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Abstract:

This paper is sequel to [1], the initial —-boundary —value problem of vibration of a uniform Rayleigh beam resting on a
constant elastic foundation and with axial force and traversed by masses travelling at a uniform velocity is investigated. The
dynamical problem, methods of solution and its closed form solution are as alluded to in [1]. Except that in [1], a simply-
supported boundary condition was illustrated this is the simplest and the commonest boundary condition in literature. The
novelty in this paper is that we considered boundary condition other than simply-supported one. One of the known but
cumbersome boundary conditions in literature is the clamped-clamped boundary condition. A closed form solution of our
dynamical problem with clamped —clamped boundary condition is obtained , numerical calculations and discussions of
results reveals that; the response amplitude of the uniform Rayleigh beam clamped at both ends decreases as the value of the
axial force N increases. It is further observed that higher values of an axial force N and foundation modulli when the rotatory
inertial (r) is fixed are required for a more noticeable effect in the case of clamped-clamped time dependent boundary
condition than those of simply supported boundary conditions as in [1,3] for both moving force and moving mass problems.
Conclusively, this study has shed more light on the reliability of the moving force solution as a safe approximation to the
moving mass problem.
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1. Introduction

This paper is concerned with the calculation of the dynamic response of structural members carrying one or more traveling loads
which is very important in Engineering and Applied Mathematics as applications relate, for example, to the analysis and design of
highway and railway bridges, cable- railways and the like. Generally, emphasis is placed on the dynamics of the structural
members rather than on that of the moving loads: moving mass and moving force models. Common examples of structural
members include beams, plates, and shells while traveling loads include moving trains, trucks, cars, bicycles, cranes etc. A
structural member may be elastic, inelastic or viscoelastic. As such we have elastic structural members, inelastic structural
members and viscoelastic structural configurations on which one or more loads may travel. Simple examples of these structural
members are bridges, railroads, rails, decking slab, elevated roadways to moving vehicles, girders, belt-drive (carrying machine
chains) and even floppy disks/cassette players’ heads carrying tape. Pertinent to investigation in the field is the response of an
elastic structure under the cases of moving concentrated loads with time dependent boundary conditions.

Several other researchers have made tremendous feat in the study of dynamics of structures under moving loads. In all of these,
considerations have been limited to cases involving homogeneous boundary conditions and no considerations have been given to
the class of dynamical problems in which the boundaries are constrained to undergo displacements or tractions which vary with
time. In such cases boundary conditions are no longer homogeneous and boundary conditions become non-classical.

In many practical problems that concern the structural response to moving loads of elastic systems, the supports at the boundaries
are not stationary but undergo different motions. Often the motions are in the form of lateral displacement, oscillations or
tractions. As such, the boundary conditions are not homogeneous but are time dependent. These classes of non-classical boundary
value problems are, in general, resistant to the classical methods of solving dynamical problems. In fact, it becomes more
cumbersome, when the dynamical problems involve moving loads with or without consideration of the inertial effect of the
moving loads is taken into consideration.

One of the earliest problems of this type was considered by Mindlin and Goodman [19] who described a procedure for extending
the method of separation of variables to the solution of Bernoulli — Euler beam vibration problems with time-dependent boundary
conditions

Thus, this study concerns the response of Rayleigh beams when it is under the actions of moving concentrated masses. Typical
examples of time-dependent boundary conditions are used to illustrate the dynamical configurations.
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2. Governing Equation
The problem of the vibration of a uniform Rayleigh beam under the action of a moving concentrated load P(X,t) is considered.

The transverse displacement U (X,t), of a uniform Rayleigh beam of Length L transversed by a mass M traveling at a uniform
velocity U, is governed by the fourth order partial differential equation.

a_Z{EI U (x,t)}_ No2U (x,t)+ uo?U (x,t) , 0°U(x,t)

ox*ot?

+ KU(x,t)— pr = P(x,t) (1.00)

ox* ox? ox? ot?
where

X is the spatial co-ordinate, t is the time, U(X,t) is the transverse displacement, E is the Young Modulus, | is the moment of
inertial, g4 is the mass per unit length of the beam, I is the radius of gyration, N is the axial force, K is the elastic foundation

as El isthe flexural rigidity of the beam. For the problem under consideration, the moving load has mass that is commensurable
with the mass of the beam. Consequently, the load inertia is not negligible but significantly affects the behavior of the dynamical

system. In this case, load function P(X,t) takes the form.

P(x,t)=P, (x,t{l— ldzu—(x’t)} (1.02)

g dt?
Where the continuous moving force P; (X,t) acting on the beam model is given by
P, (x,t) = Mgs(x — f (1)) (1.02)

2
And —- s a convective acceleration operator defined as becomes
t

d? 8% _df(t) o> (df(t))’ &> d2f(t) o
—2 == —2 + 2 + —2 + 2 —_— (103)
dt ot dt oxot dt OX dt® ox
In this work, the moving load is assumed to move with constant speed, consequently, equation (1.03) becomes.
d> 8% 2ud* u?o?
2= 2 F T2
dt® ot° oxot  ox
Now, on substituting equations (1.01), (1.02) and (1.04) into (1.00) and assuming that the flexural rigidity El , and mass per unit
length 1, do not vary with position X along the span L, equation (1.00) becomes.

(1.04)

o'U(x,t) NoU(x,t) wmo*U(xt o'U(x,t
El ax(“ )_ axf ), 6t2( ), KU(x,t)—yrz—axz(atz)
2 2 272
_ Mg5(x—ut{1—£[a U(Zx’t)+ 2u0 u(x,t)+ u?o ugx,t)ﬂ (L05)
g ot oxot OX

The boundary conditions of this problem are taken to be time dependent. Thus, at each of the boundary points, there are two
boundary conditions written as;

D UOt)]=F({t) i=12 ad DJU(Lt)]=F() i=34 (1.06)
Where D, ’s are linear homogeneous differential operators of order less than or equal to three.

The initial conditions of the motion at time t = 0 may in general be specified by two arbitrary functions thus:

U(x,0)=U,(x) and %ﬁ'o) =U,(x) (1.07)

2.1. Operational Simplification of Equation

In this work, the analytical solution to the non-homogeneous initial boundary value problem (1.00) with non-homogeneous
boundary condition (1.06) and non-homogenous initial conditions (1.07) is sought. To this end, an approach due to Mindlin and
Goodman [19] is extended to obtain a robust technique which is capable of solving this class of problems for all variants of
support conditions.

First, an auxiliary variable Z(X,t) in the form

UxD)=Z(xt)+ 3 F (g, (1) (109
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is introduced. Now, substituting equation (1.09) into (1.05) transforms the boundary-value-problem in terms of U (X,t) into the
boundary value problem in terms on(X,t). The functions g; (X) are called the displacement influence functions while f; (t)
are the pertinent displacements at the respective boundaries. The functions g, (X) are to be chosen so as to render the boundary

conditions for the boundary value problems in Z(X,t) homogeneous.
Thus, substituting (1.09) into equation (1.05) one obtains

4 2 2
ELM_ﬂa_z(x,t)Jra_zz(x,t)JrEZ(X,t)
H OX ot M

u oxt ox?
214 2 2 272
ra Z(x,t)+M6(X_ut 0 Z(x,t)+2U6 Z(x,t)+U d°Z(x,t)
ox’ot? U ot? oxot ox?

= M go(x-u)-EL3 1 e+ 3 0, (1)
IO NGRS ATHN
R g 5(x - ut{i(i‘} (x)g,(x)+ 2Uf (x)g!(x) + U (t)gi”(x))} 1.19)

i=1
Where dot () represents the derivative with respect to time, while slash (') represents the derivative with respect to space

coordinate.
Now the expression in equation (1 09) must satisfy the boundary conditions in equation (1.06); consequently, we have

ot]+Zf (0)]= 1,(t), i=12. (L11)

Z(L,t)]+Z f.t)D [g,(L)]= f,(t) i =34. (1.12)

Substituting equation (1.09) into the initial equation (1.07) and (1.08) one obtains.

Z(x,o)=U(x,o)—Z4: f.(0)g,(x) (1.13)

i=1

4
2(x,0) f.(o (1.14)
o 20 =Ual)=2 fle

2.2. Solution Procedure

It is observed that the initial — boundary — value problem in equation (1.10) is a fourth order partial differential equation having
some coefficients which are not only variable but are also singular. These coefficients are the Dirac delta functions which
multiply each term of the convective acceleration operator associated with the inertia of the mass of the moving load. It is
remarked at this juncture that this transformed equation is now amenable to the method of generalized finite integral transform
used extensively in S.T. Oni and Ajibola.S.O [3,6,9,20,21,22].

2.3. The Generalized Finite Integral Transform Method
The generalized finite integral transform method is one of the best methods used in handling problems involving mechanical
vibrations. This integral transform method is given by

2(m,t)= [ 2(x,tV, (x)dx (1.15)
With the inverse

2(x,t)= zvi 7(m,tV. (x) (L.16)

m=1 Vm

Where
J' 1V 2(x)dx L.17)

\Y (X, t), is any function such that the pertinent boundary conditions are satisfied. An appropriate selection of functions for beam

problems are beam mode shape. Thus the m™ normal mode of vibrations of a uniform beam given by
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Vm(x)z . AnX A X si Ay X ) A X (1.18)
L L L L

is chosen as a suitable kernel of the integral (1.15) where A, is the mode frequency, A, ,B,and C,, are constant. An important
feature of the use of this kernel is that it makes the transformation suitable for all variants of the boundary conditions of the
dynamical problems. The parameter A, A,,B,and C_ are obtained when the equation (1.18) is substituted into the

appropriate boundary conditions.
By applying the generalized finite integral transform (1.15), equation (1.10) takes the form

Z“ (m,t) = BlQA(t) + BzQB (t) + Baz (m,t) + Blz(O’ L, t) - erc (t) + QD (t) + QE (t) + QF (t)

PV, (Ut) =[G, (1) - G, (t) + G, (t) + G, (t) + G, (1) + G, (t) + G, (t) + G, (1) | (1.19)
where
B-cl g, =N g_K p_-M 4q,-M (1.20)

JZ JZ JZ JZ uL

|54

Qut)= [ 2tV Q)= [ 2t (x)
Qult)= [ 5o ZkN (0 Q)= M - ut) 2 2t (0

J‘Iwé(x ut)—Z(x,t)\/m(x)dx, (1.21)

Z(0,L,t) = {V (x)—SZ(x t)-V. (x)—ZZ(x t)+V”(x)—Z(x t) =V, (X)Z (X, t)}

(1.22)

G,(t) =B, Zf (t)J.( g;(X) M, (x)dx, G,(t)=B Zf (t)j[d -0, (x)Jv (x)dx

i=1

Gc(t>=zf}(t)j g, ()V,, ()l Gd(t>=Bg_Zf}(t)j 9, (x)V,, (x)lx

G.(t)=r Zf ®] [ vl (x))v ()dx,G, (t) == Zf} (t)j 3(x=ut)g, (X)V,, (x)dx

2MU MU? &

G (t)——Zf (t)J'6(x ut)g; (X)V,, (x)dx G, (t) =

Z f.(t) j S(x—ut)g’(x)V. (x)dx

(1.23)
It is well know that the natural mode in Equation (1.18) satisfies the homogeneous differential equation

4
El %Vm (X) — uo?V, (x)=0 (1.24)
X
for the Euler beam. The parameter () is the natural circular frequency defined by
2 At EI
O, = L4
Equation (1. 24) implies
L d 4 L
El j [d—4v m(x)JZ(x,t)dx = pw? j V_(X)Z(x,t)dx (1.26)
(o] X 0
Thus, by (1.15)
Q,(t) = %a)z Z(m,t) (1.27)

Since

(1.25)
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Z(m,t) is just the coefficient of the generalized finite integral transform, equation (1.16) vyields

2(xt)= > EZ(k, tV, (x) (1.28)

koo Vi
62 0 2

Thus gl kz—z (k,t)— d vV, (x) (1.29)

And the integral (1.21) can be written as

Z B Z,(xt I[; V, (x )}/m (x)dx (1.30)

o Vi

Now using the property of Dirac- Delta function as an even function, it can be expressed it in Fourier cosine series namely
Nzx

S(x—ut)== + cos—cosT (1.31)

When use is made of equatlons (1.28) to (1.31), one obtains

Q, (t):uﬂzv Zu(k, t){jv (X)V,, (x)dx+2zCos j COS—V (X)V,, (x)dx} (1.32)

Using similar argument in equations (1.21). It is straight forward to show that

Q. (t)ZZI\/I—UZZt(k t){u IV (X)V,, (x)dx+22Cos nut 4 ICos—V (X)V,, (x)dx} and

(1.33)

MU” iZ(k t){” [Viov, (x)dx+22Cos nzut i j COS—V (X)V, (x)dx}l 34)

Qi(t) =

Substituting equatlons (1.27) to (134), into (1.19), after S|mpI|f|cat|0ns and arrangements yields

Ze(Mt)+alZ(m,t) - EZi(k, 1)S; (k,m) = r?> Zu(k,t)S; (k,m) + g{ZZn (k,t)S; (k, m)
H =1 k=1 k=1

+ZZZCosnTﬂmzn(k 085, (k,m,n)+ 20> Z (K, 1)S (k,m)
k=1 n=1 k=1
2 2 nﬂUt 2 2 — *
+4UZZCostt(k £)Ss (k,m,n) +U 2> Z(k,1)S; (k,m)
k=1 n= k=1
+2u222003”—7|z_mzt(k 0s.. (k,m, n)
k=1 n=
:P{SinM Ayt noin Ayt nCos imut}
~|G. (1) -G, (1) + G, (t) + G4 (t) - G, (t) + G, (1) + G, (1) + G, (t) (1.35)
where  G,,G,,G, ..ol G, are as defined in equations (1.23)
ol :{w; +£J (1.36)
7

First, we shall obtain the particular functions gi(x), where i=1,2,3,4.which ensure zeros of the right hand sides of the
boundary conditions for a clamped-clamped beam. Going through the same process discussed in [1,3,6], one obtains

gl(x)=1—3(%j2 +2(%)3, 9,(x)= x—X—LZ, g5(x) = 3(%)2 —2(%)3,g4(x)= _X_:JF)C_Z (1.37)

It is only necessary to compute those of the g, (X) for which the corresponding f; (t) do not vanish. Thus, we need only gl(X)

and ga(x) for our boundary displacement functions fl(t) and fa(t) as defined in [1,3,6,19,20,21,22,23].
Thus we can write

134 | Vol 2 Issue 6 June, 2014



The International Journal Of Science & Technoledge  (ISSN 2321 —919X) www.theijst.com

f, = BSinQt and f, = Ae " SinQt (1.41)
Where A, B are amplitudes, €2 is frequency and S is parameter.
The initial conditions are, again

Z_(X,O) =0 and Z_t (X,O) =-Q (1.42)
which when transformed yield

Z(m,0)=0 and Z,(m,0)=1, (1.43)
where

1M, =N [(L—cos A, )+ B, (cosh A, —1)+ A, sin A, +C,, sinh 1, ] (1.44)
and

LQ

= 1.45
Mor =~ (1.45)

m
In view of equations (1.37),(1.42 ) and (1.43); the transformed equation of our problem, reduces to

Z_n(m,t)+{a)§ +%Jz_(m,t)— N S Z (k.1 (K, m)- rzgz_n(k,t)sf(K,m)
+e{iz_n(k,t)82(K,m)+2i 5 cos"™ 7 (k.)s;. (e m.n)

~
I
UN
=~
'L
=]
I
UN

DM TP
:
=
1]
T
.
'L

+
C

~
I
UN
=~
I
UN
=]
I
UN

L
5

. A ut A_ut
m—_ 4+ A Cos—™
L An L

1
i)
| —

+B,Sinh

AUt +C,,Cosh A”I‘_Ut}

[f0 1, +(F,0- £ O, + LOSH, (50— ,0) Hy
u

+(h0)-£.0) (HH +H,Y cosn—ftj (£, £, )(HB VHY cosn—EtJH (1.46)

— n=1
Where
e M (1.47)

pl '

H1=N1_N3+Am(N2_N4) ; H2:N5_N7+Am(N6_N8)

H3=N9_N11+Am(N10_N12) ; H4=N13_N15+Am(Nl4_N16)
H5:N17_N19+Am(N18_N20) ; H6:N21_N23+Am(N22_N24)
H7=N25_N27+Am(N26_N28) ; H8=N29_N31+Am(N30_N32)

3 2 6 12 K(3 2 N( 6 12
H9=|:?H3—FH4—GZ(?H1—FHZJ:| , Hlo:{;(?HS—FH‘lj—;(FHl——LS sz:|
3 2 6 4 6 6
H, =—L2 H3——L3 H, ; H, :_L2 H, __L3 Hsg. Hy, ZZU(_LZ H2——L3 Hsj
12 12
H,, =2U(—L2 He— 13 H7j
H15:U (FH]_—FHZ N H16:U FHS—FHGS (148)

Equation (1.46) is the transformed equation governing the problem of a uniform Rayleigh beam resting on a constant elastic
foundation. Two special cases of equation (1.46) are considered namely moving force and moving mass problems.
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3.The Clamped-Clamped Moving Force Problem
In equation (1.46), & is set to zero, using Strubles asymptotic techniques as alluded to in [1,3,6,19,20,21,22,23]. On this
consideration, Hence, the entire equation (1.46) takes the form

ztt(m't)+ }/éZ(m,t)=

. AU A ut
(L+&.5; (m,m)) P _CoshZm
L L
—H,,sinh Qt—H ¢ " sin Qt+H, ¢ " coth] . (1.49)
Where
W, * N *
Vo ==& S; (M m)+ . —5—S; (m,m) (1.50)
2 ur Ot
represents the modified frequency due to the effect of rotatory inertia.
r2
—=2 1.51
[ = (1.51)

In order to obtain the solution to equation (1.49), it is subjected to a Laplace transformation in conjunction with the initial
condition. The equation, after simplifications and rearrangements then we obtain

Z(m,t)= F:OR_ 24 [(yf1 + 22 )y 5in 2t — 2, sin . t)+ A, (cOS 25t —cos y, 1))

m\/ m 0
+(y2 = 22)(B, (¥, sinh z,t — 2, sin y,,t)+ C,, (cosh z,t — cos y ,t))]
OR
bt =)~ RS 1) - Qosytsina 7,
}/m m m

—(Q+y,)sin ymt cos(Q—y,, )—(Q+y, )cosy, tsin(Q -y, )+2Qsiny,t |
OR,—

Hige” [ Bsiny, tsin(y, + Q)X - Bcosy, t—(y, +Q)Bsiny, tcos(y, + Q)
"2, [ + (7 + Y]
+(y, +Qkiny t — Bcosy, tcos(y, + Q)+ (y, +Q)cosy, tsin(y, +Q)t]

He ™" s :

COS}/mt COS(}/m _Q)[ - (}/m —Q)[COS}/mtsm(}/m _Q)[
2}/m ﬁ +(}/m _Q)z.
+ Bsiny, tsin(y, —Qt+(y, —Q)siny,tcos(y, —Qk (v, —Q)siny,t — fcosy,t]
He ™™
2y n|B* + (7 +QF |
+ Bcosy, tsin(y, + Q)+ (y, +Q)cosy, tcos(y, +Qk—(y, +Q)cosy,t ]
HYe ™" L psi .
: 1[= Bsiny,teos(y, — QX+ Bsiny t+(y, —Q)siny,tsin(y, — QX
2[5 (7 -]

(Q -7, )cosy, t— Bcosy, tsin(Q—y, t—(Q-y, )cosy, tcos(@—y, )t ]+ 2siny. t (152
Vm
on inversion yields
= 2& - A X L ALX
Z(xt)=—>» Z(m,t - n n
(1) 23 Z(mt) s 222 o 2|

L L
U(xt)=Z(xt)+ [1— 3(%)2 + 2(%)3}% Qt+ [3(%)2 - 2(%)3}"3‘ sin Ot (L53)

Equation (1.53) is the transverse response of a thin beam under the action of a moving force whose two clamped edges are
constrained to undergo displacements which vary with time.

J’_

+ [~ Bsiny, tcos(y, +Q)t+ Bsiny t+(y, +Q)siny, tsin(y, + Q)

136 | Vol 2 Issue 6 June, 2014



The International Journal Of Science & Technoledge  (ISSN 2321 —919X) www.theijst.com

4. The Clamped-Clamped Moving Mass Problem
If the mass of the moving load is commensurable with that of the structure, the inertia effect of the moving mass is not negligible.

Thus, &, # 0 and the solution of the entire equation (1.46) is desired. Using Strubles asymptotic technique after simplifications
and rearrangements, we obtain

Aput Aput
" — + H,, cosh mL

= = . Aput Anut .
Z.(m,t)+ ;/nzqu(m,t)szgsm”‘TJFH29 cosmT+H30 sinh

. . nzut .
H,, sin Qt + H,,; cosQt + H,,e 7 sinQt + H,e ™ cosQt + Hy, LZELINIYS

nrut nzut . nzut nzut . A,ut
H,, cos C cos Qt + He ™ C sinQt + H,,e ™" cos cosQt + H ,, cos sin ™

nzut A ut nrut . A_ut nrut A ut
H,, cos 72 cos 2 +H,, cos 72 Sinh Zm +H,, cos 72" cosh 2 (1.54)
L L L L L
* * = nﬂut * * *
where : P, = P{l—/l{sz(m,m)JrZZcosTSzc (m,m,n)ﬂ H,, = P.s, H,, =P, A,
n=1
Hj, ZPSRBm’ Hy ZPSRCm; Hg, = [H17 +)L(H20 _H17S;(m'm))] ) H,; = AH,, ;

*

H, = _[HlB +A(H22 _Hlasz(m’ m

= _AZ[HM _2H17S;c (m’m’ n)] Hy, = _AH25

n=1

*

H35 = _[ng +A(H23 _ngsz(m' m

—_— =
T
&

00 00

Hy = —A (Hze _ZHlas;c (m’m’n)) » Hg = _AZ(HN _2H19S;c (m’m’n))

n=1 n=1
H, = —2/1Pf:sgc (mm,n), H, = —2/1PAmf:s;C (m,m,n),
n=1 n=1
H,, =-2APB,S,.(m,m,n) and H,, = —zzpcmis; (m,m,n) (1.55)

n=1
To obtain the solution of equation (1.53), it is subjected to Laplace transform in conjunction with the initial conditions, after some
simplifications and rearrangements ,we obtain

Z(m,t)= A, Siny, t+ A, SinZ,t + A, CosZ,t + A,SinhZ,t + A,,CoshZ,t

+ A, SINQt + A CosQt + AsCoSy it + Ay, SINZ gt + A SinZ,t + Ay CosZ ot

+ A,,CosZ t+ A,,SinZ,t + A,,SinZgt + A,,CosZ,t + A,,CosZt + A, e ™ SinQt
+ A" CosQt + A6 7SInZ.t + A e 7CosZ,t

+ A,e”SinZ,t + A e 7' CosZ,t + A,,CosZ ,tCosht

+ A;,CosZ,tSinht + A, SinZ,tSinht + A,,SinZ ,tCosht .. (1.56)
Where
A2 — — stzo _ |_|3oZo _ H32Q
9
(}/rif _Zg)}’mf (}/rif + Zg)}’mf (}/rif -Q* )},mf

+(}/§1f -Q° Tﬂz)}/meS4+(}/§1f "‘Qz"‘@z)Hss
Yt [(}/rif +0Q° +ﬂ2)2 _4}/?”92]

o HaZy L HieZ, (2 - 22+ B2 Hay + 202 + B2+ 22 H,,
2 e (?’;f _232) 29 o (}/rif _Zf) zl(yrif +Z; +ﬂ2)z _4yr$1f232J
Yt (7;f _Z_42 +ﬂ2)H38 +(}/r$1f +p? +Z_:)H39 B H, Z, N H,Z,
2y (v +22+ B2 - 472,22 20 rae —27) 2ri -23)
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(}/Frif +2Z; +1XH45 -H,,) 1+77_2:|
Y mt [(}/rif +ZZZ +1)2 —4}’;f22J Yt
Poo =Hog H(y2 —Z2) Ay = Hog (y2 —22); Ay =Hiop I3 —22) Ay =Hy (y2 —22)

A=l -0 =M ) | MM

v -23) Wa+23) 7% -9
C20BH, (2 -+ B Hy  H,  Hy
(2 +02+ p2f —ay202| " 2va -23) 2l -23)
_ZZ_SﬂHSB—(y;f—Z§+ﬂ2)H3‘9+224ﬂH38 (2 - Zz+ﬂ2)
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Equation (1.56) is then inverted to obtain

[(}/rif +Z; +1) 47mf22J
= 2G5 L AnX o AX

Z(x,t)_ImZ;Z(m,t){ —o-m( "= —sin = ﬂ
Thus,

U(xt)=Z(xt)+ [1— 3(%)2 + 2(%)3}% Qt+ [3(%)2 - 2(%)3}"3‘ sin Ot (L.58)

Equation (1.58) is the transverse response of a Rayleigh beam under the action of a moving mass whose two clamped edges are
constrained to undergo displacements which vary with time.

5. Discussion of the Analytical Solution

If the undamped system such as this is studied, it is desirable to examine the response amplitude of the dynamical system which
may grow without bound. This is termed resonance when it occurs. Equation (1.36) clearly shows that the Clamped-Clamped
elastic Rayleigh beams transverse by a moving force will be in state of resonance whenever
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al =22 which implies that «,; = Z, (1.59)

and equation ((1.54) shows that the same beam under the action of moving mass experiences resonance effect when
BL =27: which implies that S, = Z, (1.60)

from equation (1.50)

A[ Hy(m,k) C*Hy(m,k)

= 1-— 1.61
P =t 172 G m) "y mi ke (60
This implies,

. _ & (mk) (1.62)

Yt = =

" (m, k)
From equations (1.60) and (1.62), we deduced for the same natural frequency, the critical speed for the system of a Clamped-
Clamped elastic beam on an elastic foundation and traversed by a moving force is greater than that traversed by moving mass.
Thus, resonance is reached earlier in the moving mass system than in the moving force system.

6. Numerical Calculation and Discussion of the Results
Again, to illustrate the analytical results, the uniform Rayleigh beam of length L=12.192m is considered, the load velocity u =

8.123 and E =2.109x10°kg /m .The values of the foundation moduli K varied between 0 and 400000 and for fixed values

of rotatory inertia r=1.The traverse deflections of the uniform Rayleigh beam are calculated and plotted against time for values of
rotatory inertia and foundation stiffness K.

Fig.1 displayed the transverse displacement response of clamped-clamped moving force of a uniform Rayleigh beam moving
with variable velocities for various values of axial force N and fixed value of foundation moduli K =40000. The graph shows that
the response amplitude decreases as the values of the axial force N increases while in fig 2 one observed that deflection profile of
the clamped-clamped moving force of a uniform Rayleigh beam moving with variable velocities for various values of foundation
moduli K and for fixed value of axial force N=20000. The graph shows that the response amplitude decreases as the values of the
foundation moduli K increases. However, fig3 shows the transverse displacement response of clamped-clamped moving mass of
a uniform Rayleigh beam moving with variable velocities for various values of axial force N and fixed value of foundation moduli
K =40000. From the graph it shows that the response amplitude decreases as the values of the axial force N increases. More so,
fig.4 depicts the deflection profile of the clamped-clamped moving mass of a uniform Rayleigh beam moving with variable
velocities for various values of foundation moduli K when the axial force is fixed at N=20000. It is clearly seen from the graph
that the response amplitude decreases as the values of the foundation K increases. Lastly, fig.5 shows the comparison of the
moving force and moving mass clamped-clamped uniform Rayleigh beams moving with variable velocities for fixed value of
foundation moduli K and axial force N respectively. however, it shows that the response amplitudes of moving force is lower than
that of the moving mass. Consequently, going by this result it confirmed that moving force problem cannot be a good
approximation to a moving mass problem rather it is misleading.

T i
e

Fig1: Transversedispl resp of clamped-clamped uniform beam for various Fig 2: Deflection profile of clampe d-clampe d uniform beam for v aricus values of foundation

moduli K and for fixe d value of axial force n=20000

Values of axialforce N and fixed value of foundation moduli K=40000

Figure 1 Figure 2
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Fig 3: transverse displ of clamped-clamped moving mass of uniform beam
for varicus values of axialforce N and fixed value of foundation moduli K=40000

Time ity

Fig4: Deflection profile of the clampe-clamped moving mass uniform beam for varnous
Values of foundation meduli K and for fixed value of axial force N=20000

Figure 3

Figure 4
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Time ity Tima {1} 89,
Fig 8 Dfisction profils of clamped-slampsd  uniform Raylsigh bsam undar ths action of moving foros for

varkus valuee of rotatery Inertla and fixed valus of foundation modulus K=20000 and Tixed value of axal
Farca N=40000.

Figure 6

Fig §: Comparisen of the Moving force and Maving mass of the clamped-clamped uniform
Beam for fixed values of axial force N and foundation madui K

Figure 5

fig 6 shows the deflection profile for clamped-clamped uniform Rayleigh beam under the action of moving mass for various
values of rotatory inertia and for fixed value of axial force N=200000 and for fixed value of foundation modulus K=200000. it
was found out that as the values of roatory inertia increases the deflection profile reduces. Consequently,fig7 depicts that the
deflection profile for clamped-clamped uniform Rayleigh beam under the action of moving force for various values of rotatory
inertia and for fixed value of axial force N=20000 and for fixed value of foundation modulus K=20000. it was found out that as
the values of roatory inertia increases the deflection profile reduces.

Fig 7- Defisction profiie of clamped-clampsed uniform Rayleigh beam undsr the action of moving mass Tor
warious valuss of rotatory inertla R and for fixsd valus of foundation moduius K=200000 and for fixsd
Axial foros N=200000.

Figure 7
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