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Definition: Let L be a vector space over real numbers of real valued functions defined on a set X.  Let  for all f and g  belonging 
to L  define  = max{f,g} and min{f,g}, if L is closed  under  and  then L is  called a vector lattice  of 
functions on X. We define =  and =  for any f  then  and . Also |f| =  thus |f| . 
 
Preposition: Let L be a vector space over  real numbers  of real valued  functions  defined on a set  X. then L is a vector lattice  iff  

 whenever . 
 
Proof: If L be a vector lattice then from the definition of L the said condition is obviously true. 
 
Conversely:  Let the condition is satisfied. For  f, g  then f - g . 

.   And (f+g) -  shows that . 
Hence L is a vector Lattice. 
 
Preposition: Let L be  a vector  space  of real valued functions  defined   on X, then L is a vector lattice iff  |h|  whenever 

. 
 
Proof:   Suppose L be a vector lattice, let h .Then and  (from 
above) . h|  the condition is necessary. 
 
Conversely: Assume that the given condition is satisfied, let h . Then |h | h|  

  .  Thus in view of the above last result L becomes a vector lattice. 
 
Definition: Let L be a vector lattice on X, and I be a +ve linear functional defined on L s.t. when ,     
whenever , Then I is called a Daniell Integral on L. 
 
Note: means that the sequence } is point wise monotone increasing and converging to 0 for each   
 
Preposition:  L be a vector lattice on X, and I be a +ve linear functional defined on L Then I is called Daniell integral iff. 
Whenever   } is any increasing sequence and   then   
 
Proof: Suppose I is a Daniell integral, Let ,   and } be any increasing sequence of members of L with   
,    then  

          ................................(1) 
Since  we get ) ) )      
as n                                                   {from 1} 
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)     ) Proves that the condition is necessary. 
 
Conversely: Assume that the given condition is satisfied. 
To show that  I is Daniell Integral. 
Consider any decreasing sequence     of members of L 
with ,                                                
....................(2) 
As  is decreasing then (-  Is increasing sequence of members of L and 

=0  
                                                                                   ....................................(3) 

From (2) and (3) we obtain   , shows that I is a Daniell Integral. 
 
Preposition: I be a +ve linear functional defined on L1 Then I is called Daniell integral iff. Whenever    
and  then . 
 
Proof: Suppose I is  Daniell integral let     and   
Define   then  and  is increasing and = limt  = limt (   

limt I( = limt I(  = limitI([ ]) = limt[I( = 
limt( ) = . Shows that the condition is necessary.  
 
To show that the condition is sufficient 
Assume that the condition is satisfied. 
Let } be any increasing sequence of members of L and  such that .Define = , = - , = -

.......... 
Thus   and  for all n. Further  limt ( =limt ( =  
Therefore by assumption we get I( = limt ( = limt I( =  limit I( .  
Shows that I is  a Daniell Integral. 
 
Example: Let L be the class of Real valued continuous functions on [a, b], for f , Define   If f  and  

 then   is also continuous function, Hence  
 Also   ,  

.  
Further I ( = = I (f) +  I(g) Shows that I is Linear. 

And I (f) =  
Wherever  f   Shows that I is a positive linear functional on L. 
Let { } be any sequence of members of L s.t. , then  and |  
Therefore by Dominant Convergence Theorem    we have  

As  is Reimann Integerable over [a, b] therefore . Proves that I is Daniell Integral. 
 
Example: Let ( be any measurable space. let L be the class of all simple functions which are zero outside sets of finite 
measure. 
Define d  for If f , then it is easy  to verify that  L is a vector lattice  and  I is a positive linear functional on  L as  
in the above example  it can be shown that I  is continuous   for decreasing null sequence and  hence I is  Daniell Integral on L. 
 
Definition: Let L be any vector lattice  of real valued functions on X  By Lu  denote the class of  real valued functions on X which 
are  limits of    increasing  sequences  of members  of L. 
 
Remark (1): Lu is a lattice Let f, g , then there  exist  increasing  sequences   of members of L  s.t. 

. This shows that , 
 
Similarly , Lu is a lattice. 
 
Remark (2):  Let f, g , and Then  
We say that Lu is a cone. 
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Remark (3):  Lu is not a vector space because  for   
 
Preposition:  be increasing sequences of members of L and suppose that   then 

 
 
Proof: )  

 
 
Definition:  Let f  and  be increasing sequences and members of L s.t.  f=  then we define    I (f) = 

 
 
Preposition: Let f, g , and , then 
(1):   f I(f)  
(2):   I (  I(  
 
Proof (1)  be increasing sequences of members of L s.t.  as f  

I (f) . 
(2):  As   and 

} ( } ( ) ( )= } 
= }=  I( . 
 
Corollary (1) :  I( f+ g) = I (f) + I (g)  for all f ,g Lu 
(2):   I (f)  for all f, g Lu with    
 
Preposition: If f Lu iff f =   , where L,   Then I (f) =    
 
Proof:  Suppose f = , where Lu,    
We first define =   , then  is an increasing sequence of members of L and  
f = = Limit   =  Limt    as n  
Hence by definition   f Lu. 
 
Conversely:  Suppose f Lu then by definition there exist an increasing sequence { } of members of L such that . 
Define   ,  ,  ....... ,  ,............ 
Then   , L and = Limt =  Limt = f . Proves that  
Further suppose f =  , where L,     
Define  then  Is an increasing sequence of members of L and = = = f          
that { } ,  

  I(f) = = = i)   I(f) = i). 
 
Definition: For any function f on X define  =Inf{ I(g)}, where g Lu,     g } and  

= sup{ I(g)}, where g Lu,    g } that is =  
 
Preposition:  Let { } be any sequence of non–negative functions on X and f = , then . 
 
Proof:   If  for some n, the result is obvious.  
Suppose that  for all n. Let 0, then                        ......................(*) 

 There exist Lu    s.t.  and I ( )    for all n  
Let g =  as , we see that g Lu and I(g) =        [By above    preposition ]  
 This gives  g  I(g) = )                                                                                          
                                                                                                                                            .......................[from  *] 
= +   = . 
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Theorem:   Prove that  
 (1) : ) +   and     +  

(2):     f                an d         f   

(3):              and     if     c > o 

(4):      and  if c < 0 
 
Proof:  (1) Let h = f + g    and let  then    

=  {I( }+ {I( }= + . 

 
Similarly we can prove that     +  

(2):  Let f  , and        Lu and , then   f  
Similarly   we have   
(3):   If c = 0 then the result is obliviously true 
 Let   c > 0 then / Lu and } = / Lu and } 

/ Lu and }   =   c  
Similarly Let c / Lu and } = / Lu and } 

/ Lu and }     . 
 Same for the other cases we can prove.  
 
Definition: Let I be the Daniell Integral on a vector lattice L. By L1 we denote the class of those functions f s.t.  

further   define that = . 
 
Theorem: I be the Daniell Integral on a vector lattice L. Let   L1 be denote the class of those functions f s.t.  , 

which is finite .For  f   L1 define that = . Then L1 be a vector lattice   and I on L1 is an extension of I on L. 
 
Proof:  (1) Let f   L1   = + =  

+  And it is finite shows that f     L1 
 And  + . 
(2):  Let f     L1    
 And   let   then =  = =     =   

If   then  =  

 Shows that     L1    and   
 Proves that L1   is a vector    space and I is a linear transformation. 
(3): Let f     L1    and  an d     Lu    and  then  

 Inf { 0  positive linear functional. 
(4): let  then  shows that I on L1 is an extension of Ion L. 

(5): Let f     L1    take any 0 then I(f)  
 There exist     Lu     s.t. g    and                       .......................(*) 
Similarly there exist     Lu     s.t. h    and . 

- h     and -  - +                                                          ........................(**) 
Define g1 = g 0, h1 = h 0, then g1 = g+   , h1 = -h- , from _h  f g  g1 - h1  g1                                                                

......................................(***) 

 Consider any x  , If g(x)  then   g1 (x) = g(x)   h1(x)  g1(x) + h1(x)  
If g(x)  then g1(x)  = 0, from  -h   we get –h(x) h(x)  h1(x) = 0  , g1(x)  = 0   also Hence  
g1(x)  + h1(x)   thus g1(x)  + h1(x)   for all x 

 g1 + h1 I( g1  + h1) I(g1) + I(h1)  I(g1) + 
I(h1) 2 ..........(****) 
(From (*) and (**)) 
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From (***) we get +   and 

+   and it is 
finite L1. 

 
Theorem: (Lebesgue’s Monotone convergence Theorem)    
Let { } be any increasing sequence of functions in L1. And  f= limt { } , then f L1 iff      limt I( ) ,    also  I(f) = limt 
I( ). 
Proof:  Suppose limt I( ) ,         
As ( ) ,    we have   for all n for all n  

 limt I( ) f  L1  shows  if f L1 then limt I( ) . 
Suppose now limt I( ) ,      
Define g = f-   and =   then g  and  

)  = limt [ )] = limt ( = g    g =  
) = -I( )] = limt[ }] = limt[ ) = limt  [ )] 

 ) + limt                           ..................(*) 
As    for all n                           ...............(**) 

From g = f-   , we get f = g+ =     
                                                                                                                                            {From *} 

) 
From (**) and (***) we have     =  f L1 
And  
 
Fatous Lemma: Let be any sequence of non–negative functions in L1, then Inf L1. Further  L1 if   

   and   I (  . 
 
Proof:  Let Inf  , Define = min {   then   is a monotone decreasing sequence of non-negative 
functions in L1 and {     then { . Then   I (   

 -I (  I(  limt I(  limt I( L1. L1  Inf L1. 

To prove the second part assume that  Define h =  ,  
= inf {    then h = limt( ) and ( )  is an increasing  sequence of  members of L1  then         where  

)  for all  where  )   
) L1 and I(h) = limt ))  )  which 

completes the proof. 
 
Theorem :(Lebesgue’s Dominated Convergence Theorem):  Let be any sequence of non–negative functions in L1 and 

L1, s.t. | |  for all n, let f = limt   then L1 and  limt   .  
 
Proof: Consider the functions  and  g   s.t. | |  for all n thus  -g    ,  we  can see  that {  is a  sequence of 
non-negative  functions in L1 thus I( = I(                                                        
[ Because  L1 thus     ] 

L1 L1 L1 [Because L1]  
 = I {  

)  . 
Now consider g- . Since     for all n  
Note that  {g- } is a sequence of non-negative members in L1 g- ) = - )                 
 [Because -     ] 
Shows that g- ) g- ) L1  g- L1 L1   
and = I g- )} g-

) I( I(
 

From (**) and (***) I(  = I(  
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, proves the theorem. 
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