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1. Introduction 
The join and aggregation operator has been a cornerstone of relational database system since their inception. As much time and 
effort has gone into making join and aggregation efficient. With obvious trends towards multiprocessors, attention has focused on 
efficient The significant amount of effort has been focused on developing efficient join and aggregation algorithms. Initially, 
nested loops and sort-merge were conventional algorithms of choice for join operations. Besides being faster under most 
conditions these join and aggregation operation   required complex query to be executed. Loading huge database in memory with 
parallel query execution required huge resources. 
The conventional database management system cannot store intermediate result in memory but it passes to the next operation, 
failure in one process can be a failure in the overall operation. 
Map Reduce is simple and efficient for computing join aggregate. Thus, it is often compared with “filtering then group-by 
aggregation” query processing in a DBMS. The main idea of the Map Reduce model is to hide the details of parallel execution and 
allow users to focus only on data processing strategies. The Map Reduce model consists of two primitive functions: Map and 
Reduce, which parallelize the join and aggregation operation. But a traditional database system with query engine have some 
limitation running the job in a parallel way. If data added in the database the incremental computation will have to perform the 
traditional database management system execution of a query need to perform all join and aggregation operation from the 
beginning . 
Using map reduce computations can respond automatically and efficiently with modifications to their input data by reusing 
intermediate results from previous runs, and  incrementally updating the output according to the changes in the input. Which will 
reduce time complexity 
 
2. Architectural Approaches 
In more complex forms, map reduction jobs are broken into individual, independent units of work and spread across many servers, 
typically commodity hardware units, in much less complicated and easily managed by many computers connected together in a 
cluster. In layman’s terms, when the task at hand is too big for one person, then a crew needs to be called in to complete the work. 
Typically, a map reduction “crew” would consist of one or more multi-processor nodes (computers) and some type of master node 
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Abstract: 
Fast and efficient retrieval mechanisms that work within acceptable time frames and keep pace with the information 
explosion are essential for efficient and effective database systems of the future. Using more processing power, and in 
particular, exploiting parallel processing is the intuitive solution. While there have been many successful efforts that aim at 
parallelizing query evaluation, it is possible to further improve the performance of a database system using newer 
techniques such as Map/Reduce.  
It is observed that the parallel DBMS perform well because they load and index the data before they process queries. Since 
this loading phase can take a long time, there arises the question if the loading phase itself is worth to process only one or 
two queries. This is where Map/Reduce comes into play. One such idea for processing enormous quantities of data is 
Google’s Map/Reduce. It is a simple yet powerful framework for efficient execution of complex queries over large datasets 
involving joins and aggregation.  
The work reported in this paper deals with the design of a proposed framework based on Map/Reduce for efficient execution 
of complex database queries involving joins and aggregations. The user needs to only write specialized map and reduce 
functions as a part of the Map/Reduce job and the framework takes care of the rest. The design of the framework has been 
done after exploring existing solutions and then extended to propose an efficient solution for queries involving joins. Join 
algorithms are of two types - Two-Way joins and Multi-Way joins. This work deals with only two-way joins. Options to pre-
process data in order to improve performance at map side have also been explored. Experimental results presented provide 
an insight into how good a fit Map/Reduce is for evaluating joins with aggregation at reduce side. 
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or program that manages the effort of dividing up the work between nodes (mapping) and the aggregation of the final results 
across all the worker nodes (reduction). The master node or program could be considered the map reduction crew’s foreman. In 
actuality, this explanation is an over-simplification of most large map reduction systems. In these larger systems, many additional 
indexing, I/O, and other data management layers could be required depending on individual project requirements. However, the 
benefits of map reduction can also be realized on a single multi-processor computer for smaller projects. 
The primary benefits of any map reduction system come from dividing up work across many processors and keeping as much data 
in memory as possible during processing. Elimination of I/O (reading data from and writing data to disk) represents the greatest 
opportunity for performance gains in most typical systems. Commodity hardware machines each provide additional processors 
and memory for data processing when they are used together in a map reduction cluster. When a cluster is deployed however, 
additional programming complexity is introduced. Input data must be divided up (mapped) across the cluster’s nodes (computers) 
in an equal manner that still produces accurate results and easily lends itself to the aggregation of the final results (reduction). The 
mapping of input data to specific cluster nodes is in addition to the mapping of individual units of input data work to individual 
processors within a single node. Reduction across multiple cluster nodes also requires additional programming complexity. In all 
map reduction systems, some form of parallel processing must be deployed when multiple processors are used. Since parallel 
processing is always involved during map reduction, thread safety is a primary concern for any system. Input data must be divided 
up into individual independent units of work that can be processed by any worker thread at any time during the various stages of 
both mapping and reduction. Sometimes this requires substantial thought during the design stages since the input data is not 
necessarily processed in a linear fashion. When processing text data for instance, the last sentence of a document could be 
processed before the first sentence of a document since multiple worker threads simultaneously work on all parts of the input data. 
 
3. Two-Way Joins 
 
3.1.  Reduce-Side Join 
In this algorithm, as the name suggests, the actual join happens on the Reduce side of the framework. The ‘map’ phase only pre-
processes the tuples of the two datasets to organize them in terms of the join key. 
 
3.1.1. Map Phase 
The map function reads one tuple at a time from both the datasets. The values from the column on which the join is being done are 
fetched as keys to the map function and the rest of the tuple is fetched as the value associated with that key. It identifies the tuples’ 
parent dataset and tags them. A custom class called Text Pair has been defined that can hold two Text values. The map function 
uses this class to tag both the key and the value. 
 

 
Fig. 3.1: Map and Reduce side join 

 
3.1.2. Partitioning and Grouping Phase 
The partitioner partitions the tuples among the reducers based on the join key such that all tuples from both datasets having the 
same key go to the same reducer. The default partitioner had to be specifically overridden to make sure that the partitioning was 
done only on the Key value, ignoring the Tag value. The Tag values are only to allow the reducer to identify a tuple’s parent 
dataset. 
But this is not sufficient. Even though this will ensure that all tuples with the same key go to the same reducer, there still exists a 
problem. The reduce function is called once for a key and the list of values associated with it. This list of values is generated by 
grouping together all the tuples associated with the same key. It is sending a composite TextPair key and hence the Reducer will 
consider (key, tag) as a key. This means, for eg., two different reduce functions will be called for [Key1, Tag1] and [Key1, Tag2]. 
To overcome this, we will need to override the default grouping function as well. This function is essentially the same as the 
partitioner and makes sure the reduce groups are formed taking into consideration only the Key part and ignoring the Tag part.  
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3.1.3. Reduce Phase 
The framework sorts the keys (in this case, the composite TextPair key) and passes them on with the corresponding values to the 
Reducer. Since the sorting is done on the composite key (primary sort on Key and secondary sort on Tag), tuples from one table 
will all come before the other table. The Reducer then calls the reduce function for Join Algorithms. Each key group. The reduce 
function buffers the tuples of the first dataset. This is required since once the tuples are reading it lose access to these values 
unless it reinitialize the stream. But we need these tuples in order to join them with the tuples from the second dataset. Tuples of 
the second dataset are simply read directly from, one at a time and joined with all the tuples from the buffer (all the values with 
one reduce function are in the same key) both key and values need to be tagged. This is because the tag attached to the key is used 
to do a secondary sort to ensure all tuples from one table are processed before the other. Once the reduce function is called, it will 
only get the first (key, tag) pair as its key (owing to the custom grouping function written which ignores the tags). After j tuple of 
first dataset join with the tuple of second dataset. 
The aggregation algorithm can be performed in one MapReduce job as follows. Mapper extract from each tuple values to group 
by and aggregate and emits them. The intermediate outputs produced by the mappers are then sorted locally for grouping key-
value pairs sharing the same key. After local sort, Combine () is optionally applied to perform pre-aggregation on the grouped 
key-value pairs so that the communication cost taken to transfer all the intermediate outputs to reducers is minimized. 
Reducer receives values to be aggregated already grouped and calculates an aggregation function. The first  job does the 2-way 
join as it did in the problem above, then the second job does all the grouping and aggregation. Grouping is done  by MapReduce; 
all it required  to do is to output the grouping attribute(s) as the intermediate key in map: 
 
 
4 . Incremental Aggregation 
The system can reuse the result of prior computations transparently by using intermediate result produce at Map side.  As for real 
time database the synthetic database is produced, which is added in an incremental way. 
The algorithm is composed of the following steps: 

 Import the synthetic database on the real time database. 
 Assign map reduces function for aggregation operation. 
 Re-compute the aggregation result using the intermediate result stored. 

 
5.Experiments 
 
5.1. Dataset 
Data are the set of tuples. Tuple is split into a pair of a key and a value, where value is the remaining attributes. Generation of 
synthetic data was done. Join keys are distributed randomly and in uniform manner. 
The  first data set  employed is "DATAMART" for the experiments which is a real world relational database.  The 
” DATAMART” data set consist of two tables. This database have of skewed key distribution. The  Second data set  employed for 
the experiment is a real world relational database collected from the online store.The “eSTORE” data set consists of two tables. 
This database have uniform key distribution. 
 
5.2. The General Case 
One of the most important functional requirements of a database system is its ability to process queries in a timely manner. This is 
particularly true for very large, mission critical applications such as weather forecasting, banking systems and aeronautical 
applications, which can contain millions and even trillions of records. The work presented in this report  focus is to join the 
relation using  Map reduce that support  incremental updating. 
Map Reduce is excellent in the areas of simplicity, fault tolerance and flexibility. Map Reduce consists basically of two functions, 
Map and Reduce, Avoids a long loading phase. If the data is processed only once and it changes occur frequently over time, this 
approach can be very useful and preferable. Its fault tolerance model brings an important advantage, as datasets become bigger. 
But this fault tolerance is not for free. The materializing of intermediate results on local disks causes a bad impact on the 
performance. Nevertheless, such a programming model with this fault tolerance will become more preferable as datasets grow. 
The join algorithm can be implemented in a different ways. In terms of disk accesses, the join operations can be very expensive, 
so implementing and utilizing efficient join algorithms is important in minimizing execution time. Such datasets on which join 
and   aggregation operation is performed produces the intermediate result on local disk. Those intermediate results are used in 
incremental aggregation computation as the data set grows. 
A series of experiments were conducted to compare the runtime and scalability of the algorithms. Involving running two-way join 
algorithms on database (skewed key distribution and uniform key distribution database) of different sizes. The performance of 
system is measured over the real word database as well as synthetic database. 
The first data set employed for the experiment is a real world relational database collected from online eStore 
In incremental aggregation data added to the existing database. In a traditional database management system  incremental 
computation will have to perform the execution of the query. All query operations like join and aggregation are performed again 
from beginning. 
Map reduce computations  responds automatically and efficiently to modifications to their input data by reusing intermediate 
results from previous runs, and  incrementally updating the output according to the changes in the input. Which  reduces time 
complexity. Where the traditional query approach performs all the join and aggregation from the beginning. As traditional query 
operation does not save intermediate result it passes the result from one process to another. 
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The experiment for incremental aggregation uses a synthetic database. Synthetic database is added in base table incrementally. 
Synthetic database tested  in an incremental way for the eStore. Range of dataset given INC_RECORDS in table 5.1 which is 
added incrementally to original database. The key column  show on which key new records are inserted. 
Table 5.1 shows time in second taken by  the traditional query processing approach versus  Map reduce on an increasing number 
of records sizes on the existing database. 
 

 

Table 5.1.: key field shows the one which ticket_id records are added and record field indicates how many records are added. 
 

 
Figure5. 1: Records incrementally added in to the database and as the size of data increases Time required by Map Reduce 

approach is consistently less than traditional approaches 
 

In the DATAMART" database sale_fact table import the synthetic data for customer field which Aggregate (count) the customer 
id with the incremental synthetic data. 
 

INC_RECORDS Traditional 
Incremental 

(Time in Sec) 

Map Reduce 
incremental 

(Time in Sec) 

Key Records 

87405 31.06 30.48 1 500 
88405 29.15 27.96 5 1000 
89950 24.81 23.94 8 1500 
91205 28.08 27.8 15 2000 
93705 29.22 28.32 21 2500 
96705 29.33 28.64 25 3000 

100205 30.49 29.41 30 3500 
104205 31.12 30.35 35 4000 

INC_RECORDS 
 

Traditional Incremental 
(Time in Sec) 

 

Map Reduce 
incremental 

(Time in Sec) 
 

Key 
 

Records 
 

26674 250.4 239.38 6212 500 
27674 135.98 128.99 6168 1000 
29174 134.26 129.23 6790 1500 
31174 133.38 129.12 19212 2000 
33674 345.58 322.4 32264 2500 
36674 438.18 405.47 6788 3000 
40174 525.35 486.1 6787 3500 
44174 620.72 586.05 6788 4000 
48674 688.43 660.46 7551 4500 
53674 830.58 728.64 6771 5000 
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108705 32.52 31.49 40 4500 
113705 36.12 33.26 45 5000 
123705 33.95 32.95 55 10000 
138705 37.21 34.6 60 15000 
158705 42.22 40.5 65 20000 

Table 5.2: key field shows the one which  records are added and records field explains how many records are added 
 

One can observe 158705 are total number of records in new dataset as a result of merging synthetic records to the original dataset 
consisting 87405 records. 
 

 
Figure 5.2: Records incrementally added in to the database and  as size of database increases  Time required by Map Reduce 

approach is consistently less than traditional approaches 
 

The presented approach tested on dataset having uniform and others with skewed key distribution shows significant improvements 
with consistent results as compared to the traditional query processing technique. 
 
6. Conclusion 
The system under consideration uses an incremental algorithm for efficient execution of join and aggregation queries . The 
approach is based on  MapReduce programming model with the goal to design, develop and implement a framework for fast and 
efficient retrieval mechanisms.  It works within acceptable time frames and keep pace with the information explosion that is 
essential for efficient and effective database operation. 
As database grows, incremental computation is a key for efficient execution. The framework also supports incremental 
computation and  achieves a near optimal time efficiency in resource restricted scenarios. Through extensive experiments over 
both  synthetic  and real world data, given solution provide better  query evaluation efficiency as compared to  traditional system. 
Ability of hiding the details of parallelization, fault-tolerance, locality optimization, load balancing and accessing  specific data for 
processing are some of the additional merit of the framework. 
In particular  map reduce approach optimizes the join and aggregation operation on complex database that improves performance 
and needs minimum  resources  to detect changes in the incremental data. 
Experimental result shows that the time required for computation of join-aggregation using MAP/Reduce approach is lesser when 
compared with traditional approach. 
 
7. References 

1. A.Shatdal, C.Kant, J.F.Naughton. Cache conscious algorithms for relational query processing. VLDB,1994. 
2. Michael Isard, Mihai Budiu. Dryad: distributed data-parallel programs from sequential building blocks. EuroSys '07, 

2007. 
3. Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Ulfar Erlingsson, Pradeep Kumar Gunda, Jon Currey. 

DryadLINQ: A System for General-Purpose Distributed Data-Parallel Computing Using a High-Level Language. OSDI, 
2008. 

4. Ronnie Chaiken, Bob Jenkins, Per-Ake Larson, Bill Ramsey, Darren Shakib, Simon Weaver, Jingren Zhou. SCOPE: 
Easy and Efficient Parallel Processing of Massive Data Sets. Proceedings of the VLDB Endowment, 2008.1(2):1265-
1276. 

5. Ashish Thusoo Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Suresh Anthony, Hao Liu, Pete Wyckoff, 
Raghotham Murthy. Hive: a warehousing solution over a map-reduce framework. VLDB, 2009. 

6. Hung-chih Yang, Ali Dasdan, Ruey-Lung Hsiao, D.Stott Parker. Map-reduce-merge: simplified relational data 
processing on large cluster. SIGMOD'07, 2007. 



 The International Journal Of Science & Technoledge    (ISSN  2321 – 919X)    www.theijst.com                
 

439                                                   Vol 2 Issue 6                                                      June, 2014 
 

7. S. Babu and J. Widom. Streamon: an adaptive engine for stream query processing. In SIGMOD Conference, pages 931–
932, New York, NY, USA, 2004. ACM. 

8. Chen, S., and Schlosser, S. W. Map-reduce meets wider varieties of applications. Tech. Rep. IRP-TR-08-05, Intel Labs 
Pittsburgh Tech Report, May 2008. 

9. Domeniconi, C., and Gunopulos, D. Incremental support vector machine construction. In ICDM'01 (Washington, DC, 
USA,2001), pp. 589{592. 

10. J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters. Commun. ACM, 51(1):107–113, 
2008 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


