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1. Introduction 
We consider two-phase Mx/M/1 queuing system with N-policy, server breakdowns and balking. Customers arrive in batches 
according to a Poisson process and receive batch service in first phase and individual service in second phase. The server is turned 
off each time the system empties, as and when the queue length reaches or exceeds N (threshold) batch service starts. Before the 
batch service, the system requires a random startup time for pre-service. When the number of customers in the queue is less than 
or equal to N-1, the server is in vacation, when the number of customers in the queue is greater than or equal to  N, it goes to a 
startup period for pre service. Arrivals during pre-service are also allowed to enter the batch. As soon as the startup period is over 
the server starts the batch service followed by individual service to all customers in the batch. During both batch as well as 
individual services, the server may breakdown at any time according to a Poisson process and if the server fails, it is immediately 
sent for repair. After repair the server resumes service. In the present chapter we have introduced the phenomenon of balking in a 
vacation as well as working queueing model. It can be commonly visualized that some customers may not enter the queue on 
finding the system down or the server is absent from the system while others; some may leave the queue system by seeing the 
long length of the queue,which is known as balking. 
Two-phase queuing systems have been discussed in the past for their applications in various areas, such as computer, 
communication, manufacturing, and other stochastic systems. In many computer and communication service systems, the situation 
in which arriving packets receive batch mode service in the first phase followed by individual services in the second phase is 
common. As related literature we should mention some papers [3,8,11,17] arising from distributed system control where all 
customers receives batch mode service in the first phase followed by individual service in the second phase 
Vacation queueing theory was developed as an extension of the classical queueing theory. The vacations may represent server 
working on some supplementary jobs, performing server maintenance inspection and repairs, or server's failures that interrupt the 
customer service. Furthermore, allowing servers to take vacations makes queueing models more flexible in finding optimal service 
policies. Therefore, queues with vacations or simply called vacation models attracted great attention of queueing researchers[  
9,13,16,19 ] and became an active research area. Miller was the first to study a queueing system in which the server becomes idle 
and is unavailable during some random length of time for the M/G/1 queueing system. 
The subject of queueing systems wherein the server is subject to breakdowns from time to time is a popular subject which has 
received a lot of focus for the last five decades. In many real systems, the server may meet unpredictable breakdowns or any other 
interruptions. Understanding the behaviour of the unreliable server which includes the effect of machine breakdowns and repairs 
in these systems is important as this affects not only the system’s efficiency but also the queue length and the customer’s waiting 
time in the queue. Therefore, queueing models with server breakdowns are more realistic representation of the system. These are 
the most popular models which have attracted extensive researcher attention [ 17,18] over the past fifty years. 
Research studies on queues with batch arrival and vacations have been increased tremendously and still many researchers [ 1,10 ] 
have been developing on the theory of different aspects of queuing. 
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The concept of customer impatience has been studied in 1950's. Haight (1957) has first studied about the concept of customer 
behaviour called balking, which deals the reluctance of a customer to join a queue upon arrival, since then a remarkable attention [ 
5,7,12,14 ] has been given on many queueing models with customer impatience. 
However, to the best of our knowledge, for two –phase queueing systems with N-Policy, server breakdowns, there is no literature 
which takes customers' impatience into consideration. This motivates us to study a two-phase queueing system with N-policy, 
server start-up, breakdowns and balking. Thus, in this present paper, we consider two-phase MX/M/1 queueing system with 
server Start-up, N-Policy, unreliable server and Balking where customers become impatient when the server is unavailable.  
The article is organized as follows. A full description of the model is given in Section. 2. The steady-state analysis of the system 
state probabilities is performed through the generating in Section. 3 while some, very useful for the analysis, results on the 
expected number of customers in different states  are given in Section. 4. In Section. 5 the characteristic features of the system are 
investigated. Optimal control policy is explained in section.6, while, in Section. 7, numerical results are obtained and used to 
compare system performance under various changes of the parameters through sensitivity analysis. Finally, the conclusions are 
presented in section .8. 
The main objectives of the analysis carried out in this paper for the optimal control policy are: 

 to establish the steady state equations and obtain the steady state probability distribution of the number of customers in 
the system in each state. 

 to derive expressions for the expected number of customers in the system when the server is in vacation, in startup, in 
batch service (working and broken conditions) and in individual service (working and broken conditions) respectively. 

 to formulate the total expected cost functions for the system, and determine the optimal value of the control parameter N.  
 to carry out sensitivity analysis on the optimal value of N ,Expected length of the system and the minimum expected cost 

for various system parameters through numerical experiments.       
 
2 The System and Assumptions 
We consider the Mx/M/1 queueing system with server startup, two phases of service, unreliable server and balking, where the 
unreliable server operates under N-policy with the following assumptions: 

 The arrival process is a compound Poisson process (with rate λ ) of independent and identically distributed random 
batches of customers, where each batch size X, has a probability density  function {an: an = P(X=n), n≥1}. Batches are 
admitted to service on a first come first service basis. 

 The service is in two phases. The first phase of service is batch service to all customers waiting in the queue. On 
completion of batch service, the server immediately proceeds to the second phase to serve all customers in the batch 
individually. Batch service time is assumed to follow exponential distribution with mean 1/훽 which is independent of 
batch size. Individual service times are assumed to be exponentially distributed with mean 1/휇. On completion of 
individual service, the server returns to the batch queue to serve the customers who have arrived. If the customers are 
waiting, the server starts the batch service followed by individual service to each customer in the batch. If no customer is 
waiting the server takes a vacation. 

 Whenever the system becomes empty, the server is turned off. As soon as the total number of arrivals in the queue 
reaches or exceeds the pre-determined threshold N, the server is turned on and is temporarily unavailable for the waiting 
customers. The server needs a startup time which follows an exponential distribution with mean 1/θ. As soon as the 
server finishes startup, it starts serving the first phase of waiting customers. 

 The customers who arrive during the batch service are also allowed to join the batch queue which is in service.  
 The breakdowns are generated by an exogenous Poisson process with rates ξ1 for the first phase of service and 훼1 for the 

second phase of service.  When the server fails it is immediately repaired at a repair rateξ2 in first phase and α2 in 
secondphase, where the repair times are exponentially distributed. After repair the server immediately resumes the 
concerned service.   

 A customer may balk from the queue station with probability b0 when the server is in vacation or may balk with a 
probability b1when the server is in service mode due to impatience.  

 
3 Steady-State Analyses 
In steady – state the following notations are used. 

 푝 , ,  = The probability that there are i customers in the batch queue when the server is on vacation, where i = 
0,1,2,3,…,N-1 

 푝 , ,  = The probability that there are i customers in the batch queue when the server is doing pre-service (startup work), 
where i = N, N+1, N+2,… 

 푝 , ,  = The probability that there are i customers in the batch queue when the server is in batch service where i = 1,2,3,…   
 푝 , , = The probability that there are i customers in batch queue when the server is working but found to be broken down, 

where i = 1,2,3,…   
 푝 , ,  = The probability that there are i customers in the batch queue and j customers in individual queue when the server 

is in individual service,where i=0,1,2… and j=1,2,3,… 
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 푝 , ,  =   The probability that there are i customers in the batch queue and j customers in individual queue when the server 
is working but found to be broken down, where i = 0,1,2,… and j = 1,2,3, … 

 
The steady-state equations governing the system size probabilities are as follows: 
휆푏 푝 , , = µ푝 , , .  (1)휆푏 푝 , , = 휆푏 ∑ 푎 푝 , , 	; 1 ≤ 푖 ≤ 푁 − 1.  (2)(휆푏 + 휃)푝 , , =
휆푏 ∑ 푎 푝 , , .   (3)(휆푏 + 휃)푝 , , = 휆푏 ∑ 푎 푝 , , + 휆푏 ∑ 푎 푝 , , ; 푖 > 푁.(4)(휆푏 + 훽 +
휉 )푝 , , = 휆푏 ∑ 푎 푝 , , + 휇	푝 , , + 휉 푝 , , 	; 1 ≤ 푖 ≤ 푁− 1.(5)(휆푏 + 훽 + 휉 )푝 , , = 휆푏 ∑ 푎 푝 , , + 휇	푝 , , +
휉 푝 , , + 휃푝 , , ; 푖 ≥ 푁.                    (6)                                          (휆푏 + 휉 )푝 , , = 휆푏 ∑ 푎 푝 , , + 휉 푝 , , 	; 푖 ≥ 1.  
(7)(휆푏 + 훼 + µ)푝 , , = µ푝 , , + 훽푝 , , + 훼 푝 , , ; 푗 ≥ 1.(8)                                     (휆푏 + 훼 + µ)푝 , , = µ푝 , , +
휆푏 ∑ 푎 푝 , , + 훼 푝 , , ; 푖, 푗 ≥ 1.(9)(휆푏 + 훼 )푝 , , = 훼 푝 , , ; 푗 ≥ 1 .       (10)(휆푏 + 훼 )푝 , , = 훼 푝 , , +
휆푏 ∑ 푎 푝 , , ; 푖, 푗 ≥ 1.(11) 
 
To obtain the analytical closed expression of푝 , , , the technique of probability generating function can be successfully applied 
as detailed below. Define probability generating functions associated with marginal queue size distributions as follows: 
퐺 (푧) = ∑ 푝 , , 푧   ,     퐺 (푧) = ∑ 	푝 , , 푧∞ , 
퐺 (푧) = ∑ 	푝 , , 푧∞  ,    퐺 (푧) = ∑ 	푝 , , 푧 ,∞  
퐺 (푧,푦) = ∑ ∑ 	푝 , , 푧∞ 푦∞      ,   퐺 (푧, 푦) = ∑ ∑ 	푝 , , 푧∞ 푦∞

 and푅 (푧) = ∑ 푝 , , 푧∞ . 
 
Let 퐴(푧) = ∑ 푎 푧∞  be the probability generating function of the arrival batch size random variable X and 
퐴′(푧)푎푛푑	퐴"(푧)represent the first and second order derivatives of A(z) respectively.  
Using equation (2), we get  
푝 , , = 푦 푝 , , , 
where푦푖	′푠 are defined as 푦 = 1 and푦 = ∑ 푎 푦  ,i = 1,2,3,…,N-1. 
퐺 (푧) = ∑ 푝 , , 푧 = 푝 , , ∑ 푦 푧 = 푝 , , 푦 (푧)(12)  
where푦 (푧) = ∑ 푦 푧 with 푦 (1) = ∑ 푦 and푦 ′ (1) = ∑ 푖푦 . 
Multiplication ofequations (3) and (4) by zi and adding over i(i N) gives		(휆푏 (1− 퐴(푧)) + 휃)퐺 (푍) = 휆푏 퐺 (푧)(퐴(푧) − 1) +
휆푏 푝 , , .(13) 
 Multiplication of equations (5) and (6) by zi and adding over i (i 1) gives(휆푏 (1 −퐴(푧)) +  + ξ )	퐺 (푍)=ξ 퐺 (푧) +

 푅 (푧) +  퐺 (푧) − 	휆푏 푝 , , .(14) 
Multiplication of equation (7) by zi and adding over i (i 1) gives(휆푏 (1 − 퐴(푧)) + ξ )	퐺 (푍)=ξ 퐺 (푧).(15) 

Multiplication of equations (8) and (9) by 푧 푦  and adding over Corresponding values of i and j gives 휆푏 푦(1 − 퐴(푧)) + α y−

 (1 − y) 퐺 (푧, 푦) = α 퐺 (푧, 푦) +  퐺 (푦) −  푅 (푧) 푦.            (16) 

Multiplication of equations (10) and (11) by 푧 푦  and adding overCorresponding values of i and j gives  (휆푏 (1− 퐴(푧)) +
α )퐺 (푧,푦) = α 퐺 (푧,푦).(17) 
The total probability generating function G(z, y) is given by퐺(푧,푦) = 퐺 (푧) + 퐺 (푧) + 퐺 (푧) + 퐺 (푧) + 퐺 (푧,푦) + 퐺 (푧,푦).(18) 
The normalizing condition is 
퐺(1,1) = 퐺 (1) + 퐺 (1) + 퐺 (1) + 퐺 (1) + 퐺 (1,1) + 퐺 (1,1) = 1.                           (19) 
From equations (12) to (19)  
		퐺 (1) = 푦 (1)푝 , , ,    (20) 
	퐺 (1) = 푝 , , ,     (21)       		퐺 (1) = µ 푅 (1),                                                                                                                         
(22)                          
		퐺 (1) = 퐺 (1),                                                                                                          (23) 

퐺 (1,1) =   
, ( ) µ ′ ( )

µ ′( )( )  

=
′( ) , ,

( ) ′( )( ) ( )

µ ′( )( ) 	,                                                      (24) 

퐺 (1,1)= 퐺 (1,1).(25) 
The normalizing condition (19) gives,   
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푅 (1) =
, , ( ) ( ) ( )

( )
 , 

where 푡 = µ훼 − 휆푏 퐴′(1)(훼 + 훼 )  . 
Substituting the value of R1(1) from (22) to (25) gives G2(1), G3(1), G4(1,1)andG5 (1,1).      
Probability that the server is neither in batch service nor in individual service is givenby 

퐺 (1) + 퐺 (1) = 1−퐴′(1) 1 + + 1 + . 

This gives  

 
푝 , , = (1− 휌)

( ( ) )
.                 (26) 

Where  휌 = 1 + + 1 +    is the utilizing factor of the system. 

From Equation (26) we have ρ < 1, which is the necessary and sufficient condition under which steady state solution exits. 
Under steady state conditions, let 푝 ,푝 ,푝 ,푝 ,푝 ,	푎푛푑	푝 be the probabilities that the server is in vacation, startup, in batch service, 
in batch service with break down, in individual service and in individual service with breakdown states respectively. Then, 
푝 = 퐺 (1),                                                                                                                     (27)                                                        
푝 = 퐺 (1),(28) 
푝 = 퐺 (1) ,(29) 
푝 = 퐺 (1) ,(30) 
푝 = 퐺 (1,1),(31) 
푝 = 퐺 (1,1). (32)                                                       
 
4. Expected Number of Customers at Different States of the Server  
Using the probability generating functions expected number of customers in the system at different states are presented below.                                                                                
Let L0, L1, L2, L3, L4 and L5 be the expected number of customers in the system when the server is in idle, startup, batch service, 
break down in batch service, individual service and break down in individual states respectively. 
Then 
퐿 = ∑ 	푖	푝 , , = 퐺 ′ (1) = 푦 ′ (1)푝 , , ,                             (33) 

퐿 = ∑ 	푖	푝 , ,
∞ = 퐺 ′ (1) = 

′( )( ( ) ) 푝 , , ,(34) 
퐿 = ∑ 	푖	푝 , ,

∞ = 퐺 ′ (1)          

      =
′( )( ) ( ) ′ ( ) 휇훼 ,                             (35)    퐿 = ∑ 	푖	푝 , ,

∞ = 퐺 ′ (1) = ( ′ ( ) ′( ) ( )) , (36) 

퐿 = ∑ ∑ (푖 + 푗)∞ 푝 , ,
∞ = 퐺 ′ (1,1)        

 
      =

" ( ) " ( ) ′( ) ′ ( ) ′ ( )
 

-
( , )( ′( ) 	 "( ) ( ) ′( )( ))

	, (37) 

퐿 = ∑ ∑ (	푖 + 푗)	푝 , ,
∞∞ = 퐺 ′ (1,1)  

 

 
The expected number of customers in the system is given by 

 
5 Characteristic features of the system 
In this section, we obtain the expected system length when the server is in different states. Let 퐸 ,퐸 ,퐸 ,퐸 ,퐸 	푎푛푑	퐸 denote the 
expected length of vacation period,  startup period, batch service period , batch service breakdown period, individual service 
period, and breakdown period during individual service respectively. Then the expected length of a busy cycle is given by

 
 

The long run fractions of time the server is in different states are as follows: 
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Expected length of vacation period is given by 

 
 
6. Optimal Control Policies  
In this section, we determine the optimal value of N that minimizes the long run average cost of two- phase MX/M/1, N-policy 
queue with server break downs with balking. To determine the optimal value of N we consider the following linear cost structure.  

 
Where 

 
 
For the determination of the optimal operating N-policy, minimize T (N) in equation48. 
An approximate value of the optimal threshold N* can be found by solving the equation 

0
dN

(N)dT

*

1 
NN

  (49) 

MATLAB software is used to develop the computational program. 
We can consider different batch size distributions like deterministic, Positive Poisson, Geometric etc. 
Where  
Here the Geometric distribution is assumed. 
For the Geometric batch size distribution, the generating function is     
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7. Sensitivity Analysis 
In order to verify the efficiency of our analytical results, we perform numerical experiment by using MATLAB. The variations of 
different parameters (both monetary and non-monetary) on the optimal threshold N*, mean number of jobs in the system and 
minimum expected cost are shown. By fixing    
The non-monetary parameters as 
λ=0.5,µ=8,α1=0.2,α2=3.0,ξ1=0.2,ξ2=0.3,θ=6,β=12,b0=0.4 and b1=0.2,p=0.2 
and monetary parameters as 
Cr=15,Cb1=50,Cb2=75,Cb=15,Cm=200,Ch=5 and Cs=1000,We perform the sensitivity analysis. 
 
7.1. Effect of variation in the non-monetary parameters 
 
(i)Variation in λ 
For specified range of values of λ the optimal threshold N*, the mean number of customers in the system L (N*) and minimum 
expected cost T(N*) are presented in figure 1 . 
 

 
Figure 1: Effect of λ on N*, expected system length and minimum expected cost 

 
It is observed from figure 1 thatwith increase in the values of λ, 
 N* is increasing. 
 Mean number of customers in the system is convex function. 
 Minimum expected costs convex function. 

 
(ii)Variation in μ 
For specified range of values of μ the optimal threshold N*, the mean number of customers in the system L (N*) and minimum 
expected cost T (N*) are presented in figure 2. 
 

 
Figure 2: Effect of μ on N*, expected system length and minimum expected cost 

 
It is observed from figure 2 thatwith increase in the values of µ, 
 N* is increasing. 
 Mean number of customers in the system is decreasing. 
 Minimum expected cost isdecreasing. 
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 (iii) Variation in α1 
For specified range of values of α1 the optimal threshold N*, the mean number of customers in the system L (N*) and 
minimum expected cost T (N*) are presented in figure 3. 
 

 
Figure 3: Effect of α1 on N*, expected system length and minimum expected cost 

 
It is observed from figure3 that with increase in the values of α1, 
 N* is decreasing. 
 Mean number of customers in the system is slightly increasing. 
 Minimum expected cost is also slightly increasing. 

 
(iv)Variation in α2 
For specified range of values of α2 the optimal threshold N*, the mean number of customers in the system L (N*) and 
minimum expected cost T (N*) are presented in figure 4. 
 

 
Figure 4: Effect of α2 on N*, expected system length and minimum expected cost 

 
It is observed from figure 4 that with increase in the values of α2, 
 N* is increasing. 
 Mean number of customers in the system is decreasing. 
 Minimum expected cost is decreasing. 

 
(v)Variation in ξ1 
For specified range of values of ξ1 the optimal threshold N*, the mean number of customers in the system L(N*) and minimum 
expected cost T(N*) are presented in figure 5 . 
 

 
Figure5: Effect of ξ1 on N*, expected system length and minimum expected cost 
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It is observed from figure 5 that with increase in the values of ξ1 
 N* is slightly increasing. 
 Mean number of customers in the system is decreasing. 
 Minimum expected cost is decreasing. 

 
(vi)Variation in ξ2 
For specified range of values of ξ2 the optimal threshold N*, the mean number of customers in the system L (N*) and 
minimum expected cost T(N*) are presented in figure 6 . 
 

 
Figure 6: Effect of ξ2 on N*, expected system length and minimum expected cost 

 
It is observed from figure 6that with increase in the values of ξ2, 
 N* is decreasing. 
 Mean number of customers in the system is slightly increasing 
 Minimum expected cost is increasing. 

 
(vii) Variation in θ 
For specified range of values of θ the optimal threshold N*, the mean number of customers in the system L (N*) and minimum 
expected cost T(N*) are presented in  figure 7. 
 

 
Figure 7: Effect of θ on N*, expected system length and minimum expected cost 

 
It is observed from figure 7that with increase in the values of θ, 
 N* is slightly decreasing. 
 Mean number of customers in the system is decreasing. 
 Minimum expected cost is decreasing. 
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viii) Variation in β 
For specified range of values of β the optimal threshold N*, the mean number of customers in the system L (N*) and 
minimum expected cost T(N*) are presented in figure8 . 
 

 
Figure 8: Effect of β on N*, expected system length and minimum expected cost 

 
It is observed from figure 8that with increase in the values of β, 

    N* is increasing. 
    Mean number of customers in the system isincreasing. 
    Minimum expected cost isincreasing. 

 
ix)Variation in b0 
For specified range of values of b0 the optimal threshold N*, the mean number of customers in the system L (N*) and 
minimum expected cost T(N*) are presented in figure 9 . 
 

 
Figure 9: Effect of b0on N*, expected system length and minimum expected cost 

 
It is observed from figure 9 that with increase in the values of b0, 

 N* is increasing. 
 Mean number of customers in the system is increasing. 
 Minimum expected costis increasing. 

 
x) Variation in b1 
For specified range of values of b1 the optimal threshold N*, the mean number of customers in the system L (N*) and 
minimum expected cost T(N*) are presented in figure 10 . 
 

 
Figure 10: Effect of b1 on N*, expected system length and minimum expected cost 

 
It is observed from figure 10 that with increase in values of b1, 

     N* is slightly decreasing. 
     Mean number of customers in the system is decreasing. 
    Minimum expected cost is decreasing. 
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xi) Variation in p 
For specified range of values of p the optimal threshold N*, the mean number of customers in the system L (N*) and 
minimum expected cost T(N*) are presented in figure 11 . 

   

 
Figure 11: Effect of p on N*, expected system length and minimum expected cost 

 
It is observed from figure 11 that with increase in the values of p, 

     N* is decreasing. 
     Mean number of customers in the system is decreasing. 
    Minimum expected cost is decreasing. 

 
 
7.2. Effect of variation in the monetary parameters 
 
xii)Variation in Cr 
For specified range of values of Cr the optimal threshold N*, the mean number of customers in the system L (N*) and 
minimum expected cost T(N*) are presented in figure 12 . 
 

 
Figure 12: Effect of Cr on N*, expected system length and minimum expected cost 

 
It is observed from figure 12that with increase in the values of Cr, 

     N* is slightly increasing. 
  Mean number of customers in the system is slightly increasing. 
 Minimum expected cost is decreasing. 

 
xiii)Variation in Cb1 
For specified range of values of Cb1 the optimal threshold N*, the mean number of customers in the system L (N*) 
and minimum expected cost T(N*) are presented in figure 13 . 
 

 
Figure 13: Effect of Cb1 on N*, expected system length and minimum expected cost 

 
It is observed from figure 13 that with increase in the values of Cb1 
 N* is almost insensitive. 
 Mean number of customers in the system is increasing. 
 Minimum expected cost is slightly increasing. 

 
xiv) Variation in Cb2 
For specified range of values of Cb2 the optimal threshold N*, the mean number of customers in the system L (N*) 
and minimum expected cost T(N*) are presented in figure 14. 
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Figure 14: Effect of Cb2on N*, expected system length and minimum expected cost 

 
 It is observed from figure 14 that with increase in the values of Cb2, 
 N* is insensitive. 
 Mean number of customers in the system is almost insensitive. 
 Minimum expected cost is slightly increasing. 

 
xv) Variation in Cb 
For specified range of values of Cb the optimal threshold N*, the mean number of customers in the system L (N*) 
and minimum expected cost T(N*) are presented in figure 15. 
 

 
Figure 15: Effect of Cbon N*, expected system length and minimum expected cost 

 
It is observed from figure15that with increase in the values of Cb, 

    N* is increasing. 
 Mean number of customers in the system is increasing. 
 Minimum expected cost is increasing. 

 
xvi) Variation in Cm 
 For specified range of values of Cm the optimal threshold N*, the mean number of customers in the system L (N*) 
and minimum expected cost T(N*) are presented in figure 16  . 

 

 
Figure 16: Effect of Cm on N*, expected system length and minimum expected cost 

 
It is observed from figure 16that with increase in the values of Cm, 
 N* is increasing. 
 Mean number of customers in the system is increasing. 
 Minimum expected cost is increasing. 

 
xvii)Variation in CoFor specified range of values of Co the optimal threshold N*, the mean number of customers in 
the system L (N*) and minimum expected cost T (N*) are presented in figure 17. 
 

 
Figure 17: Effect of Co on N*, expected system length and minimum expected cost 
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It is observed from figure 17that with increase in the values of Co, 
 N* is almost insensitive. 
 Mean number of customers in the system is decreasing  
 Minimum expected cost is increasing. 

 
xviii)Variation in ch 
For specified range of values of Ch the optimal threshold N*, the mean number of customers in the system L (N*) 
and minimum expected cost T(N*) are presented in figure 18. 
 

 
Figure 18: Effect of Ch on N*, expected system length and minimum expected cost 

 
It is observed from figure 18that with increase in the values of Ch 

  N* is decreasing. 
  Mean number of customers in the system is decreasing. 
  Minimum expected cost is increasing.

 
xix) Variation in Cs 
For specified range of values of Cs the optimal threshold N*, the mean number of customers in the system L (N*) and 
minimum expected cost T(N*) are presented in figure 19. 
 

 
Figure 19: Effect of Cs on N*, expected system length and minimum expected cost 

 
It is observed from figure 19that with increase in the values of Cs, 

 N* is increasing. 
 Mean number of customers in the system is increasing. 
 Minimum expected cost isincreasing. 

 
8. Conclusion 
 Two–phase N-policy MX/M/1 queueing system with server startup times, breakdowns and balking is studied. 

The closed expressions for the steady state distribution of the number of customers in the system when the 
server is at different states are obtained and hence the expected system length is derived. 

 Total expected cost function for the system is formulated and determined the optimal   value of the control 
parameter N that minimizes the expected cost. 

 Sensitivity analysis is performed to discuss how the system performance measures can be affected by the 
changes of the both non-monetary and monetary input parameters. 
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