݂)ܰ}ݔܽ݉	 ,ݑ݂݃,ݑ݂)ܰ,(ଷݐ {(ସݐ ቑ 

 

ݔܽ݉)ߖ	= ቐ
,ݑ݂݂,ݑ݂݂)ܰ ,(଴ݐ ݉݅݊ ቄܰ(݂ݑ, ,ݑ݂ ,ݑଶ݂,ݑቀ݂ܰ,(ߝ ଶ

௞
଴ݐ	 − ቁቅߝ ,

ݔܽ݉	 ቄܰ(݂ଶݑ݂݃,ݑ, ,ݑቀ݂ܰ,(ߝ ,ݑ݂݂ ଶ
௞
	 ଴ݐ − ቁቅߝ

ቑ  

 
ߝ	∀ ∈ (0, ଶ

௞
ߝ  ଴), asݐ	 → 0 it follows  

,ݑ݂݂,ݑ݂)ܯ (଴ݐ > ,ݑቀ݂ܯ}߮ ,ݑ݂݂ ଶ
௞
଴ݐ	 − {ቁߝ > ܯ ቀ݂ݑ, ,ݑ݂݂ ଶ

௞
  ଴ቁݐ	

and  
,ݑ݂݂,ݑ݂)ܰ (଴ݐ < ,ݑቀ݂ܰ}ߖ ,ݑ݂݂ ଶ

௞
଴ݐ	 − {ቁߝ < ܰቀ݂ݑ݂݂,ݑ, ଶ

௞
  . ଴ቁݐ	

 
Which is a contradiction .Therefore ݂ݑ = = and ݑ݂݂ ݑ݂݂ = ݑ݂݃ = ݑ݂݃ =   .݃ is a common fixed point of ݂ and ݑ݂ Hence . ݑ݃݃
The case when ݂ܺ is a complete subspace of X is similar to the above since ݂ܺ ⊂ ݃ܺ, this completes the proof of the theorem. 
 
Theorem 3.2 Let (X, M, N,∗,◊) be an intuitionistic fuzzy symmetric space, which satisfies (IFW.1) , (IFW.2) , (IFE.A) and (IFHE). 
Let f, g, h and ℓ be self mappings of ( X, M, N) such that  
(3.2.1)	݂ܺ ⊂ ℎܺ, ݃X ⊂ ℓܺ , 

,ݕ݃,ݔ݈)ܯ	(3.2.2)  (ݐ > ߮(݉݅݊ ൝
,ݔℓ)ܯ ℎݕ, ,(ݐ ௧	௧భା௧మୀమೖ݌ݑݏ

,ݕ݃,ݔ݂)ܯ}݊݅݉	 ,ݕℎ)ܯ,(ଵݐ ℓݔ, ,{(ଶݐ

௧	௧యା௧రୀమೖ݌ݑݏ
,ݕ݃,ݕℎ)ܯ}ݔܽ݉	 ݔℓ)ܯ,(ଷݐ ,ݔ݃, {(ସݐ ൡ 

And 
 

,ݕ݃,ݔ݈)ܰ (ݐ < ݔܽ݉)ߖ ൝
ܰ(ℓݔ, ℎݕ, ,(ݐ ௧	௧భା௧మୀమೖ݌ݑݏ

,ݕ݃,ݔ݂)ܰ}݊݅݉	 ,ݕଵ),ܰ(ℎݐ ℓݔ, ,{(ଶݐ

௧	௧యା௧రୀమೖ݌ݑݏ
,ݕ݃,ݕℎ)ܰ}ݔܽ݉	 ݔଷ),ܰ(ℓݐ ,ݔ݃, {(ସݐ ൡ   

 
for all ݕ,ݔ ∈ ܺ, ݐ > 0. If the range of the one of the mappings݂݃, ݃,ℎ	ݎ݋	ℓ  is a complete subspace of X, then ݂, ݃, ℎ	ܽ݊݀	ℓ have 
a unique common fixed point and the fixed point is discontinuity. 
 
Proof: Suppose that (݃,ℎ)satisfies the property (IFE.A) then there exists a sequence  {x୬} in X such that      
lim୬→ஶ M(gx୬ , y,   t ) = 1,	lim୬→ஶ N(gx୬ , y, t ) = 0.  
and 
lim୬→ஶ M(hx୬ , y,   t ) = 1,	lim୬→ஶ N(hx୬ , y, t ) = 0. 
for some y ∈ X . Since ݃X ⊂ ℓܺ there exists {y୬} such that ݃ݔ௡ = 	ℓݕ௡.Therefore, 
lim୬→ஶ M(ℓy୬ , y, t ) = 1,	lim୬→ஶ N(ℓy୬ , y, t ) = 0.  
We claim that 
lim୬→ஶ M(fy୬ , y,   t ) = 1,	lim୬→ஶ N(fy୬ , y, t ) = 0.    
Using (3.2.2) putting  x= ݕ௡ , y = 	ݔ௡, and t = ݐ଴  then , 

௡ݕℓ)ܯ ௡ݔ݃, , t଴) > ߮(݉݅݊ቐ
௡ݕℓ)ܯ ,ℎݔ௡ , ଴ݐ 		), ݌ݑݏ

௧భା௧మୀ
ଶ
௞	௧బ		

௡ݕ݂)ܯ}݊݅݉	 ,௡ݔ݃, ௡ݕ௡,ℓݔℎ)ܯ,(ଵݐ , ,{(ଶݐ

௧బ	௧యା௧రୀଶ௞݌ݑݏ 		
௡ݔℎ)ܯ}ݔܽ݉	 ௡ݔ݃, , ௡ݕℓ)ܯ,(ଷݐ ௡ݕ݃, , {(ସݐ ቑ 

 

= ߮(݉݅݊ ቐ
௡ݕℓ)ܯ ,ℎݔ௡ , ,(		଴ݐ ݉݅݊ ቄݕ݂)ܯ௡,݃ݔ௡ ௡ݔቀℎܯ,(ߝ, ,ℓݕ௡, ଶ

௞
଴ݐ	 − ቁቅߝ ,

ݔܽ݉	 ቄܯ(ℎݔ௡,݃ݔ௡, ܯ,(ߝ ቀℓݕ௡ ௡ݕ݃, , ଶ
௞
଴ݐ	 − ቁቅߝ

ቑ 

And 
 

ܰ(ℓݕ௡,݃ݔ௡, ଴ݐ 		) < ݔܽ݉)ߖ ൝
ܰ(ℓݕ௡ ,ℎݔ௡ , ଴ݐ 		), 		௧బ	௧భା௧మୀమೖ݌ݑݏ

௡ݔ݃,௡ݕ݂)ܰ}݊݅݉	 , ௡ݕ௡,ℓݔଵ),ܰ(ℎݐ , ,{(ଶݐ

		௧బ	௧యା௧రୀమೖ݌ݑݏ
,௡ݔ݃,௡ݔℎ)ܰ}ݔܽ݉	 ௡ݕଷ),ܰ(ℓݐ ௡ݕ݃, , {(ସݐ ൡ   
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ݔܽ݉)ߖ = ቐ
ܰ(ℓݕ௡, ℎݔ௡ , ,(		଴ݐ ݉݅݊ ቄܰ(݂ݕ௡ ௡ݔ݃, ௡ݕ௡,ℓݔቀℎܰ,(ߝ, , ଶ

௞
	 ଴ݐ − ቁቅߝ ,

ݔܽ݉	 ቄܰ(ℎݔ௡ ௡ݔ݃, , ௡ݕቀℓܰ,(ߝ ௡ݕ݃, , ଶ
௞
଴ݐ	 − ቁቅߝ

ቑ 

for all ߝ	0) ߳, ଶ
௞
 it follows 0 → ߝ ଴), asݐ	

 

௡ݕℓ)ܯ ௡ݔ݃, , (଴ݐ > ߮ ൜ܯ ൬ℓݕ௡ ௡ݕ݃, ,
2
݇
ൠ	଴൰ݐ	 > ܯ	 ൬ℓݕ௡ ௡ݕ݃, ,

2
݇
଴൰ݐ	

ܽ݊݀		

ܰ(ℓݕ௡,݃ݔ௡ , ଴ݐ 		) < ߖ ൜	ܰ൬ℓݕ௡ ௡ݕ݃, ,
2
݇
଴൰ൠݐ	 < ܰ൬ℓݕ௡,݃ݕ௡ ,

2
݇
⎭଴൰ݐ	

⎪
⎬

⎪
⎫

 

 
Therefore   ℓݕ௡ =  . ௡ݔ݃	
Letting n → ∞ , by (IFHE), it follows 
lim୬→ஶ M(fy୬ , gx୬,   t ) = 1,	lim୬→ஶ N(fy୬ ,	gx୬ , t ) = 0. 
Hence by (IFW.2), one has  
lim୬→ஶ M(fy୬ , y,   t ) = 1,	lim୬→ஶ N(fy୬ , y, t ) = 0. 
Assume that ℓܺ is a complete subspace of X. Then y = ℓݑ for some u ∈ X. Consequently. 
lim୬→ஶ M(gx୬ ,ℓu, t) = lim୬→ஶ M(hx୬ ,ℓu, t) = lim୬→ஶ M(ℓy୬ ,ℓu ,t) = lim୬→ஶ M(fy୬, ℓu ,  t) = 1. 
and  
lim୬→ஶ N(hx୬ ,	ℓu, t) =	lim୬→ஶ N(ℓy୬ ,	ℓu, t) = lim୬→ஶ N(fy୬ ,	ℓu,t) =	lim୬→ஶ N(gx୬ ,	ℓu, t) = 0.  
Now Using (3.2.2), it follows putting  ݕ௡  = u. Then  

௡ݔ݃,ݑℓ)ܯ , (଴ݐ > ߮(݉݅݊ ቐ
௡ݔℎ,ݑℓ)ܯ , ଴ݐ 		), ݌ݑݏ

௧భା௧మୀ
ଶ
௞	௧బ		

,௡ݔ݃,ݑ݂)ܯ}݊݅݉	 ,ݑ௡,ℓݔℎ)ܯ,(ଵݐ ,{(ଶݐ

݌ݑݏ
௧యା௧రୀ

ଶ
௞	௧బ		

,௡ݔ݃,௡ݔℎ)ܯ}ݔܽ݉	 ,ݑ݃,ݑℓ)ܯ,(ଷݐ {(ସݐ ቑ 

 

= ߮(݉݅݊ ቐ
,ݑℓ)ܯ ℎݔ௡ , ,(		଴ݐ ݉݅݊ ቄݔ݃,ݑ݂)ܯ௡ ௡ݔቀℎܯ,(ߝ, ,ℓݑ, ଶ

௞
଴ݐ	 − ቁቅߝ ,

ݔܽ݉	 ቄܯ(ℎݔ௡ ௡ݔ݃, ,ݑ݃,ݑቀℓܯ,(ߝ, ଶ
௞
଴ݐ	 − ቁቅߝ

ቑ 

 
I      and 

ܰ(ℓݔ݃,ݑ௡ , ଴ݐ 		) < ݔܽ݉)ߖ ൝
ܰ(ℓݑ,ℎݔ௡ , ଴ݐ 		), 		௧బ	௧భା௧మୀమೖ݌ݑݏ

௡ݔ݃,ݑ݂)ܰ}݊݅݉	 , ,ݑ௡,ℓݔଵ),ܰ(ℎݐ ,{(ଶݐ

		௧బ	௧యା௧రୀమೖ݌ݑݏ
௡ݔℎ)ܰ}ݔܽ݉	 ௡ݔ݃, , ,ݑ݃,ݑଷ),ܰ(ℓݐ {(ସݐ ൡ   

 

ݔܽ݉)ߖ = ቐ
ܰ(ℓݑ, ℎݔ௡, ,(		଴ݐ ݉݅݊ ቄܰ(݂ݔ݃,ݑ௡ ,ݑ௡,ℓݔቀℎܰ,(ߝ, ଶ

௞
଴ݐ	 − ቁቅߝ ,

ݔܽ݉	 ቄܰ(ℎݔ௡ ௡ݔ݃, ,ݑ݃,ݑቀℓܰ,(ߝ, ଶ
௞
଴ݐ	 − ቁቅߝ

ቑ 

 
for all ߝ	0) ߳, ଶ

௞
 it follows 0 → ߝ ଴), asݐ	

௡ݔ݃,ݑℓ)ܯ , (଴ݐ > ߮ቄܯ ቀℓݕ݃,ݑ௡ , ଶ
௞
௡ݕ݃,ݑቀℓܯ <	ቅ	଴ቁݐ	 , ଶ

௞
 ଴ቁݐ	

																				ܽ݊݀	 
ܰ(ℓݔ݃,ݑ௡ , ଴ݐ 		) < ௡ݕ݃,ݑቀℓܰ}	ߖ , ଶ

௞
{଴ቁݐ	 < ܰቀℓݕ݃,ݑ௡, ଶ

௞
 , ଴ቁݐ	

Implies that ݕ௡ =  . ௡ݔ݃	
Letting n → ∞ , by (IFHE), it follows 
lim୬→ஶ M(fu , gx୬,   t ) = 1,	lim୬→ஶ N(fu ,	gx୬ , t ) = 0. 
By (IFW.1), one has ݂ݑ = ℓݑ. The weak compatibility of  ݂ and ℓ	implies	that	 ݂ℓݑ = ℓ݂ݑ and  
then ݂݂ݑ u = ݂ℓݑ = ℓ݂ݑ = ℓℓݑ. 
Similarly ݂ܺ ⊂ ℎܺ  is also satisfies   for the condition (3.2.2) . 
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