Theory of Measure and Integration: Daniell's Version of Lebesgue-Integral

Parvinder Singh

P.G. Department of Mathematics, S.G.G.S. Khalsa College Mahilpur, District- Hoshiarpur, Punjab, India

Abstract:

Theory of measure and integration involves the consideration of σ -algebra of subsets of a given space and establish a specific type of set function called a measure defied on the σ -algebra. The integral is defined in terms of a measure of a set. P.J. Daniell gives a direct approach to integration theory as integral is defined as a continuous positive linear functional on a vector lattice. In this paper we here discuss theorems such as Lebesgue Monotone Convergence Theorem, Lebesgue Dominated Convergence Theorem.

Keywords: Vector lattice, a-algebra, Linear Functional, Measure, Convergence

Definition: Let L be a vector space over real numbers of real valued functions defined on a set X. Let for all f and g belonging to L define $f \vee g = \max\{f,g\}$ and $f \wedge g = \min\{f,g\}$, if L is closed under $f \vee g$ and $f \wedge g$ then L is called a vector lattice of functions on X. We define $f^+ = f \vee 0$ and $f^- = f \wedge 0$ for any $f \in L$ then $f^+ \in L$ and $f^- \in L$. Also $|f| = f^+ + f^-$ thus $|f| \in L$.

Preposition: Let L be a vector space over real numbers of real valued functions defined on a set X. then L is a vector lattice iff $h^+ \in L$ whenever $h \in L$.

Proof: If L be a vector lattice then from the definition of L the said condition is obviously true.

Conversely: Let the condition is satisfied. For $f, g \in L$ then $f - g \in L \Rightarrow (f - g)^+ \in L$. $\Rightarrow (f - g)^+ + g \in L \Rightarrow f \vee g \in L$ And $f \wedge g = (f+g) - f \vee g$ shows that $f \wedge g \in L$. Hence L is a vector Lattice.

Preposition: Let L be a vector space of real valued functions defined on X, then L is a vector lattice iff $|h| \in L$ whenever $h \in L$.

Proof: Suppose L be a vector lattice, let $h \subset L$. Then h, $h \subset L \Rightarrow h^+ \subset L$ and $(h)^+ \subset L$ (from above) $\Rightarrow h^+ + (-h)^+ \in L \Rightarrow h^+ + (h)^- \in L$. $\Rightarrow |h| \in L \Rightarrow$ the condition is necessary.

Definition: Let L be a vector lattice on X, and I be a +ve linear functional defined on L s.t. when $\phi_n \in L$, $I(\phi_n) \downarrow 0$ whenever $\phi_n \downarrow 0$, Then I is called a Daniell Integral on L.

Note: " $\phi_n \downarrow 0$ " means that the sequence $\{\phi_n(x)\}$ is point wise monotone increasing and converging to 0 for each $x \in X$.

Preposition: L be a vector lattice on X, and I be a +ve linear functional defined on L Then I is called Daniell integral iff. Whenever ϕ , $\phi_n \in L$, $\{\phi_n(x)\}$ is any increasing sequence and $\phi \leq Limt(\phi_n)$ then $I(\phi) \leq Limt(I(\phi_n))$.

 \Rightarrow Limt $[I(\phi) - I(\phi_n)] \le 0 \Rightarrow I(\phi) \le Limt(\phi_n)$ Proves that the condition is necessary.

Conversely: Assume that the given condition is satisfied.

To show that I is Daniell Integral.

Consider any decreasing sequence (ϕ_n) of members of L

with $\phi_n \downarrow 0, \Rightarrow 0 \le \phi_n \Rightarrow I(0) \le I(\phi_n)$ for all $n \Rightarrow 0 \le I(\phi_n)$ for all $n \Rightarrow 0 \le Limt\ I(\phi_n)$ for all $n \Rightarrow 0 \le I(\phi_n)$

As ϕ_n is decreasing then $(-\phi_n)$ Is increasing sequence of members of L and

 $\begin{array}{ll} \operatorname{Limt} I(-\phi_n) = 0 \ \Rightarrow \ 0 \leq \operatorname{Limt} I(-\phi_n) \ \Rightarrow I(0) \leq \operatorname{Limt} I(-\phi_n) \ \Rightarrow 0 \leq -\operatorname{Limt} I(\phi_n) \\ \Rightarrow \operatorname{Limt} I(\phi_n) \leq 0 \end{array}$

From (2) and (3) we obtain $Limt I(\phi_n) = 0$, shows that I is a Daniell Integral.

Preposition: I be a +ve linear functional defined on L_1 Then I is called Daniell integral iff. Whenever $\varphi_i \in L_i u_n \in L_i u_n \geq 0$ and $\varphi \leq \sum_{n=1}^{\infty} u_n$ then $I(\varphi) \leq \sum_{n=1}^{\infty} I(u_n)$.

Proof: Suppose I is Daniell integral let $\phi \in L$, $u_n \in L$ $u_n \geq 0$ and $\phi \leq \sum_{n=1}^{\infty} u_n$ Define $\phi_n = \sum_{i=1}^n u_i$ then $\phi_n \in L$ and ϕ_n is increasing and $\phi \leq \sum_{n=1}^{\infty} u_n = \operatorname{limt}(\sum_{i=1}^n u_i) = \operatorname{limt}(\phi_n) = \operatorname{limt}(\sum_{i=1}^n u_i) = \operatorname{limt}([u_1 + u_2 + u_3 + \cdots + u_n]) = \operatorname{limt}[I(u_1) + I(u_2) + I(u_3) + \cdots + I(u_n)] = \operatorname{limt}(\sum_{i=1}^n I(u_i)) = \sum_{n=1}^{\infty} I(u_n)$. Shows that the condition is necessary.

To show that the condition is sufficient

Assume that the condition is satisfied.

Let $\{\varphi_n\}$ be any increasing sequence of members of L and $\varphi \in L$ such that $\varphi \leq limt (\varphi_n)$. Define $u_1 = \varphi_1$, $u_2 = \varphi_2 - \varphi_1$, $u_3 = \varphi_3 - \varphi_3$

Thus $u_n \ge 0$ and $u_n \in L$ for all n. Further $\psi \le \lim_{n \to \infty} (\psi_n) = \lim_{n \to \infty} (\sum_{i=1}^n u_i) = \sum_{n=1}^\infty (u_n)$

Therefore by assumption we get $I(\varphi) \leq \sum_{n=1}^{\infty} I(u_n) = \lim_{n \to \infty} I(u_n) = \lim_{n \to \infty}$

Shows that I is a Daniell Integral.

Example: Let L be the class of Real valued continuous functions on [a, b], for $f \in L$, Define $I(f) = \int_a^b (f) \Rightarrow If f, g \in L$ and α, β, ϵ if then $\alpha f + \beta g$ is also continuous function, Hence $\alpha f + \beta g \in L$.

Also $f \vee g$, $f \wedge g \in L$

shows that L is a vector lattice .

Further I $(\alpha f + \beta g) = \int_{\alpha}^{b} (\alpha f + \beta g) = \alpha \int_{\alpha}^{b} f + \beta \int_{\alpha}^{b} g = \alpha I(f) + \beta I(g)$ Shows that I is Linear.

And I (f) =
$$\int_a^b f \ge 0$$

Wherever $f \ge 0$ Shows that I is a positive linear functional on L.

Let $\{f_n\}$ be any sequence of members of L s.t. $(f_n) \downarrow 0$, then $f_n \in \mathbb{R}[a,b]$ and $|f_n| \to 0$

Therefore by Dominant Convergence Theorem we have $\int_{\alpha}^{\alpha} f \to 0$

As f_n is Reimann Integerable over [a, b] therefore $\int_a^b f \to 0 \implies I(f_n) \to 0$. Proves that I is Daniell Integral.

Example: Let (λ, μ, θ) be any measurable space. let L be the class of all simple functions which are zero outside sets of finite measure.

Define $I(f) = \int_{\alpha}^{b} f d\mu$ for If $f_s \in L$, then it is easy to verify that L is a vector lattice and I is a positive linear functional on L as in the above example it can be shown that I is continuous for decreasing null sequence and hence I is Daniell Integral on L.

Definition: Let L be any vector lattice of real valued functions on X By L_u denote the class of real valued functions on X which are limits of increasing sequences of members of L.

Remark (1): Lu is a lattice Let f, $g \in L$, then there exist increasing sequences $\{\phi_n\}$ and $\{\psi_n\}$ of members of L s.t. $\phi_n \to f$ and $\psi_n \to g$. This shows that $\{\phi_n \lor \psi_n\} \to f \lor g \Rightarrow f \lor g \in Lu$,

Similarly $f \land g \in Lu$, \Rightarrow Lu is a lattice.

Remark (2): Let f, $g \in Lu$, and $u, \beta \ge 0$ Then $uf + \beta y \in Lu$

We say that Lu is a cone.

Remark (3): Lu is not a vector space because $\alpha f + \beta g \notin Lu$ for $\alpha, \beta < 0$

Preposition: Let $\{\phi_n\}$ and $\{\psi_n\}$ be increasing sequences of members of L and suppose that $\phi_n \leq Limt \ \psi_n$ then $I(\phi_n) \leq Limt \ I(\psi_n)$.

Proof: $\phi_n \leq Limt I(\phi_n) \leq Limt I(\psi_n) \Rightarrow I(\phi_n) \leq Limt I(\psi_n)$ $\Rightarrow Limt I(\phi_n) \leq Limt I(\psi_n)$

Definition: Let $f \in Lu$ and $\{\phi_n\}$ be increasing sequences and members of L s.t. $f = Limt(\phi_n)$ then we define $I(f) = LimtI(\phi_n)$

Preposition: Let f, $g \in Lu$, and $\alpha, \beta \geq 0$, then

(1): $f \le g \Rightarrow I(f) \le I(g)$

(2): $I(\alpha f + \beta g) = \alpha I(f) + \beta I(g)$

Proof (1): Let $\{\phi_n\}$ and $\{\psi_n\}$ be increasing sequences of members of L s.t. $\phi_n \to f$ and $\psi_n \to g$ as $f \le g \Rightarrow Limt \{\phi_n\} \le Limt \{\psi_n\} \Rightarrow Limt I\{\phi_n\} \le Limt I\{\psi_n\} \Rightarrow I(f) \le I(g)$.

(2): As $\phi_n \to f$ and $\psi_n \to g$ and

 $\alpha,\ \beta\geq 0\ \Rightarrow \{\alpha\ \phi_n+\beta\ \psi_n\}\rightarrow (\alpha f+\beta g)\ \Rightarrow I\{\alpha\ \phi_n+\beta\ \psi_n\}\rightarrow \quad I(\alpha f+\beta g)\Rightarrow\ I(\alpha f+\beta g)=\ Limt\ I\{\alpha\ \phi_n+\beta\ \psi_n\}=Limt\ \{\alpha\ I(\phi_n)+\beta\ I(\psi_n)\}=\alpha\ Limt\ \{I(\phi_n)\}+\beta\ Limt\ \{I(\psi_n)\}\}=\alpha\ I(f)+\beta\ I(g).$

Corollary (1): I(f+g) = I(f) + I(g) for all $f,g \in Lu$ (2): $I(f) \ge 0$ for all $f,g \in Lu$ with $f \ge 0$

Preposition: If $f \in Lu$ iff $f = \sum_{n=1}^{\infty} \phi_n$, where $\phi_n \in L$, $\phi_n \ge 0$ Then $I(f) = \sum_{n=1}^{\infty} I(\phi_n)$

Proof: Suppose $f = \sum_{n=1}^{\infty} \phi_n$, where $\phi_n \in Lu$, $\phi_n \ge 0$

We first define $\psi_n = \sum_{i=1}^n \phi_i$, then ψ_n is an increasing sequence of members of L and

 $f = \sum_{n=1}^{\infty} \phi_n = \text{Limit} \left(\sum_{i=1}^n \psi_i \right) = \text{Limt} \psi_n \text{ as } n \to \infty$

Hence by definition f ∈ Lu.

Conversely: Suppose $f \in Lu$ then by definition there exist an increasing sequence $\{u_n\}$ of members of L such that $u_n \to f$.

Define $\phi_1=u_1\,,\;\;\phi_2=u_2\,\;\;\;u_1\,\;,\;......\,,\;\phi_n=u_n\,\;\;\;u_{n-1},......$

Then $\phi_n \ge 0$, $\phi_n \in L$ and $\sum_{n=1}^{\infty} \phi_n = Limt(\sum_{i=1}^n \phi_i) = Limt(u_n) = f$. Proves that $\sum_{n=1}^{\infty} \phi_n = f$.

Further suppose $f = \sum_{n=1}^{\infty} \phi_n$, where $\phi_n \in L$, $\phi_n \ge 0$

Define $\sigma_n = \sum_{i=1}^n \phi_i$ then $\{\sigma_n\}$ is an increasing sequence of members of L and $\lim_{n\to\infty} \sigma_n = \lim_{n\to\infty} (\sum_{i=1}^n \phi_i) = \sum_{n=1}^\infty \phi_n = 1$ that $\{\sigma_n\} \to f$, $\sigma_n \in L$

 $\Rightarrow I(f) = \lim_{n \to \infty} I(\sigma_n) = \lim_{n \to \infty} (\sum_{i=1}^n I(\phi_i) = \sum_{i=1}^\infty I(\phi_i) \Rightarrow I(f) = \sum_{i=1}^\infty I(\phi_i).$

Definition: For any function f on X define $\overline{\mathbf{I}(\mathbf{f})} = \text{Inf}\{ \mathbf{I}(g) \}$, where $g \in Lu$, $g \ge f \}$ and $\overline{\mathbf{I}(\mathbf{f})} = \sup\{ \mathbf{I}(g) \}$, where $g \in Lu$, $g \ge f \}$ that is $\overline{\mathbf{I}(\mathbf{f})} = \overline{-\mathbf{I}(-\mathbf{f})}$

Preposition: Let $\{f_n\}$ be any sequence of non-negative functions on X and $f = \sum_{n=1}^{\infty} f_n$, then $\overline{I(f)} \leq \sum_{n=1}^{\infty} \overline{I(f_n)}$.

Proof: If $I(f_n) = \infty$ for some n, the result is obvious.

Suppose that $\overline{I(f_n)} < \infty$ for all n. Let $\varepsilon > 0$, then $\overline{I(f_n)} < \overline{I(f_n)} + \frac{\varepsilon}{z^n}$ *

⇒ There exist $g_n \in Lu$ s.t. $g_n \ge f_n$ and $I(g_n) < I(\overline{f_n}) + \frac{\varepsilon}{n}$ for all n

Let $g = \sum_{n=1}^{\infty} g_n$ as $g_n \ge f_n \ge 0$, we see that $g \in Lu$ and $I(g) = \sum_{n=1}^{\infty} I(g_n)$ [By above preposition]

This gives $\sum_{n=1}^{\infty} g_n \geq \sum_{n=1}^{\infty} f_n \Rightarrow g \geq f \Rightarrow I(g) \geq \overline{I(f)} \Rightarrow \overline{I(f)} \leq I(g) = \sum_{n=1}^{\infty} I(g_n) \leq \sum_{i=1}^{\infty} (\overline{I(f_n)} + \frac{\varepsilon}{\varepsilon^n})$

 $= \sum_{n=1}^{\infty} \overline{I(f_n)} + \sum_{n=1}^{\infty} \frac{\varepsilon}{2^n} = \sum_{n=1}^{\infty} \overline{I(f_n)} + \epsilon \quad \Rightarrow \quad \overline{I(f)} \leq \sum_{n=1}^{\infty} \overline{I(f_n)}.$

.....[from *]

```
Theorem: Prove that
```

$$(1): \overline{I(f+g)}) \, \leq \, \overline{I(f)} + \overline{I(g)} \, \text{ and } I(f+g) \, \geq \, I(f) + I(g)$$

(2):
$$f \le g \Rightarrow \overline{I(f)} \le \overline{I(g)}$$
 and $f \le g \Rightarrow \underline{I(f)} \le \underline{I(g)}$

(3):
$$\overline{l(cf)} = \overline{cl(f)}$$
 and $\underline{l(cf)} = \underline{cl(f)}$ if $c > o$

(4):
$$\overline{I(cf)} = \underline{cI(f)}$$
 and $\underline{I(cf)} = \overline{cI(f)}$ if $c < 0$

Similarly we can prove that $I(f + g) \le I(f) + I(g)$

(2): Let
$$f \leq g$$
, and $\phi \in Lu$ and $\phi \geq g$, then $f \leq \psi \rightarrow \overline{I(f)} \leq I(\psi) \rightarrow \overline{I(f)} \leq InfI(\psi) - \overline{I(g)} \rightarrow \overline{I(f)} \leq \overline{I(g)}$
Similarly we have $I(f) \leq I(g)$

(3): If c = 0 then the result is obliviously true

Let
$$c > 0$$
 then $\overline{I(cf)} = Inf\{I(\phi)/\phi \in Lu \text{ and } \phi > cf\} = Inf\{I(c\phi)/\phi \in Lu \text{ and } \phi > f\}$

=
$$c \ln \{I(\phi) / \phi \in \text{Lu and } \phi \ge f\} = c \overline{I(f)}$$

Similarly Let
$$c < 0$$
 $\overline{I(f)} = Inf \{I(\phi) / \phi \in Lu \text{ and } \phi \ge cf\} = Inf \{I(c\phi) / \phi \in Lu \text{ and } \phi \le f\}$

$$= c \operatorname{Sup} \{I(\phi) / \phi \subset \operatorname{Lu} \text{ and } \phi \leq f\} = c I(f)$$

Same for the other cases we can prove.

Definition: Let I be the Daniell Integral on a vector lattice L. By L_1 we denote the class of those functions f s.t. $\overline{I(f)} = \underline{I(f)}$ further define that $\overline{I(f)} = I(f) = I(f)$ and it is finite.

Theorem: I be the Daniell Integral on a vector lattice L. Let L_1 be denote the class of those functions f s.t. $\overline{I(f)} = \underline{I(f)}$, which is finite. For $f \in L_1$ define that $\overline{I(f)} = I(f) = I(f)$. Then L_1 be a vector lattice and I on L_1 is an extension of I on L.

```
Proof: (1) Let f,g \in L_1 then \overline{I(f+g)} \leq \overline{I(f)} + \overline{I(g)} = I(f) + I(g) = \underline{I(f)} + \underline{I(g)} \leq \underline{I(f+g)}

\Rightarrow \overline{I(f+g)} = \underline{I(f+g)} = I(f) + I(g) And it is finite shows that f+g \in L_1

And I(f+g) = I(f) + I(g).
```

(2): Let $f \in L_1$

And
$$\alpha \in \mathbb{R}$$
 let $\alpha \ge 0$ then $\overline{I(\alpha f)} = \alpha \overline{I(f)} = \alpha \underline{I(f)} = \underline{I(\alpha f)} \Rightarrow \overline{I(\alpha f)} = \underline{I(\alpha f)} = \underline{I(\alpha f)}$

If
$$\alpha < 0$$
 then $\overline{I(\alpha f)} = \alpha I(f) = I(\alpha f) - \alpha \overline{I(f)} = I(\alpha f)$

Shows that
$$\overline{l(\alpha f)} = \underline{l(\alpha f)} = l(\alpha f) \Rightarrow \alpha f \in L_1$$
 and $l(\alpha f) = \alpha l(f)$

Proves that L_1 is a vector—space and I is a linear transformation.

(3): Let
$$f \in L_1$$
 and $f \ge 0$ and $g \in L_u$ and $g \ge 0$ then $l(g) \ge 0$

$$\Rightarrow$$
 Inf $\{I(g)\} \ge 0 \Rightarrow I(f) \ge 0 \Rightarrow I$ is positive linear functional.

(4): let
$$\phi \in L$$
 then $\phi \in Lu \Rightarrow \overline{I(\phi)} = I(\phi) = I(\phi)$ shows that I on L₁ is an extension of Ion L.

(5): Let
$$f \in L_1$$
 take any $\varepsilon > 0$ then $I(f) < I(f) + \varepsilon \Rightarrow \overline{I(f)} < \overline{I(f)} + \varepsilon \Rightarrow$

There exist
$$g \in L_u$$
 s.t. $g \ge f$ and $\overline{I(f)} \le \overline{I(g)} \le \overline{I(f)} + \epsilon$ (*)

Similarly there exist $h \in L_u$ s.t. $h \ge -f$ and $\overline{I(-f)} \le \overline{I(h)} \le \overline{I(-f)} + \varepsilon$.

$$\Rightarrow$$
- h $\leq f$ and $-l(f) \leq l(h) \leq -l(f) + \epsilon$

Define $g_1 = g \lor 0$, $h_1 = h \land 0$, then $g_1 = g^+$, $h_1 = -h^-$, from $h \le f \le g \Rightarrow (-h)^+ \le f^+ \le g^+ \Rightarrow h^- \le f^+ \le g_1 \Rightarrow -h_1 \le f^+ \le g_1 \Rightarrow -h_2 \le f^+ \le g_2 \Rightarrow -h_1 \le f^+ \le g_2 \Rightarrow -h_2 \le f^+ \le f^+ \le g_2 \Rightarrow -h_2 \le f^+ \le f^+ \le g_2 \Rightarrow -h_2 \le f^+ \le f^+$

```
Consider any x \in X, If g(x) \ge 0 then g_1(x) = g(x) \Rightarrow h_1(x) \le h(x) \Rightarrow g_1(x) + h_1(x) \le g(x) + h(x)
```

If g(x) < 0 then $g_1(x) = 0$, from $-h \le f \le g$ we get $-h(x) \le g(x) < 0 \Rightarrow h(x) > 0 \Rightarrow h_1(x) = 0$, $g_1(x) = 0$ also Hence $\Rightarrow g_1(x) + h_1(x) \le g(x) + h_2(x)$ for all x = 0.

 $\Rightarrow g_1 + h_1 \leq g + h \Rightarrow I(g_1 + h_1) \leq I(g + h) \Rightarrow I(g_1) + I(h_1) \leq I(g) + I(h) \Rightarrow I(g_1) + I(h_2) \leq I(g) + I(h_2) \Rightarrow I(g_1) + I(h_2) \leq I(g) + I(h_2) \Rightarrow I(g_1) + I(h_2) \leq I(g) + I(h_2) \Rightarrow I(g_1) + I(h_2) + I(h_2) \Rightarrow I(g_1) + I(h_2) +$

 $I(h_1) \leq 2\varepsilon \qquad \qquad \dots \dots (****)$

(From (*) and (**))

```
From (***) we get I(-h) + \leq I(f^+) and
```

$$\overline{I(f^+)} \leq \overline{I(g_1)} \Rightarrow -\overline{I(h_1)} \leq \underline{I(f^+)} \text{ and } \overline{I(f^+)} \leq \overline{I(g_1)} \Rightarrow \overline{I(f^+)} - \underline{I(f^+)} \leq I(g_1) + I(h_1) \leq 2\epsilon \Rightarrow \overline{I(f^+)} = \underline{I(f^+)} \text{ and it is finite } \Rightarrow f^+ \in L_1.$$

Theorem: (Lebesgue's Monotone convergence Theorem)

Let $\{f_n\}$ be any increasing sequence of functions in L_1 . And $f = \lim \{f_n\}$, then $f \in L_1$ iff $\lim I(f_n) < \infty$, also $I(f) = \lim I(f_n)$.

Proof: Suppose limt $I(f_n) = \infty$,

As $(f_n) \uparrow f$, we have $f \ge f_n$ for all $n \Rightarrow \overline{I(f)} \ge \overline{I(f_n)}$ for all $n \Rightarrow \overline{I(f)} \ge \overline{I(f_n)} = I(f_n)$ $\Rightarrow I(f) \ge \text{limt } I(f_n) \Rightarrow I(f) = \infty \Rightarrow f \notin L_1 \text{ shows if } f \in L_1 \text{ then limt } I(f_n) < \infty.$ Suppose now limt $I(f_n) < \infty$,

Define $g = f - f_1$ and $g_n = f_{n+1} - f_n$ then $g \ge 0$ and $g_n \ge 0$ and $g_n \to g$

 $\sum_{k=1}^n (f_{k+1-}f_k) = g_n \Rightarrow \lim \left[\sum_{k=1}^n (f_{k+1-}f_k) \right] = \lim \left(g_n \right) = g \Rightarrow g = \sum_{k=1}^\infty (f_{k+1-}f_k) \Rightarrow g = \sum_{k=1$

As
$$f_n \le f \Rightarrow \underline{I(f_n)} \le \underline{I(f)}$$
 for all $n \Rightarrow I(f_n) \le \underline{I(f)} \Rightarrow limt I(f_n) \le \underline{I(f)}$

From $g = f - f_1$, we get $f = g + f_1 \Rightarrow \overline{I(f)} \leq \overline{I(g)} + \overline{I(f_1)} = \overline{I(g)} + I(f_1) \leq \lim I(f_n)$

$$\overline{I(f)} \leq \lim I(f_n)$$

$$(***)$$

From (**) and (***) we have $\overline{I(f)} \le \lim_{t \to \infty} I(f_n) \le \underline{I(f)} \Rightarrow \overline{I(f)} = \underline{I(f)} = \lim_{t \to \infty} I(f_n) \Rightarrow f \in L_1$

And $I(f) = limt I(f_n)$, Proved.

Fatous Lemma: Let $\{f_n\}$ be any sequence of non-negative functions in L_1 , then $\inf \{f_n\} \in L_1$. Further $\underline{limt}[f_n] \in L_1$ if $\underline{limt}[f_n] < \infty$ and $I(\underline{limt}f_n) \leq \underline{limt}I(f_n)$.

Proof: Let Inf $\{f_n\} = g$, Define $g_n = \min \{f_1, f_2, f_3, \dots, f_n\}$ then g_n is a monotone decreasing sequence of non-negative functions in L_1 and $\{g_n\} \downarrow g$ then $\{-g_n\} \uparrow -g$. Then $I(g_n) \geq 0$

$$\Rightarrow \text{-I}(g_n) \leq 0 \Rightarrow \text{I}(-g_n) \leq 0 \Rightarrow \text{limt I}(-g_n) \leq 0 \Rightarrow \text{limt I}(-g_n) \} \in L_1, \Rightarrow -g \in L_1 \Rightarrow g \in L_1 \Rightarrow \text{Inf } \{f_n\} \in L_1.$$

To prove the second part assume that $\underline{limt}I(f_n) < \infty$ Define $h = \underline{limt}(f_n)$,

 $h_n = \inf \{ f_n, f_{n+1}, f_{n+2}, \dots \}$ then $h = \lim_{v \to n} (h_n)$ and (h_n) is an increasing sequence of members of L_1 then $h_n \le f_v$ where $v \ge n \Rightarrow I(h_n) \le I(f_v)$ for all v where $v \ge n \Rightarrow I(h_n) \le \underbrace{limt}I(f_v)$

 $\Rightarrow \operatorname{limt} I(h_n) \leq \underline{\operatorname{limt}} I(f_n) < \infty \Rightarrow \operatorname{limt} I(h_n) < \infty \Rightarrow h \in L_1 \text{ and } I(h) = \operatorname{limt} I(h_n)) \Rightarrow I(\underline{\operatorname{limt}}(f_n)) \leq \underline{\operatorname{limt}} I(f_n) \text{ which completes the proof.}$

Theorem : (Lebesgue's Dominated Convergence Theorem): Let $\{f_n\}$ be any sequence of non-negative functions in L_1 and $g \in L_1$, s.t. $|f_n| \le g$ for all n, let $f = \lim_{n \to \infty} (f_n)$ then $f \in L_1$ and $I(f) = \lim_{n \to \infty} I(f_n)$.

Proof: Consider the functions f_n and g s.t. $|f_n| \le g$ for all n thus $-g \le f_n \le g$, we can see that $\{f_n + g\}$ is a sequence of non-negative functions in L_1 thus $I(f_n + g) = I(f_n) + I(g) \le I(g) + I(g) \Rightarrow \underline{limU}(f_n + g) \le 2I(g) < \infty$

[Because $g \in L_1$ thus $I(g) < \infty$]

$$\Rightarrow \underline{limt}(f_n + g) \in L_1 \Rightarrow (f + g) \in L_1 \Rightarrow f \in L_1 \qquad [Because g \in L_1]$$

 $\Rightarrow I(f) \leq \underline{limtI}(f_n)$.

Now consider $g - f_n$. Since $f_n \le g$ for all n

Note that $\{g - f_n\}$ is a sequence of non-negative members in $L_1 \Rightarrow I(g - f_n) = I(g) - I(f_n) \le 2I(g)$

[Because $-f_n \leq g$]

Shows that $\underline{limt\ l}(g-f_n) \le 2\ l(g) < \infty \Rightarrow \underline{limt\ l}(g-f_n) \in L_1 \Rightarrow g-f \in L_1 \Rightarrow f \in L_1$

and $I(g - f) = I\{limt(g - f_n)\} \le limtI(g - f_n)\}$

$$f_n$$
) $\Rightarrow I(g) - I(f) < I(g) - \overline{lint} I(f_n) \Rightarrow \overline{lint} I(f_n)$

$$f_n \leq I(f)$$
(***

 $\Rightarrow I(f) = limt I(f_n)$, proves the theorem.

References

- 1. M. Leinert, (1982), Daniell-Stone integration without the lattice condition, Arch. Math. 38 258.
- 2. S. Saks, (1937). Theory of integral, Hafner Publishing Co., New York and Warszawa.
- 3. P. J. Daniell. (1918) A general form of integral. Ann. of Math., 19(4):279{294}.
- 4. G. Choquet. (1969). Lectures on Analysis Volume II: Representation Theory, volume 2 of Mathematics Lecture Note Series. W.A. Benjamin, Inc, London.
- 5. Nzlerh.(1991).ConvergencetheoremsforaDaniellLoomisintegral.MathematicaPannonica 2,779,4