
 The International Journal Of Science & Technoledge      (ISSN  2321 – 919X)   www.theijst.com                
 

94                                                        Vol 2 Issue 6                                                      June, 2014 
 

THE INTERNATIONAL JOURNAL OF  
SCIENCE & TECHNOLEDGE 

 
Cleanroom Software Engineering for Zero-Defect Software 

 
 
 

 
 
 
 
 
 
 
 
 
 

 
1. Introduction 
A number of processes have been developed to produce new software and to improve their quality. These aim to develop software 
with almost no defects [1]. But cleanroom software engineering process is one which produces a zero defect software. At first, it 
may seem impossible. But it really does produce software with zero defect. The Cleanroom process focuses on the design of the 
program rather than debugging code.  Cleanroom software engineering was developed by Harlan Mills and his colleagues, at IBM 
Corporation’s Federal Systems Division during the early 1980s. It emphasizes on defect prevention rather than defect removal. It 
aims to remove all the defects before the code is being run. Thus it’s a highly advanced process that demands high costs and more 
intensive development. A cleanroom software engineering divides the whole process of developing software into three 
engineering teams. For formal specification, a team of specification engineers is formed, which break specifications into 
increments for development and certification.  Other team creates software to the specification of these increments with formal 
specification, but does no debugging and testing and is done by development engineers. The last team of certification engineers 
test and certify the correctness of those increments by statistical testing. Certifying the correctness of a software requires two 
conditions , such as: 

 Statistical testing with input characteristics of actual usage 
 No failures in testing. 

The goals of cleanroom software engineering are very high. It focuses to produce a high level, zero defect software. To achieve 
this goal, highly intense and rigorous process is needs. Thus it aims on bug prevention rather than bug removal.  Cleanroom 
software engineering is a correct, verifiable software using an incremental development process [2].  Cleanroom Software 
engineering is a practical development and certification approach that uses statistical quality control to reduce software defects 
and costs. Despite numerous benefits the approach is still not popular because of the cost and extensive amount of work required. 
 
2. Benefits 
Some of the benefits that cleanroom software engineering offers are as follows: 

 Productivity: Cleanroom software engineering offers better and enhanced productivity than other development models 
due to rigorous and intensive development process used for development of software and reduced time required to debug 
and test software. 

 Quality: Cleanroom software engineering improves quality of software as it ensures a zero-defect software. It removes 
each defect from the software and hence the software quality also increases. 

 Life Cycle Costs: The cost of life cycle is also less as it needs less maintenance, debugging and testing. Moreover, team 
reviews are more cost-effective means of improving quality and disseminating knowledge. The adoption cost can be 
recovered on first project through improved effectiveness in texting and development. 

 Maintenance: Maintenance is much easier with cleanroom software engineering. Software developed with this process 
has understandable, distinct specification with less complicated design, thus resulting in a trouble free maintenance. This 
happens because this process includes team reviews, box structure method, formal design and certification for creating 
specifications. 

 

Er. Rasneet Kaur Chauhan 
Department of Computer Science and Engineering 

Guru Nanak Dev University, RC Gurdaspur 
 

Abstract: 
Cleanroom Software Engineering is a process which aims to achieve a zero defect software. As the IT industry is progressing, 
the need for software which are more compatible and error-free, comes into place. A number of software engineering models 
have been there to satisfy these needs but the software with almost no defect is highly needed. This is where the process called 
Cleanroom software engineering comes into picture. It uses statistical quality control method to develop a zero-defect 
software. This paper aims to give overview of Cleanroom software engineering process , its potential benefits, its weaknesses. 
We also discuss the practical challenges that it faces. 
 
Keywords: Cleanroom Software Engineering, Statistical Quality Control, Box Structure specification, Zero Defect 



 The International Journal Of Science & Technoledge      (ISSN  2321 – 919X)   www.theijst.com                
 

95                                                        Vol 2 Issue 6                                                      June, 2014 
 

 Reliability: It has high reliability as it has a thorough incremental software process for development of zero imperfection 
and high reliability software using statistical quality control and certification. 

 Errors and Failures: Cleanroom software engineering offers a zero defect software and it is the biggest benefit as it 
reduces all the errors and failures found during testing. Thus the development cycle time also reduces. 

 Less Complicated Design: The box structure generates a less-complicated design. This structure allows a user view black 
box specification that is in terms of system usage. Thus, these specification are well-defined, clear, understandable and 
exhaustive and well-defined creating a clear view of software program, resulting in better productive software [11]. 

 
3. Disadvantages 
The reasons why cleanroom software engineering is not that popular are: 

 Too rigorous and intensive approach: Cleanroom software engineering is a very rigorous approach and hence it requires 
an intensive training. Most of the software industry is working at ad-hoc level of Capability maturity model and thus they 
don’t make proper use of all processes required in all phases of software development life cycle. In order to implement 
this, an intensive training is required. 

 Much theoritical and mathematical: Some research show that cleanroom software engineering is a lot theortical and 
mathematical and hence causes some difficulty in understanding. Also the correctness proof part can be complicated and 
time consuming for non-safety-critical programs. 

 No Unit Testing: There is no unit testing in this process. But disallowing unit testing is less productive. It doesn’t allow 
unit testing but instead prefers statistical quality control which is causes a wide gap in traditional software development 
approaches. 

 Not widely Accepted: Cleanroom software engineering is much less accepted and less popular because of its 
mathematical and rigorous approach. Despite of its so many benefits, its not that widely accepted. 

 Cost; The most important factor in choosing anything is its cost. Cleanroom software engineering is very pricy. A lot of 
time and money is spent in the defect prevention of every stage in the development process. The biggest time consumer 
of the process is the use of statistical methods to ensure quality. 

 
4. Cleanroom Software Engineering Process Model 
Cleanroom software engineering process comprises of following activities: 

 Software specification:In this, structures specification and precise specification of pipeline of software increments that 
accumulate into final software product, which includes the statistics of its use as well as its function and performance 
requirements 

 Software development: then, box structured design and functional verification of each increment, delivery for testing and 
certification without debugging beforehead, and subsequent correction of any failures that may be uncovered during 
certification. 

 Software certification: Lastly, software testing and certification of the software reliability for usage specification, 
notification to developers of any failures discovered during certification, and subsequent recertification as failures are 
corrected. 

Cleanroom software engineering development process has various phases. The initial phase consists of Project planning, Project 
management, Performance improvement, and engineering change. Then, all these processes move in increments. Each increment 
consist of increment planning, requirement gathering, box structure specification, formal design ,correctness verification, code 
generation, inspection and verification , Statistical use planning , Statistical use testing and certification .This approach uses box 
structures (black box ,state box and clear box ) for design specification. In a Cleanroom development, correctness verification 
replaces debugging and unit testing[5]. 
After coding is complete, the software immediately enters system test with no debugging. All test errors are accounted for, from 
the first execution of the program with no private testing allowed. At the end the function of system testing is to certify the quality 
of the software with respect to the systems specification. Various phases of CSE are enumerated below: 
 
4.1. Cleanroom Management Processes 
The main objective of this phase is to do necessary planning, management and improvements. This is the initial phase of 
Cleanroom software engineering process which includes the following: 

 Project Planning 
Cleanroom project planning is robust, with emphasis on an incremental development process for managing requirements, 
risks, resources, reuse, and other technical factors influencing project success. The Cleanroom Reference Model 
incorporates additional CMM requirements for effective planning, such as gaining explicit agreements from all 
individuals  ,ensuring adequate funding for the planning period itself, using estimates that are derived according to a 
documented procedure, and and groups who have responsibilities related to the project[3]. Requirement analysis software 
requirements analysis and documentation are essential Cleanroom activities. During this phase, the Cleanroom processes 
are tailored to meet project specific requirements. 

 Project Management 
Requirements management is a major aspect of Cleanroom incremental development. The purpose of this activity is to 
manage the project, to manage resources, abd deliver project on time and that too within budget. This phase is concerned 



 The International Journal Of Science & Technoledge      (ISSN  2321 – 919X)   www.theijst.com                
 

96                                                        Vol 2 Issue 6                                                      June, 2014 
 

with the management of Communicating with customer and peer organization, setting up of and training Cleanroom 
teams, manage planned Cleanroom processes. 

 Performance Improvement 
In this, continuous evaluation of processes and new technology is introduced. Continuous performance monitoring is also 
done for continuous improvement. Also, team performance is assessed and enhanced through continuous comparisons 
and deviations. 

 Engineering amendments 
New or changed requirements are accommodated through top down evaluation of impacts on all work products at the 
outset of each increment’s development cycle. As with all Cleanroom work products, the requirements document and all 
modifications to it are subject to peer review and engineering change control. This phase is concerned with planning and 
performing additions, changes, and corrections to work products. 

 
4.2. Cleanroom Specification process 
The first process of each increment is specification.  It consists of following activities: 

 Increment Planning 
The basic objective of increment planning is forming plans to assign customer requirements specified in the function 
specification to different software increments that satisfy the software architecture. It is also concerned with defining 
schedule and distribution of resources for increment development and certification[4]. A incremental plan is made and 
thus various tasks are managed. The incremental process is mainly concerned with moving from initial to final form 
through a number of increments that implement user function in the system, thereby leading to the required system. 

 Requirement Gathering 
Requirement gathering phase is used to define requirements for the software product also includes function, usage, 
environment, and performance as well as to make an  agreement with the customer on the requirements as the basis for 
functions and usage specifications. In addition to simplifying the customer’s notion of his current requirements this phase 
also assists the customers to identify those requirements which he might not be aware. Thus , if we have requirements 
notified earlier, then it saves time as well as effort. 

 Box Structure Specification 
Cleanroom software engineering process uses box structures to describe the behavior of the system. Box structures 
provide a stepwise refinement and verification methodology for information systems using mathematically based 
techniques. They structures are specifically helpful for recording and dividing requirements specifications[6]. Black box 
specifications are verified if they are complete, consistent, and correct. State box specifications are confirmed with 
respect to black box specifications, and clear box procedures are verified with respect to state box specifications. A 
number of correctness questions are asked during functional verification. Correctness is done by group agreement and/or 
by formal proof techniques. 

 Function specification 
In this, complete functional behaviour of the system is analyzed. In the sequence-based specification process, the purpose 
is to expand specification into implementation through small steps. The boxes are used for refinement.  Formal design 
uses three system structures for specification and design: black box, state box, and clear box. 

 

 
Figure 1: Box Structure[11] 

 
A black box specifies the external behaviour of a system or system component. It specifies the behaviour of system  by mapping 
inputs to outputs. Mostly formal specifications are used [7]. 
A state box refinement of a black box and specifies how specifications can be turned into implementation. It simplifies a state 
machine, encapsulates the process implementation, and how the inputs and outputs are represented; data that must be retained 
between transitions is also encapsulated. 
A clear box refinement of a state box and is where process and data implementations are represented. It specifies various 
procedure designs required to achieve the state box behaviour, and may reuse existing black boxes or introduce new black boxes 
for subsequent refinement. They have flexibility to be defined in either design language or target language for the system. 



 The International Journal Of Science & Technoledge      (ISSN  2321 – 919X)   www.theijst.com                
 

97                                                        Vol 2 Issue 6                                                      June, 2014 
 

A Formal Design begins with an external view (black box), and is transformed into a state machine view (state box), and is fully 
developed into a procedure (clear box). 
 
4.3. Cleanroom development processes 
It is the second process of each increment and it includes the following: 

 Software reengineering 
Software reengineering process is used to reuse the already existing software by making some changes to it [8]. The 
software to reengineered must meet some conditions such as, the naming convention should be made more general, the 
functional semantics and interface syntax if the software to be reused must be properly redocumented.  The processes that 
are reengineered are properly redocumented and entered into inventory for further use. 

 Correctness Verification 
Correctness verification is done by the development team before release to the certification test team. The correctness of 
the process is based on substantiating individual control structures like conditions and loops, rather than tracing paths, so 
those control structures are the ones to be verified. Only a finite number of checks are permitted, and all software logic is 
to be verified in possible circumstances of use. The verification step is highly successful and innovative in removing 
defects and developing a better quality software. 

 Code Generation and Verification 
After the design is complete, the next phase is to develop the code and to verify it. The purpose is to design a software 
increment and code it such that it conforms to Cleanroom design principles. The box structure specifications which are 
represented in a specialized language, are coded into an appropriate programming language. Proper care is taken that 
inspection and verification is done immediately after the code is developed. 

 
4.4. Cleanroom Certification Process 
This is the final process of each increment. It occurs after the specification and development processes are completed. Once 
verification, inspection and usage testing are done the increment is certified as ready for integration. It comprises of following : 

 Using modelling and Statistical Testing 
Cleanroom software engineering makes use of usage models for statistical testing. Various statistical test cases are made, 
test environment is primed. This is where software’s suitability for use is checked in a format statistical experiment. A set 
of various test cases that use “probability distribution” of usage are designed and premeditated. Further statistical usage 
testing is done by executing a series of tests derived from a statistical sample of all probable program executions by all 
users. A statistical usage model is characterized through a graph, where the nodes indicate events and transitions between 
events are represented by arcs. Events may be inputs from the user or environment, or abstract states-of-use [9]. Test 
cases are produced from these models in statistical testing. Then customer reviews all those usage models and agrees that 
they generate all the scenarios for use. The success or failure of a test case is determined by comparing actual software 
behavior with the required one. The results of the comparisons make decisions as if to keep on continuing or stopping 
testing. Usage models are formed incrementally. 

Finally, these models are shaped into a final form simultaneously with increment designs. Usage model analysis is helpful in test 
planning, project tracking and as a management tool. 
 

 
Figure 2: Cleanroom Software Engineering methodology 

 
 Statistical testing and certification 

The purpose of statistical testing and certification is to demonstrate a software’s performance on a formal dtatistical 
experiment. Software certification offers a scientific way to verify software appropriateness for usage. Various 
populations and samples theory are created and hence used for verification. Cleanroom process testing methods are based 
on the idea that when a system that is too large  has a population model that is too large to logically test every case, 
sampling must be used. The first execution of software is done and hence checked if required results are met and if there 
are any errors in it, and hence a certification is given to them. The various test cases are made and executed and 
evaluated. Evaluations and decisions regarding product quality and process control are documented in the Increment 
Certification Report [10]. 



 The International Journal Of Science & Technoledge      (ISSN  2321 – 919X)   www.theijst.com                
 

98                                                        Vol 2 Issue 6                                                      June, 2014 
 

Certification Steps: 
 Create various usage profiles and scenarios 
 Create test cases from these usage profiles 
 Execute test cases 
 Note down failures[11] 
 Record and estimate reliability. 

 
5. Cleanroom Experiences 
Cleanroom software engineering practice is not widely practiced but still it has played an important role in following: 

 The IBM COBOL structuring facility (IBM COBOL/SF), a complex product of some 80K  lines of PL/I source code, was 
developed in a cleanroom environment. 

 A version of U.S. A.F. HH60 (helicopter) flight control program of over 30KLOC was developed using cleanroom. 
 The coarse/fine attitude determination subsystems (CFADS) of UARS attitude ground support system (AGSS) of some 

30KLOC was developed with cleanroom with NASA. 
 Software Engineering Laboratory (SEL) of the NASA Goddard .Space Flight Center. 
 Army Weapon Systems[11]. 
 OS32 Operating System for Telecommunication Switches. 
 Industries such as aerospace, telecommunications, graphical, and CASE tools have implemented CSE successfully. 

 
6. Conclusion 
Cleanroom Software Engineering has been around for over twenty-five years.  It ensures high-quality software with certified-
reliability and has led to major improvements over other software methods.  The Cleanroom method has evolved throughout the 
years and has been incorporated in many new software practices. 
Cleanroom Software Engineering is a very flexible practice.  It can be used in any software project.  Because of this, Cleanroom 
Software Engineering will be around for years to come and will continue to evolve and be incorporated with newer technologies.  
Cleanroom Software Engineering is essential when you want a high quality product that can improve productivity as well as 
reduce cost and time. 
 
7. References 

1. Foreman, John. (1997). Cleanroom Software Engineering  Retrieved March 27, 2006 from 
http://www.sei.cmu.edu/str/descriptions/cleanroom_body.html 

2. Deck, Michael. (1994). Cleanroom Software Engineering: Quality Improvement and Cost Reduction.  Retrieved on 
March 27, 2006 from http://www.cleansoft.com/cleansoft_library.html 

3. Linger, Richard C., Trammell, Carmen J. (November 1996). Cleanroom Software Engineering: Reference Model, 
Version 1.0.  Retrieved March 27, 2006. 

4. http://www.sei.cmu.edu/pub/documents/96.reports/pdf/tr022.96.pdf 
5. Pressmen, Roger S (2004),“Software Engineering: A Practitioner’s Approach”, 6th ed., McGraw-Hill, New York 
6. Ananthpadmanabhan Harish Chetan, Kale Mujtaba, Khambatti Ying, Jin Taufiq, Usman Shaun Shu, Zhang," Cleanroom 

Software Development”, [Online] Available: http://khambatti.com/mujtaba/ ArticlesAnd Papers/Cleanroom% 
20Software%20Development.pdf 

7. Cleanroom Software Engineering. Retrieved from University of Texas at Arlington website: 
8. http://www.uta.edu/cse/levine/fall99/cse5324/cr/clean/page1.html 
9. DACS, The Data and Analysis Center for Software. Retrieved January 5, 2009  Found at: 

www.dacs.dtic.mil/databases/url/key.php?keycode=64 
10. Prowell, Stacy et al. (1993). "Cleanroom Software Engineering: Technology and Process".Reading, MA: Addison 

Wesley Longman, Inc. 
11. Kamaldeep Kaur(2011). “Cleanroom Software engineering: towards high reliability software” 

 
 
 
 
 


