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1. Introduction 
Linear recurring sequences find applications in wide array of areas including error correcting codes [3], spread spectrum 
communication [4] and cryptography [2]. 
Multisequence is defined as the sequence of vectors that are extension of a sequence of scalars over the finite field. The generation 
of multisequences using minimal polynomial has been an important problem motivating papers like [8], [9] and [10]. 
In this section first I discuss the basic theory of multisequences and then I implement an algorithm on MATLAB to generate 
multisequences with maximum dimension. 
In the remainder of this section 퐹  denotes a field of cardinality c, where c is a prime power. 퐹 [푠] denotes the ring of polynomials 
in s with coefficients from퐹 . 퐺 푛,퐹 represents the group of all full rank matrices. /S/ denotes the cardinality of any set S. 
 
2. Multisequences 
Let S denotes a sequence in 퐹  as mapping from Z to 퐹 . There exists an integer n such that S (k+n) = S (k) for all k, where n is 
known as period of sequence and sequence S is called periodic sequence. There are linear recurring relations among these periodic 
sequence and defined by relation. 
푆(푘 + 푛) = 	 푎 푆(푘 + 푛 − 1) + 푎 푆(푘 + 푛 − 2) + ⋯+ 푎 푆(푘)	∀	푘	; 	푎 	 ∈	퐹  
Where n is called as order of linear recurring relation. As I have consider periodic sequence only so let 푎  is not equal 0 [15, 
theorem6.11] and polynomial associated with linear recurring relation is푝(푠) = 푠 − 푎 푠 − 푎 푠 −⋯− 푎 . 
For any sequence S, all the polynomials associated with LRR form an ideal in the polynomial ring퐹 [푠]. since 퐹 [푠]  is a principal 
ideal domain, every ideal has a unique monic generating polynomial which is called as minimal polynomial of the sequence S and 
linear complexity of the sequence is defined as the degree of minimal polynomial. 
For a given LRR of degree n, there are various sequences and the collection of all sequences that satisfy this relation form a vector 
space over 퐹 . If the polynomial associated with the LRR is a primitive polynomial of degree n, then every nonzero sequence in 
the corresponding vector space has a period equal to 푞 − 1 ([15, Theorem 6.33]). 
Let a sequence of complexity n having n consecutive elements of the sequence, the vector consisting of n consecutive elements of 
the sequence is called the state vector of the sequence. Let the i-th state vector of the sequence can be denoted by x(i) i.e., x(i) = 
[S(i), S(i + 1), . . . , S(i + n − 1)]. 
Let σS denote the sequence got by shifting the sequence S once to the left i.e., σS(k) = S(k +1). The k-th state vector of σS is 
denoted by σx(k). Therefore σx(k) = x(k + 1). Note that σx(k)= x(k + 1) = x(k)A, where A is the companion matrix of the 
polynomial p(s) and given by: 

퐴 = 	

⎣
⎢
⎢
⎢
⎡0 0
1 0
0 1

0
0
0

0 a
0 a
0 a

⋮ ⋮ ⋱ ⋮				 ⋮
0 0 ⋯ 	1 a ⎦

⎥
⎥
⎥
⎤
∈ 퐹 ×  

This matrix is the companion matrix of the polynomial 푝(푠) = 푠 − 푎 푠 − 푎 푠 −⋯− 푎 . Observe that the 
companion matrix associated to the polynomial is unique. 
 
Similar to sequences, let us define a multisequence in 퐹  as a map from Z to 퐹 . as in the case of scalar sequences, there exist 
LRR between the elements the multisequences. These relations are of the form  
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푊(푘 + 푛) = 	 푎 푊(푘 + 푛 − 1) + 푎 푊(푘 + 푛 − 2) +⋯+ 푎 푊(푘)	∀	푘	;	푎 	 ∈ 	퐹  
Similar to scalar sequences, the polynomials associated to all LRRs of a given periodic multisequence, form an ideal in the 
principal ideal domain 퐹 [푠] and the monic generator of this ideal is called the minimal polynomial of the multisequence. The i-th 
component of each vector in W gives a sequence of scalars in 퐹 . Clearly, the minimal polynomial of the multisequence is the 
least common multiple of the minimal polynomials of the component sequences. Note that multisequence, with linear complexity 
n is completely determined by the first n terms. The state of a multisequence can therefore be thought of as n consecutive elements 
of the multisequence. Each state is thus an 푚 × 푛	matrix. Let the k-th matrix state of the multisequence is denoted by MW(k), i.e. 
MW(k) = [W(k),W(k + 1), . . . ,W(n + k − 1)]. 
Definition 2.1: The column span of the matrix states is defined by an in-variance property for a periodic multisequence. 
Proof. Consider a periodic multisequence W. It is enough to show that colspan(푀 (푘))= colspan(푀 (푘 + 1)), for any given 
integer k. Let the minimal polynomial of the multi- 
sequence be 푝(푠) = 푠 − 푎 푠 − 푎 푠 − ⋯− 푎 . Since 푊(푘 + 푛) = 	 푎 푊(푘 + 푛 − 1) + 푎 푊(푘 + 푛 − 2) +
⋯+ 푎 푊(푘), therefore W(k + n)∈colspan(푀 (푘)). 
Thus, colspan(푀 (푘 + 1))⊆colspan(푀 (푘)). Since 푎 ≠ 0, W(k) = (W(k + n)− 푎 W(k + 1) −푎 W(k + 2)− . . .−푎 W(k + n 
− 1)), i.e., W(k) ∈colspan(푀 (푘 + 1)). Hence colspan(푀 (푘))⊆colspan(푀 (푘 + 1)). 
Therefore colspan(푀 (푘 + 1))= colspan(푀 (푘)). Hence proved. 
Definition 2.2: The dimension of a multisequence W is defined as the rank of its matrix states. 
As in the case of scalar sequences, any nonzero multisequence with a primitive minimal polynomial p(s) of degree n, has a period 
of 푞 − 1. In this paper, let us assume that the multisequences having primitive minimal polynomials are considered only. 
Now one question that comes to mind is that for any given positive integer l and a primitive polynomial p(s) of degree n, how 
many multisequences of dimension l exist in a field with p(s) as its minimal polynomial. 
As we know that two multisequences are considered the same if they are shifted versions of one another let 퐺 푙,푚,퐹  denote the 
collection of l dimensional subspaces of field and the cardinality is given by: 

|	퐺 푙,푚,퐹 |  = ( )( )…( )
…( )

 

Definition 2.3: Given a primitive polynomial p(s) of degree n, the number of multisequences in 퐹 , with minimal polynomial 
p(s), having dimension l is |	퐺 푙,푚,퐹 |  × (푞 − 푞) (푞 − 푞 )… (푞 − 푞 ). 
Proof: For a multisequence W of dimension l, by definition1, the column space of the matrix state 푀 (푘) is a unique l 
dimensional subspace of 퐹 . Note that there are 퐺 푙,푚,퐹  subspaces of퐹  that have dimension l. Consider one such l-
dimensional space V. Let T be the matrix T = [푣 , 푣 , … ,푣 ]. Any M ∈ 퐹 ×  whose column span is V can be written as M = TB; 
B∈ 퐹 × , where no of such matrices B is (푞 − 1) (푞 − 푞)… (푞 − 푞 ). As the polynomial p(s)  is primitive, each 

multisequence has 푞 − 1 distinct matrix states, so number of multisequences with V is equal to ( )	( )…	( ) = (푞 −
푞)(푞 − 푞 ) … 	(푞 − 푞 ).	Therefore, given a primitive polynomial p(s) of degree n, the number of multisequences in 퐹 , with 
minimal polynomial p(s), having dimension l is |	퐺 푙,푚,퐹 |  × (푞 − 푞) (푞 − 푞 )… (푞 − 푞 ).  
If a multisequence in 퐹  has dimension m, its component sequences are linearly independent, and from above Definition 2.3, one 
can give the following corollary to Definition 2.3. 
Corollary: Given a primitive minimal polynomial p(s) of degree n, the number of multisequences in 퐹 , with minimal polynomial 
p(s), having linearly independent component sequences is = (푞 − 푞)(푞 − 푞 ) … 	(푞 − 푞 ). 
 
3. Extension of Multisequences 
Next task is to extend multisequence W to a new sequence V whose dimension is greater than W. Further let’s assume that 
minimal polynomial of both the sequences are same and this can be done by appending linear combination of W to it. As we know 
that linear combination is given by 푎 푊 + 푎 푊 + ⋯+ 푎 푊 , thus  푊= ∑ 푎 푊 for j > m, where 푎 ∈퐹 . 
Let R = ( 푟 , … . . , 푟 )∈ 푍 , with∑푟  = r. so the R- extension of the multisequence W in 퐹  as the multisequence 푊  in 퐹 , whose 
component sequences are obtained from the component sequences of W in the following order : 
푊 ,휎푊 , …휎 푊 ,푊 , 휎푊 , … .휎 푊 , …푊 ,휎푊 , …휎 푊 , …푊 ,휎푊 , … 휎 푊  . next question that comes to mind is 
defined as: 
Question 3.1: For R = ( 푟 , … . . , 푟 )∈ 푍 , with∑ 푟  = r, how many multisequences W of rank m in 퐹  give R-extended 
multisequences in 퐹  whose dimension is equal to r? 
Solution: R = ( 푟 , … . . , 푟 )∈ 푍  such that r = ∑푟  and let p(s) be a primitive polynomial of degree n. The number of 
multisequences in 퐹  with minimal polynomial p(s) whose extensions have dimension r is equal to (푞 − 푞 ) (푞 −
푞 ) (푞 − 푞 ).starting with a multisequence in 퐹  with dimension m, let us recursively generate a series of multisequences 
in 퐹  whose R- extension has dimension r. so for the constructive proof to this solution, let prove a few preparatory results. 
For any G = ( 푔 , … . . ,푔 )∈ 푍  let 퐺  = 푚푎푥 푔 . Let 휑 define the following map from 푍  to 푍 . 
휑( 푔 , … . . ,푔 ) = ( 푔 ,푔 	… . . ,푔 ,푔 − 1,푔 , … ,푔 ) where c is the smallest integer such that 푔  = 퐺 . 
One can observe that repeated action of 휑 on any element of 푍  eventually gives 1 = (1,1,…..,1). Hence for given R = 
(푟 , … . . , 푟 )∈ 푍 , 휑 defines a unique path from R to 1 and can be defined as the ‘R- road’. 
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Example: the R- road for R = (3,2,5,4,1) is (3,2,4,4,1) (3,2,3,4,1) (3,2,3,3,1) (2,2,3,3,1) (2,2,2,3,1) (2,2,2,2,1) (1,2,2,2,1) (1,1,2,2,1) 
(1,1,1,2,1) (1,1,1,1,1). 
Clearly given any point G = ( 푔 , … . . ,푔 ) on an R-road, for any other point Q = ( 푞 , … . . , 푞 ) lying on the path from R to G, 
푞 	≥ 푔 ∀	푖 and also note that if 푖 < 푗,푔 > 푔  if and only if 푔 > 푟 . By retracing the R- road from 1 to R, let define following 
definition. 
Definition 3.1: for every point G = ( 푔 , … . . ,푔 ) ≠ R on the R-road, there exists a coordinate 푔  which satisfies at least one of the 
following conditions:  
a) 푔  = 퐺 − 1 and  푔 < 푟  . 
b) 푔  = 퐺  and푔 < 푟 . 
Proof: For every point G = ( 푔 , … . . ,푔 ) ≠ R on the R- road, there exists a unique point H on the R- road such that 휑(H) = G. 
Now, H = ( 푔 ,푔 	… . . ,푔 ,푔 − 1,푔 , … ,푔 ), where 푔 + 1 ≥ 푔 ∀	푖 ≠ c. Also, since H is on the path from R to 1,푔 + 1 ≤
푟 . Therefore, 푔 < 푟 . If 푔 + 1 > 푔 ∀	푖 ≠ c then 푔  =퐺 . If instead, there exists an  푖 such that푔 + 1 = 푔 , then 푔  = 퐺 - 1. 
Hence proved. 
Definition 3.2: consider an R = (푟 , … . . , 푟 )∈ 푍 . For every point G = ( 푔 , … . . ,푔 ) ≠ R, on the R- road the active coordinate is 
defined as follows : 
1. If there exists a coordinate 푔  such that 푔  = 퐺 − 1 and 푔 < 푟 , then the active coordinate is  
the coordinate corresponding to the largest such c. 
2. In the event of there being no 푔  that satisfies point 1, the active coordinate is the coordinate  
corresponding to the largest c such that 푔  = 퐺  and 푔 < 푟 . 
This can be seen that one can traverse the R – road backwards from 1 to R by repeatedly incrementing the active coordinate at 
every point as shown in following example: 
Example: Let R = (3,2,5,4,1). Starting from 1 the R- road backwards as follows: (1,1,1,1,1) (1,1,1,2,1) (1,1,2,2,1) (1,2,2,2,1) 
(2,2,2,2,1) (2,2,2,3,1) (2,2,3,3,1) (3,2,3,3,1) (3,2,3,4,1) (3,2,4,4,1) (3,2,5,4,1). 
Therefore following steps are used to detect the active coordinate of any point G : 
a) Find	퐺 . 
b) Find the largest 푖 such that the 푖 − 푡ℎ coordinate has value 퐺 − 1 and is less than 푟 . 
c) If there is no 푖 satisfying the preceding condition, find the largest 푗 such that the 푗 − 푡ℎ coordinate has value 퐺  and is 
less than 푟 . 
So following observation are made : given a matrix A∈ 퐹 ×  in the companion form and a vector 푥	= (푏 , … . . , 푏 )	∈ 퐹 , for	푘 < 푙, 
푥퐴  has the following form 
푥퐴 = 	 (	푏 , 푏 , … . . ,푏 , ∗,∗, … . . ,∗

	
) 

Where the *s are elements in 퐹 , whose value depend on the matrix A. Therefore, the matrix [푥; 푥퐴; … . ; 	푥퐴 ] has the following 
structure. 
푏 푏 ⋯						
푏 푏 ⋯						
⋮
푏

⋮
푏

⋮						
⋯						

푏 푏 ⋯			
푏 푏 ⋯			
⋮
푏

⋮
∗

⋮			
⋯			

푏 푏
푏 ∗
⋮
∗

⋮
∗

 

For any G )∈ 푍 , let 푁(퐺,푘) denote the number of multisequences in 퐹  with a given primitive minimal polynomial of degree 푘, 
whose 퐺- extensions have maximum dimension. 
Definition 3.3: let R = ( 푟 , … . . , 푟 ), and let 퐺 = ( 푔 , … . . ,푔 ) and 휑(퐺) be the consecutive points on the R- road. Then,  
푁(퐺, 푘) = 	 푞 푁(휑(퐺),푘 − 1) 
Where 푘 is any integer greater than푔 = 	∑ 푔 	 . 
Proof: Let c be the smallest integer such that 푔 =퐺 . Therefore	휑(퐺)= (푔 ,푔 	… . . ,푔 ,푔 − 1,푔 , … ,푔 ). Let 푊 be a 
multisequence in 퐹  whose minimal polynomial 푝 (s) is a primitive polynomial of degree푘 − 1. Further assume that the 휑(퐺)- 
extension of 푊 has dimension g-1. Each matrix state of 푊 is therefore a matrix in 퐹 ×( ) with full row rank. As 푝 (s) is a 
primitive polynomial of degree 푘 − 1, there exist a matrix state M of W , whose c-th row is 푒  = (0, 0, …., 0, 1). For 푖 ≠ c, let 
푥 = [푏 ,푏 , … ,푏 ( )] be the 푖 − 푡ℎ	row of this M. Therefore, M = [푥 ; 푥 ; … ; 푥 ;푒 ; 푥 ; … ;푥 ]. Now expand M to a 
matrix 푀∗ ∈ 퐹 ×  as follows: 
1) For every 푖 ≠ 	푐, append the 푖 − 푡ℎ	row of M  with any element 푑  of 퐹 . Therefore, the 푖 − 푡ℎ	row of 푀∗ is 푥∗ = 
(푥 ,푑 )	∈ 퐹 , for some 푑  of 퐹 . 
2) Let the 푐 − 푡ℎ	row of 푀∗ be 푒  i.e.,(0,0,…,0,1). 
If 푝 (s) be s primitive polynomial of degree 푘, then using 푀∗ as a matrix state, one can generate a multisequence 푊∗ with same 
polynomial. So 푊∗ has a 퐺 −extension with dimension g. 
As M  is a matrix state of W, the following matrix 푀 ( ) is a matrix state of the 휑(퐺)−extension of W: 
푀 ( ) = [푥 ;푥 퐴 ;...;푥 퐴 ;푥 ; 푥 퐴 ; … ; 푥 퐴 ; 푥 ; 푥 퐴 ; … ; 푥 퐴 ;   
푒 ;푒 퐴 ; … … . . ;푒 퐴 ;	푥 ;푥 퐴 ; … … . ; 푥 퐴 ;…;푥 ; 
 푥 퐴 ;...;푥 퐴 ] ,where 퐴  is the companion matrix of the polynomial 푝 (s).The 푐 − 푡ℎ block of rows of 
푀 ( ) has the following structure: 
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0 0 ⋯ 0
0 0 ⋯ 0
⋮
0

⋮
0

⋮
⋯

⋯
0

0 ⋯ 0 1
0 ⋯ 1 ∗
⋮
1

⋮
⋯

⋮
∗

⋮
∗

∈ 퐹( )×( ) 

For 1≤ 	푖 ≠ c≤m, let 푥  = (푏 , 푏 , … , 푏 ( )). The corresponding 푖 − 푡ℎ block of rows of 푀 ( ) has the following structure: 

⎣
⎢
⎢
⎢
⎡ 푏 푏 ⋯		 푏 ( )

푏 푏 ⋯	 푏 ( )
⋮
푏

⋮
푏 ( )

								⋮	
						⋯

⋮
푏 ( )

푏 ( ) ⋯ 		푏 ( ) ⋯ 푏 ( ) 푏 ( )

푏 ( ) ⋯ 푏 ( )	 ⋯ 푏 ( ) ∗
⋮

푏 ( )

⋮
⋯

⋮	
푏 ( )

					⋮
⋯

⋮
∗

⋮
∗ ⎦

⎥
⎥
⎥
⎤
 

The *s shown in the blocks above represent entries from 퐹  which depend on the matrix 퐴 . Since 푔 ≥	푔 ∀	푖, the *s appear 
only in the last 푔 − 1 columns of 푀 ( ). As 휑(퐺)-extension of W has rank 푔 − 1, therefore  푀 ( ) has rank 푔 − 1. 
Similarly, corresponding to the matrix state 푀∗ of 푊∗, the matrix state of the 퐺 −	extension of 푊∗ is given by: 
푀∗  = [푥∗;푥∗퐴 ;...;푥∗퐴 ;푥∗; 푥∗퐴 ; … ; 푥∗퐴 ; 푥∗ ; 푥∗ 퐴 ; … ; 푥∗ 퐴 ;   
푒 ; 푒 퐴 ; … … . . ; 푒 퐴 ;	푥∗ ;푥∗ 퐴 ; … ; 푥∗ 퐴 ;…;푥∗ ; 
푥∗ 퐴 ;...;푥∗ 퐴 ] ,where 퐴  is the companion matrix of the polynomial푝 (s). 
For 푖 ≠ c, the	푖 − 푡ℎ block of 푀∗  is [푥∗;푥∗퐴 	;...;푥∗퐴 ]. Recall that 푥∗ = (푥 , 푑 ), thus block has the following structure. 
0 0 ⋯ 0
0 0 ⋯ 0
⋮
0

⋮
0

⋮
⋯

⋯
0

0 ⋯ 0 1
0 ⋯ 1 ∗
⋮
1

⋮
⋯

⋮
∗

⋮
∗

∈ 퐹( )×  

Let 푀  be the submatrix of 푀∗  got by removing its last column and the first row of its 푐 − 푡ℎ block. Observe that rank(푀 ) = 
rank(푀∗)-1. By the structure if the 푐 − 푡ℎ block of 푀  one can clearly see that this submatrix 푀  can be modified to 푀 ( ) using 
elementary row operations. Hence this submatrix  푀  has rank푔 − 1. This implies that 푀∗  has rank 푔. Therefore, 푊∗ does have a 
퐺 −	extension with dimension 푔. 
Note that each of the 푑 s can be chosen in q ways. Each such choice yields a different matrix 푀∗ and hence a different 
multisequence 푊∗. As a result for every multisequence W with minimal polynomial 푝 (s), the above process gives us 푞  
multisequences 푊∗ with minimal polynomial	푝 (s). Therefore, 
푁(퐺, 푘) ≥	푞 푁(휑(퐺),푘 − 1)                    (A) 
Conversely, consider a multisequence 푈∗ in 퐹  with primitive polynomial	푝 (s) whose 퐺 −	extension has rank 푔. Consider its 
matrix state 푀∗ ∈ 퐹 ×  whose 푐 − 푡ℎ row is 푒 . Now 푀∗ can be reduced to a matrix 푀 ∈ 퐹 ×( ) as follows: 
1) For  푖 ≠ c remove the last entry of the 푖 − 푡ℎ row. 
2) Let the 푐 − 푡ℎ row of 푀  be 푒 . 
Let 푀  generate a multisequence U having primitive minimal polynomial 푝 (s). Using similar arguments as those used earlier in 
the proof, one can prove that the 휑(퐺)−extension of U has dimension 푔 − 1. Note that the matrix 푀  is independent of the last 
entries of the rows of 푀∗. Hence, there are 푞  matrices (including 푀∗), with 푐 − 푡ℎ row 푒 , which have the same first 푘 − 1 
columns as 푀 . By the above process each one of these matrices gives the same matrix 푀 . Besides if we start with a matrix with 
푐 − 푡ℎ row 푒  which differs from 푀  in any entry corresponding to the first 푘 − 1 columns, it results in a different	푀 . Therefore,  

 
Thus, from equation (A) and (B) one can conclude that   
푁(퐺, 푘) = 	 푞 푁(휑(퐺),푘 − 1) 
Using this result, Question 3.1 can be proved in the following manner: 
Proof: For each j, such that 푛 − 푟 + 푚 ≤ 푗 ≤ 푛, let 푝 (s) be a given primitive polynomial of degree j. For every point 퐺 = ( 
푔 , … . . , 푔 ) on the R-road, let 푔 = ∑ 푔 	 . As seen in the previous definition’s proof, starting from a multisequence in 퐹  with 
dimension m having minimal polynomial 푝 (s), one can recursively generate multisequences in 퐹 , with minimal 
polynomial 푝 (s), whose 퐺 − extension have maximum dimension, for every 퐺 on the R-road. 
By above definition for any two consecutive points, 휑(퐺) and 퐺 = ( 푔 , … . . ,푔 ) in the path from 1 = (1,1,…,1) to R, 푁(퐺,푛 −
푟 + 푔) = 푞 푁(휑(퐺), 푛 − 푟 + 푔 − 1) where 푔 = ∑ 푔 	. The path from 1 to R has 푟 −푚 such steps. Therefore, 
푁(푅, 푛) = 	 (푞 ) 푁(1, 푛 − 푟 + 푚) 
However, 푁(1, 푛 − 푟 + 푚) is the number of multisequences in 퐹  of dimension m, with a given primitive minimal polynomial 
푝 (s) of degree 푛 − 푟 + 푚. Therefore, by corollary,	푁(1,푛 − 푟 + 푚) =	(푞 − 푞) (푞 − 푞 )… (푞 − 푞 ). 
Hence, 
푁(푅, 푛) = 	 (푞 ) (푞 − 푞) (푞 − 푞 )… (푞 − 푞 ) 
                              = (푞 − 푞 ) (푞 − 푞 )… (푞 − 푞 ). 
Hence proved. Note that 푁(푅, 푛) does not depend on the integers (푟 , … . . , 푟 ) but just their sum.Further recall the question as: 
Question 3.2: given any r≥ 푚, how many multisequences in 퐹  having dimension r are R-extensions of multisequences in 퐹  for 
some R = (푟 , … . . , 푟 ) ∈ 푍  where ∑푟  = r. 
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Solution: the number of multisequences in 퐹  which are R-extensions of multisequences in 퐹  is given by: 
푁 = 	 (푞 − 푞 ) (푞 − 푞 )… (푞 − 푞 ). 
Proof: for any r	∈ 푍 , define the following subset 푅  of 푍 . 
푅 = {(푟 , … . . , 푟 ) ∈ 푍 | ∑ 푟 = 푟} 
Therefore, 
푁 = 	 |푅 |× (푞 − 푞 ) (푞 − 푞 )… (푞 − 푞 ) 
Corresponding to each element of 푅 , say (푟 , … . . , 푟 ), we can define a monomial, 푥 푥 …푥 . Therefore, calculating |푅 | is 
equivalent to finding the number of monomials of degree r. Consequently, the cardinality of  푅  is equal to the number of 
monomials of degree 푟 −푚.	This number is equal to ( ) = 	 . As a result, 
푁 = 	 (푞 − 푞 ) (푞 − 푞 )… (푞 − 푞 ). 
Given R = (푟 , … . . , 푟 )	∈ 푍 , let ∑ 푟 = 푟. {푝 (s)	}  be a series of primitive polynomial where the index j denotes the 
degree of the respective polynomial. Let 퐴 s be their corresponding companion matrices. Let 휑(퐺) and 퐺 be consecutive points on 
the R-road. Also c define the position of the active coordinate of 휑(퐺). Consider a multisequence U in 퐹  with a minimal 
polynomial 푝 (s), whose 휑(퐺) −extension has maximum dimension.its matrix state is denoted by 푀  having 푐 − 푡ℎ	row 
equal to 푒 . As definition tells about the procedure to find matrix state, one can generate a sequence of matrices 
{푀 }  starting with a matrix 푀 ∈ 퐹 ×( ) having full rank and culminating in a matrix 푀 ∈ 	퐹 ×  . Each 
matrix 푀  in the above sequence uniquely corresponds to a point 퐺 on the R-road and can br seen as a matrix state of a 
multisequense with minimal polynomial 푝 (s) whose corresponding 퐺-extension has maximum dimension. 
 
4. Algorithm for the Generation of Multisequences 
The variable M is used to store the respective matrix state at every step of the algorithm. The current point in the path from 1 to R 
is stored in the variable 퐺 = ( 푔 , … . . ,푔 ). The variable	푐  stores the summation of the values of the coordinates of 퐺. 
Initialization: 
Step1. Initialize 퐺 to 1. 
Step 2. Initialize the value of 푔 to m. 
Step 3. Initialize	푀 to any matrix in 퐹 ×( ) that has full rank. 
Main loop: 
Step 4. While 푔 < 푟  

 Find the position of the active coordinate of 퐺 and store it in 푐. 
 Find a polynomial 푓(푠) such that 푀(푐, : )푓 퐴 = 	 푒 . 
 푀 = 푀	푓 퐴 .( This gives us the matrix state whose 푐 − 푡ℎ	row is  푒 ). 
 For all 푖 ≠ c append the 푖 − 푡ℎ	rowof 푀 with any 푑 ∈	퐹  to get the row vector (푀(푖, : ), 푑 ).  
 Change the 푐 − 푡ℎ	row of 푀 to 푒 . 
 Increment of 푔 and 푔  by 1. 

To find the polynomial 푓(푠), the following subloop is used as: 
Subloop: 
Step 1. Construct the matrix ℳ = [푀(푐, : );푀(푐, : )퐴 ; … ;푀(푐, : )퐴 ] 
Step 2. Solve the set of linear equations 

푎ℳ = 	 푒 	푓표푟	푎 ∈ 퐹  
Step 3. If 푎 =	( 푎 ,푎 , … . . ,푎 ) is the solution to above set of equations,푎 푀(푐, : ) + 푎 푀(푐, : )퐴 + ⋯+
푎 푀(푐, : )퐴 = 푒 . Therefore 푓(푠) = 	푎 + 푎 푠 + ⋯+ 푎 푠 . 
Let 푐  and 푐  be the active coordinates of 1 and 휑(푅) respectively. So above algorithm can be thought of as a map from the space 
of matrices in 퐹 ×( ) which have full row rank and whose 푐 −th rows are 푒 , to the space of matrices in	퐹 ×  which 
have full row rank and whose 푐 −th rows are 	푒 . There are precisely (푞 − 푞) (푞 − 푞 )… (푞 − 푞 ) matrices 
in 퐹 ×( ) whose 푐 −th rows are 푒 . During each iteration of the while loop one can chose 푑 s in 푞  ways. 
Therefore, corresponding to each choice of matrix 푀  can give the same 푀 . Therefore, there are (푞 − 푞 ) (푞 −
푞 )… (푞 − 푞 ) possible matrices which can occur as an output to yhis algorithm. The number of full row rank matrices in 
	퐹 × , whose 푐 −th row is 	푒 , is however (푞 − 푞) (푞 − 푞 )… (푞 − 푞 ). Out of these matrices, precisely those matrices 
that occur as matrix states of multisequences whose R-extension have full rank are the ones that can be obtained from the above 
algorithm. 
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5. Program 
clc; 
clear all ; 
R = input('enter the matrix R ='); 
G = input('enter the matrix G ='); 
r = sum(R); 
g = sum(G); 
k = length(G); 
i = k; 
e=k; 
if G(k) == R(k) 
m=triu(ones(k,g+1)); 
else 
m=triu(ones(k,g)) 
w = gf(rand([e,1])); 
t = zeros(1,g+1); 
t(g+1)=1; 
m=[m w]; 
m(g,:)=t; 
m=m 
end 
while i  > 0 && i ~= 0 
if G(i) == R(i) 
if i-1 >= 1 
if G(i-1) == R(i-1) && sum(G)== sum(R)-1 
[y c]=max(R); 
i=c; 
G(c)=G(c)+1; 
G=G 
g=sum(G); 
[y c]=max(G); 
c=c 
m = gf(m); 
p1 = gfprimfd(g,'min',2) 
p2= p1(:,1:g); 
p= p2'; 
a = gf([[zeros(1,g-1);eye(g-1,g-1)] p]); 
t =gf(ones(g-1,g)); 
for j = 1:g-1 
n = gf(m(c,:)*(a^j)); 
t(j,:)=n; 
end 
M = [m(c,:);t]; 
b = zeros(g,1); 
b(g)=1; 
x = inv(M)*b; 
s = zeros(g,g); 
for j = 1:g-1 
f= gf(x(j+1)*(a^j)); 
s=s+f; 
s=gf(m*s); 
f = gf((x(1,:)*m)+ s); 
m=f 
if sum(G) == sum(R) 
return; 
else w = gf(rand([e,1])); 
t = zeros(1,g+1); 
t(g+1)=1; 
m=[m w]; 
m(c,:)=t; 
m=m 
end 
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return; 
elseif G(i-1) == R(i-1) 
G=G 
g=sum(G); 
[y c]=max(G); 
c=c 
m = gf(m); 
p1 = gfprimfd(g,'min',2) 
p2= p1(:,1:g); 
p= p2'; 
a = gf([[zeros(1,g-1);eye(g-1,g-1)] p]); 
t =gf(ones(g-1,g)); 
for j = 1:g-1 
n = gf(m(c,:)*(a^j)); 
t(j,:)=n; 
end 
M = [m(c,:);t]; 
b = zeros(g,1); 
b(g)=1; 
x = inv(M)*b; 
s = zeros(g,g); 
for j = 1:g-1 
f= gf(x(j+1)*(a^j)); 
s=s+f; 
end 
s=gf(m*s); 
f = gf((x(1,:)*m)+ s); 
m=f 
if sum(G) == sum(R) 
return; 
else w = gf(rand([e,1])); 
t = zeros(1,g+1); 
t(g+1)=1; 
m=[m w]; 
m(c,:)=t; 
m=m 
end 
i = i-2; 
else 
G(i-1)=G(i-1)+1; 
G=G 
g=sum(G); 
[y c]=max(G); 
c=c 
m = gf(m); 
p1 = gfprimfd(g,'min',2) 
p2= p1(:,1:g); 
p= p2'; 
a = gf([[zeros(1,g-1);eye(g-1,g-1)] p]); 
t =gf(ones(g-1,g)); 
for j = 1:g-1 
n = gf(m(c,:)*(a^j)); 
t(j,:)=n; 
end 
M = [m(c,:);t]; 
b = zeros(g,1); 
b(g)=1; 
x = inv(M)*b; 
s = zeros(g,g); 
for j = 1:g-1 
f= gf(x(j+1)*(a^j)); 
s=s+f; 
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end 
s=gf(m*s); 
f = gf((x(1,:)*m)+ s); 
m=f 
if sum(G) == sum(R) 
return; 
else w = gf(rand([e,1])); 
t = zeros(1,g+1); 
t(g+1)=1; 
m=[m w]; 
m(c,:)=t; 
m=m 
end 
i = i-2; 
end 
elseif sum(G) == sum(R) 
G=G; 
g= sum(G); 
return; 
else 
i = n; 
end 
else 
G(i) = G(i) + 1; 
G=G 
g=sum(G); 
[y c]=max(G); 
c=c 
m = gf(m); 
p1 = gfprimfd(g,'min',2) 
p2= p1(:,1:g); 
p= p2'; 
a = gf([[zeros(1,g-1);eye(g-1,g-1)] p]); 
t =gf(ones(g-1,g)); 
for j = 1:g-1 
n = gf(m(c,:)*(a^j)); 
t(j,:)=n; 
end 
M = [m(c,:);t]; 
b = zeros(g,1); 
b(g)=1; 
x = inv(M)*b; 
s = zeros(g,g); 
for j = 1:g-1 
f= gf(x(j+1)*(a^j)); 
s=s+f; 
end 
s=gf(m*s); 
f = gf((x(1,:)*m)+ s); 
m=f 
if sum(G) == sum(R) 
return; 
else w = gf(rand([e,1])); 
t = zeros(1,g+1); 
t(g+1)=1; 
m=[m w]; 
m(c,:)=t; 
m=m 
end 
i=i-1; 
end 
G=G; 
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g= sum(G); 
i = i; 
while i == 0 && sum(G) < sum(R) 
i = k;end 
end 
 

This code will generate mutlisequence W  and also extension of W which have maximum dimension. This theory can be used to 
implement Linear Feedback Shift Register (LFSR) configurations. 
 
6. Conclusion 
In this paper I have introduced the concept of matrix states which defined the dimension of multisequence and calculated the 
number of multisequence. The concept of R-extension is given and also calculated the number of multisequence whose R-
extension have maximum dimension. At last I have write the MATLAB code for the generation of such multisequences. 
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