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1. Introduction 
Human brain has more than 86 billion neurons in on average. Neural networks mimic the human brain. Machine learning or 
artificial intelligence is a very big field in which neural networks are responsible for creating a learning network like brain. 
Financial forecasting, as one of the most common financial investment decision making problems, is the process of estimating 
future business performance by mapping the input and output data in order to discover the patterns that govern the observed 
movements. Given that financial data is highly time-variant and non-linear, predicting the future value of the financial variable is 
a challenging task. Evolutionary computation is frequently applied to the problem of financial investing because of its potential 
capability to model dynamic and non-linear relationships in data [12]. The biggest challenge for financial professionals and 
researchers is the existence of uncertainty and risk. While gambling with investment choices is not an option for most, proper 
research and planning can greatly reduce risk and guide investors to take the right steps. Artificial neural networks gained great 
popularity in the financial field, for their ability to deal with uncertainty and handle noisy data [1]. Neural network architecture is 
suitable for financial data but reaching a good design and fast execution is a big challenge. For the fast execution Graphical 
processing unit is being used due to its parallel architecture. One of the best advantages of GPU over the Central Processing Unit 
(CPU) is its lower cost to create parallel threads on blocks due to its efficient hardware implementation, whilst the CPU incurs an 
overhead to switch to another program. For this reason, the GPU hardware architecture allows the improvement of computational 
performance in massive data scenarios. It is worth noting that the GPU seems to be a natural candidate for massive processing of 
financial high-frequency data on forecasting applications [4]. This paper is organized as follows: 
Section II shows the different types of learning methods. Also, it gives the information about neural networks concepts. Section III 
gives the detail about methodology, GPU parallel architecture and OPENCL, APARAPI. Concluding remarks and future 
directions are reported in Section V. 
 
2. Type of Learning 
Neural networks are a class of machine learning systems that were originally inspired by the architecture of the brain. Although 
none of the models are true to the information processing mechanisms of nature, they all borrow the basic idea: a system of 
interconnected units that can become activated due to some combination of input stimulation. 
The learning process can be separated distinctly into two categories: supervised and unsupervised. 
 
2.1. Supervised learning 
Supervised learning uses a data set that has associated labels given to each input. That is, the “right answer” is given to the system 
during learning so the parameters defining the system are adjusted towards this solution. 
 
2.2. Unsupervised learning 
Unsupervised learning only needs the empirical data itself to extract some useful information. Since no labels are needed, no 
human input is required which allows unsupervised learning to use much larger data sets or a continuous stream of input data. 
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In financial data the concept of supervised learning was used. The financial data is the data which actually change according to 
time. The data values are taken to find the change percentage. After finding the change percentage first two value are taken as the 
input and third one as the relative output of input until the end of data. Let “Data” be an array of change percentage. 
 

Input 1 Input 2 Output 
Data[1] Data[2] Data[3] 
Data[2] Data[3] Data[4] 
Data[3] Data[4] Data[5] 
Data[4] Data[5] Data[6] 
Data[5] Data[6] Data[7] 
Data[6] Data[7] Data[8] 
Data[7] Data[8] Data[9] 

Table 1: Layout of Fetched Data 
 
3. Methodology 
A typical NN consists of multiple neurons organized in a layered fashion and connected to each other forming an inter-dependent 
network. There are two types of NNs, feed-forward and recurrent (feedback) NNs [1]. But feed forward neural network has been 
used. Figure 1 shows a typical 3 layered feed-forward network. 
 

 
Figure 1: Neural Network Design 

 
Feed forward neural network has three layers: input, hidden and output. A graphical representation of the FFN can be seen in 
figure 1. 
Each layer of the FFN consists of a fixed set of neurons. All neurons in a layer are connected to all neurons in neighbouring 
layers. Each connection has an associated weight that models the mutual influence between the neurons. Each input vector is 
associated with bias. 
Mathematically, a neuron's network function  is defined as a composition of other functions , which can further be 
defined as a composition of other functions. This can be conveniently represented as a network structure, with arrows depicting 
the dependencies between variables. A widely used type of composition is the nonlinear weighted sum, where 

 
Where (commonly referred to as the activation function) is some predefined function, such as the hyperbolic tangent. It will be 
convenient for the following to refer to a collection of functions   as simply a vector 

. 
In this real world example supervised financial data has been used & the resultant data has been taken as the learning agent of 
non-liner equation. 
f(x)= w1x1+w2x2+b 
f(x)= w1x1+w2x2+w3x3+b 
 
3.1. Neuron Weight Adjustment 
This corrective procedure is called back propagation (hence the name of the neural network) and it is applied continuously and 
repetitively for each set of inputs and corresponding set of outputs produced in response to the inputs. This procedure continues so 
long as the individual or total errors in the responses exceed a specified level or until there are no measurable errors. At this point, 
the neural network has learned the training material and the training process can be stopped and the neural network can be used to 
produce responses to new input data. Back propagation starts at the output layer with the following equations: 

   [Eqn 3] 

 [Eqn 4] 
For the ith input of the jth neuron in the output layer, the weight wij is adjusted by adding to the previous weight value, w'ij, a term 
determined by the product of a learning rate, LR, an error term, ej, and the value of the ith input, Xi. The error term, ej, for the jth 
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neuron is determined by the product of the actual output, Yj, its complement, 1 - Yj, and the difference between the desired output, 
dj, and the actual output. 
Once the error terms are computed and weights are adjusted for the output layer, the values are recorded and the next layer back is 
adjusted. The same weight adjustment process, determined by Equation 3, is followed, but the error term is generated by a slightly 
modified version of Equation 4. 
This modification is: 

 [Equ 5] 
The learning rate, LR, applies a greater or lesser portion of the respective adjustment to the old weight. If the factor is set to a 
large value, then the neural network may learn more quickly, but if there is a large variability in the input set then the network 
may not learn very well or at all. In real terms, setting the learning rate to a large value is analogous to giving a child a spanking, 
but that is inappropriate and counter-productive to learning if the offense is so simple as forgetting to tie their shoelaces. Usually, 
it is better to set the factor to a small value and edge it upward if the learning rate seems slow. 
 
4. Graphics Processing Units (GPUS) 
Graphics Processing Units (GPUs) have been used as graphic processor engines in gaming industry due to their powerful 
capability and parallel characteristics. The graphics pipeline is well-suited for parallelism attaining high performances in matrix 
and vector operations as for instance when dealing with 2D and 3D graphics. Their enormous computational potential has led to 
an explosion of research to leverage GPUs for general-purpose computation on GPUs (GPGPU). The increase of their 
programmability featuring floating point arithmetic makes them suitable for data high-demanding real time applications. This is 
especially important with machine learning algorithms such as neural networks which are often complex, placing high demands 
on memory and computing resources and CPUs are simply not powerful enough to solve them quickly for use in interactive 
applications. Example of applications of GPU computing spawn a broad range of areas such as Bioinformatics, Medical Imaging, 
Linear Algebra and many other. Unlike CPUs which use the paradigm SISD (Single Instruction Single Data), GPUs are optimized 
to perform floating-point operations (on large data sets) using the paradigm Single Instruction Multiple Data (SIMD). 
Subsequently, this architectural difference between both platforms leads to more complex programming tasks. To cope with this 
complexity NVIDIA developed a parallel technology namely CUDA (Compute United Device Architecture) which provides a 
programming model for its GPUs with an adequate API for non-graphics applications using standard ANSI C, extended with 
keywords that designate data-parallel functions. The CUDA programming model is supported by an architecture built around a 
scalable array of multi-threaded Streaming Multiprocessors (SMs), over the past few years not only GPU evolved but also the 
programming model and programming tools able to allow the development of applications of this nature. The trend is to develop 
high parallel computers and to concentrate on adding cores rather than increase the capacity of single thread performance ones. 
Most neural networks recognition systems have two major components: training and classification. The system is trained using a 
large number of labelled patterns with relevant features. The training is often iterative and proceeds until the error on a small set 
of testing patterns is sufficiently low. However, the training process is computational intensive and time consuming especially 
when a large number of training patterns are involved. The classification accuracy of unknown patterns often depends on the 
effort spent on training and most applications settle down for a suitable trade-off. Using new training data to improve the 
performance is uncommon due to the large computational effort. On the contrary, the parallelism of a GPU is fully utilized by 
accumulating a lot of input feature vectors and weight vectors, then converting the many inner-product operations into one matrix 
operation. 
 
5. OPENCL And APARAPI 
General-Purpose Computing on Graphics Processing Units (GPGPU, rarely GPGP or GP²U) is the utilization of a graphics 
processing unit (GPU), which typically handles computation only for computer graphics, to perform computation in applications 
traditionally handled by the central processing unit (CPU)[15]. OpenCL™ is the first open, royalty-free standard for cross-
platform, parallel programming of modern processors found in personal computers, servers and handheld/embedded devices. 
OpenCL (Open Computing Language) greatly improves speed and responsiveness for a wide spectrum of applications in 
numerous market categories from gaming and entertainment to scientific and medical software [13]. Open Computing Language 
(OpenCL) is a framework for writing programs that execute across heterogeneous platforms consisting of central processing units 
(CPUs), graphics processing units (GPUs), digital signal processors (DSPs), field-programmable gate arrays (FPGAs) and other 
processors 
APARAPI is a java application programming interfaces. APARAPI allows Java developers to take advantage of the computing 
power of GPU and APU devices by executing data parallel code fragments on the GPU rather than being confined to the local 
CPU. It does this by converting Java byte code to OpenCL at runtime and executing on the GPU, if for any reason APARAPI can't 
execute on the GPU, it will execute in a Java thread pool [14]. 
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6. Implementation Result 
 

  
Figure 2: Financial Data Graph 

Figure 3: Change in Percentage of Financial Data 
 

 
Figure 4: Learning Graph 

 
Learning Rate 0.5 

Error 0.1 to -0.1 
Execution Time 193 ms 

Predictive Change % 0.514008365445363 
Final Adjusted Weight [1.0,-3.2100571943459824,-0.762678127459943] 

Table 2: Actual Results 
 
7. Conclusion 
Processing a large amount of data puts a lot of load on the CPU and it already has a lot to handle but if we utilize the cores of 
GPU, it can be done quite easily and in a faster manner. OpenCL & CUDA were used earlier but they are not easy to learn, 
whereas using the APARAPI in JAVA, the simple JAVA code is converged to OpenCL code at runtime hence making it quite 
easy to program. It even makes the execution possible through the CPU just in case GPU is not available by using JAVA thread 
pool hence making it as a more reliable option for the programming and execution of the task. The results of financial prediction 
of data through this technique of implementation reflect how efficiently and faster are the processing power of GPU as compared 
to the techniques used earlier which just involved the CPUs. 
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