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Abstract:
Theory of measure and integration involves the consideration of =-algebra of subsets of a given space and establish a

specific type of set function called a measure defied on the z-algebra. The integral is defined in terms of a measure of a

set. P.J. Daniell gives a direct approach to integration theory as integral is defined as a continuous positive linear
functional on a vector lattice. In this paper we here discuss theorems such as Lebesgue Monotone Convergence Theorem,
Lebesgue Dominated Convergence Theorem.
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Definition: Let L be a vector space over real numbers of real valued functions defined on a set X. Let forall fand g belonging
to L define f v g = max{f,g} and f A g =min{f,g}, if L is closed under f v g and f n g then L is called a vector lattice of
functions on X. We define f*= f vl and f-=f Al foranyfe L then f* e Land f~ e L. Also|fj= f* + F~ thus|f] € L.

Preposition: Let L be a vector space over real numbers of real valued functions defined on aset X. then L is a vector lattice iff
h* € Lwhenever h € L.

Proof: If L be a vector lattice then from the definition of L the said condition is obviously true.

Conversely: Let the condition is satisfied. For f,g € Lthenf-g e L = (f—g)T e L.
=(f-g)yr+gel.= fvgel And frng=(f+g) - fv g showsthat f &g € L.
Hence L is a vector Lattice.

Preposition: Let L be a vector space of real valued functions defined on X, then L is a vector lattice iff |h| € L whenever
hel.

Proof: Suppose L be a vector lattice, lethc L.Then &, kc L =h* cLand{ k}* c L (from
above) = h* +(—h)* el =h* + (k)" € L.= |h| € L = the condition is necessary.

Conversely: Assume that the given condition is satisfied, lethe L. Then|h|e L = h + |h| e L
=h* RTIRYI R ck =2h*tclL=~h*cl Thusinview of the above last result L becomes a vector lattice.

Definition: Let L be a vector lattice on X, and | be a +ve linear functional defined on L s.t. wheng, L, I{g,}10
whenever g, 1 0, Then I is called a Daniell Integral on L.

Note: "¢, 4 0" means that the sequence {a, (%]} is point wise monotone increasing and converging to 0 for each x £ X.

Preposition: L be a vector lattice on X, and | be a +ve linear functional defined on L Then I is called Daniell integral iff.
Whenever ¢, ¢, € L, {¢, (x]} is any increasing sequence and ¢ = Limt (g, ) then (g} < Limt Ilg,).

Proof: Suppose | is a Daniell integral, Letg» € L, and {g,,(x)} be any increasing sequence of members of L with ¢ = Limt (g,,)
, let w=Limt(p,) theng -, ¢ — 3

2 (p-g, L @—yw=(p-—g, ) l0=0p -, Lo ., ()

Since ¢ —n = (P — Pn)” we get 1(p —pn) = Ul —@n)” = Limt 1{9 — @) = Limt (P — @y)" = Limt I{¢ — @) = U
asn— o {from 1}
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= Limt [I{g) — ()] =0 = I(g) < Limt(sh,) Proves that the condition is necessary.

Conversely: Assume that the given condition is satisfied.
To show that 1is Daniell Integral.
Consider any decreasing sequence () of members of L

with ¢, 10,=20=<¢,=1{0)=I{a, foralln=0=<I{p,) foralln = 0 = Limt I{g,) for alln

As @, is decreasing then (-g, ) Is increasing sequence of members of L and

Limt I{—,)=0 = 0 = Ltmt [{—@y) = I(0) = Limt I{—g,) = 0= —Limt I{gy,)
Lm0 3
From (2) and (3) we obtain Limt I{¢,} — O, shows that I is a Daniell Integral.

Preposition: | be a +ve linear functional defined on L; Then 1 is called Daniell integral iff. Whenever . & L,y & Lty = 0
and ¢ = XX u,then  I{g) = E5_ I (uy).

Proof: Suppose I is Daniell integral let ¢ = Lu, e L, =0 andg = X5, u,,

Define ¢, = £, u; then ¢, € L and ¢, isincreasing and ¢ = L5, up= lImt{ET2, u;) = limt ( ¢,,)

= Tlepd = limt (0= limt (ER, u) = lmitl([ay+ 10+ 10 + o)) = Dnt[l(e )+ T0ugd + Tlug)+ oo+ 700, 0] =
limt(Z, ! (2;)) = B2, I{u, ). Shows that the condition is necessary.

To show that the condition is sufficient
Assume that the condition is satisfied.
Let{g,} be any increasing sequence of members of L and ¢ € L such that ¢ = limt (g, ).Define u,= ¢, u;= @o-¢y, U= @5-

Paennnnnns
Thus wy 2= 0 and u, = L for all n. Further g = limt (g, )=limt (E2, u)= Eio g (ug)

Therefore by assumption we get I(¢) = Er_, Ifu)=limt (B, Iw))= limt (ER(u ) = limit (g,
Shows that | is a Daniell Integral.

Example: Let L be the class of Real valued continuous functions on [a, b], for f € L, Define I{f} = J’:{fj = Iff.g €L and

o, ff, € K then &f + [ g is also continuous function, Hence af + &g € L.
Also fvg, frgel

shows that L is a vector lattics |
Further | (ef + fg) = fcb{af +Bg)=a J’:f + 8 J’: g=e | (f) + 7 1(g) Shows that I is Linear.

AndI(f)=["F=0
Wherever f = 0 Shows that | is a positive linear functional on L.
Let { f,} be any sequence of members of L s.t. ({1 4 0, then f;, € R[a.b] and |f,| = O

Therefore by Dominant Convergence Theorem we have J': f=1

As f, is Reimann Integerable over [a, b] therefore J’: F—0 = I{f,)— 0. Proves that | is Daniell Integral.

Example: Let (4. . @Jbe any measurable space. let L be the class of all simple functions which are zero outside sets of finite
measure.

Define I{f} = J’: fdu for If f.e L, then it is easy to verify that L is a vector lattice and | is a positive linear functional on L as
in the above example it can be shown that | is continuous for decreasing null sequence and hence I is Daniell Integral on L.

Definition: Let L be any vector lattice of real valued functions on X By L, denote the class of real valued functions on X which
are limits of increasing sequences of members of L.

Remark (1): Lu is a lattice Let f, g £ L, then there exist increasing sequences {g,}and {3 ,] of members of L s.t.
&, = f and ¥, — g. Thisshows that {¢, vy 1= fvg = fvg e lu,

Similarlyf n g € Lu, = Lu is a lattice.

Remark (2): Letf ge fu,and w.§ =0 Then uf + fy = Lu
We say that Lu is a cone.
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Remark (3): Lu is not a vector space because ef + fg & Iu for o § =0

Preposition: Let {¢,}and {w ,} be increasing sequences of members of L and suppose that ¢, = Limt @, then
I} = Limt I ).

Proof: @, = Limtl(g,) = Limt I( ) = I{¢,) = Limt I{y )
= Limt I(g,) = Limt I(yf ;)

Definition: Letf e Luand {g,] be increasing sequences and members of L s.t. f= Limt{ g, then we define 1 (f) =
Limt I{ghy,)

Preposition: Let f, g € Lu, and &. & = 0 , then
(1): f=g=1(f) = I(g)
2): N(=f + 85y =5 l(f1+0lg)

Proof (1): Let {¢,} end {3, be increasing sequences of members of L s.t. ¢4, = fand i, = gasf= g

= Limt {¢,} = Limt{p Y = Limt I{gp,} = LimtI{yp 3= | (f) < I(g).

(2): As &y — f and w, — g and

@ f20 = {a ¢y +8Yat—(af +89) =1{a ¢pu+BY 3= I(af +B9)= I(af + Bg)= LimtI{a ¢y +B 9.}
= Limt faI(ep, )+ B I3 )}= e Limt L I{ g, 0} + B Limt {I{zp )} = al(F)+ £ Lg).

Corollary (1) : I(f+g)=1(f) +1(g) forall f,g=Lu
2): 1(H=0forall f,gsLuwithf =0

Preposition: Iff e Lu iff f =X ., ,wherees,, £ L, o, =0 Then 1 () =X, (e,

Proof: Suppose f= X5, ¢, where ¢, €Lu, ¢, = 0

We first define v ,= E, ¢; ,then 3, is an increasing sequence of members of L and
f= Xn_pp=Limit (T, wi) = Limtyg, asn—»

Hence by definition f & Lu.

Conversely: Suppose f £ Lu then by definition there exist an increasing sequence {u,,} of members of L such that u,, — f.
Define ¢y = uy, @73 = uy Ty, eeen , B = Up B g,

Thengy, =0 , ¢, eLand Epospp=Limt (EE, ¢;) = Limtlu,}=f. Proves that Zn_s ¢, = .

Further suppose f = E5—, ¢n , Where ¢, €L, ¢y = 0

Define &, = %, ¢; then {g,} Is an increasing sequence of members of L and limy,_. op= lim,._(T%, ¢;)=Zac:@,=f
that { m,}—= F, . E L.

= () = limy__ I 6p) = lim,_ (T [(¢:)= Z2, 1(@l) = () =EZ, [(¢i).

Definition: For any function f on X define I(f) =Inf{ I(g)}, where g eLu, g= /} and
1(f) = sup{ 1(9)}, where g €Lu, g= f} thatis I(f) = -1{—f)

Preposition: Let {f,} be any sequence of non—negative functions on X and f = £=_, £, then I{f) = £=_, I(f,).

Proof: If I{f,} = o for some n, the result is obvious.

Suppose that I{f, } < @ for all n. Let £ = 0, then ITA,} = I(f )+ f, ...................... *

= There exist g, €Lu st g, = fiand 1 (g,) ) = I(f) +_i1E }or alln

Letg=%5_18n aS gn = f, = 0, we see that g c Lu and I(g) = 2 g [By above preposition ]
Thisgives Zi_sg, 2 Ini =92 f= I(9) = IO = (N2 =i l(g.) =0 +3)

£

= B5_0(F, )+ I = D If 0+ = Ify=Z5_TiF)

i =1.._1-;
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Theorem: Prove that

O:If+9) = I(A+1(g) andI(f +g) = I(f) +1(g)

(2: f=g= Ifi<Ig) and f<g=1(f)<I(g)
(3): I(ef) = €l[f) and Icf) =cl(f) if c>o
(4): I(efy = elif) andI(cf) = cI(f)ifc<0

Proof: (1)Leth=f+g andletg = fand w=gthen ¢+ y=f+g=>¢+ ¢ =h

=Ty = 10g | w) = 1(g) + (%) > I(h) 5%{l(¢3}+%{l(wj}=ﬁ+ I(g).

Similarly we can prove that I(f + g) = I(f) +I(g)

(2): Letf=g,and geluandg =g, then f = @ =T = (@) =10 = infIlg) —I{g) —I( ) =I(g)
Similarly we have I{f) = Iig)

(3): Ifc =0 then the result is obliviously true

Let c>O0thenI{cf) — Inf (J{g)/ ¢ eluand ¢ > cf} = Inf {I(cg¢)/ $ eLuand ¢ = £}

=cInf{l{g)) peluanded =f} = cI(f)

Similarly Letc < 0 I(fy = Iaf {I{g)/ ¢eluand ¢ = cf}=Infi{llce)/ @ eluand g = f}

=cSup {Ilp)) ¢cluande =7} = cl(f)

Same for the other cases we can prove.

Definition: Let | be the Daniell Integral on a vector lattice L. By L, we denote the class of those functions f s.t. Iy =I{f)

further define that I{f) = 1{f)= I{fland it is finite,

Theorem: | be the Daniell Integral on a vector lattice L. Let L; be denote the class of those functions f s.t. Ify=I{f),

which is finite .For f & Ly define that I{f} = 1{f)=1(1). Then L, be a vector lattice and I on L, is an extension of I on L.

Proof: (1) Letf,g € Ly then I(f + g) < I{f) + I(g}= [(f)+ Ng)=1(F +1ig) =I(f + 9)
=I(f - g) = Iif + g) = I{f)+ I{g) And it is finite shows that f+g € L,

And I(f + g)= ICFI+Ig).

(2): Letf e L

And ceR let a= OthenI(af)=al(f) =al(f)=I(af) =I(ef) =I(cf) = I(af)

If &< 0then I(af) = a I{f) = I(af) — ul()=I(af)

Shows that I(af) = I(af) =I(af) = ef € L and I{af) = aI(f)

Proves that L, is a vector space and | is a linear transformation.
(3):Letfe Ly andf=0and g € L, andg = Othenl{g) =0
= Inf {I{g)} =0= Iif) = 0 = Iis positive linear functional.

(4): let ¢ € Lthen @0 € Lu = I{g) = I{@ = I{g) shows that I on L, is an extension of lon L.
(5): Letf e L, takeanyz =0thenlf) < I(f) e=I(f) <I(f)1+e=>

Thereexistg € L, stgz=Ff andI{(Ff1=<I{g) =I(fl4+e oo *)
Similarly thereexist A € L, st.hz=—f and I(-f) =I(h) < I(—f) + e
=-h=f and-I(f) = () =-I(f)*e (**)

Define g;=gv0,h;=hAO0, theng;=¢g" ,hy=-h", from_h=fzg=(-h*" = ff=g'=2h = ff=g=2-hh=f"=q

ek

Considerany x € X, 1fg(x) = 0then g (X) =g(x) = hy(X) <h(x) = gi(X) + hi(x) = glx) + hix)

If g(x) < Othengi(x) =0, from -h = f = g weget—h(x) < glx} = 0=h(x) = 0=hy(x)=0,gi(x) =0 also Hence =
g1(x) +hi(x) = glx) + hix) thus gi(x) +hi(x) = glx) + h(x) forall x

S q+thi=g+ h=1(gy +h) = Ig+ k) = 1(g) +I(hy) = Ig) +I{h) = 1(gy) +

Ih) <26 ()

(From (*) and (**))
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From (***) we get I{—h)+ = I{f*) and

I <Tlg) = ~Tth) < 1(F)and TT) = (g = TF—1(F7) = I(g)+ IChy) < 2¢ = IGF7) = I(f*) and itis
finite = f* €L,

Theorem: (Lebesgue’s Monotone convergence Theorem)
Let {£, } be any increasing sequence of functions in Ly And f=limt {£}, then f =L, iff limt I(f) < =, also I(f) = limt

1(f)-

Proof: Suppose limt I(f;)= o=,

As(f,) TF, wehave f=f foralln= I1(f) =I(5) foralln= 1{f) = I(f) = If)

= I(f = limtI(f) = I(f) = o = fe L, shows iff L then limt I(f,) < oo

Suppose now limt I(£,) = ¢,

Defineg=f-fi andg, = fo.:_f, theng = 0and g, =z 0and g, = g

Zic1(fesr-fi) =gn 2 Mt [ZEos(fisr- I =limt (g) = 0= 0= Zisa(fissr-fi) =

() =E5oy 1 (hes ) = ERoa LI A HIGRD] = BMUER_ f1C o ) — TR = iMUICR 10) — ICA) = Nimt [I(£,) — I(£)]

= I(f)+1(g) =limICE) *)
As fo=f=I1(kK) = I(f)foralln = I(f) = I(f) = imt I(f,) = I(F) e (**)
Fromg=f-f; ,wegetf=g+f, = I{f) =I(g)+ I(f)=1I(g) + I(f) < limtI(f,)

{From *}
I(F) < timt I(f;) e e [#54)

From (**) and (***) we have I(f) < limt I(£) < I(f) = I(Ff) =1(f) =limt I(f,1 =2fel,
And I(f) = limt I(f,), Proved.

Fatous Lemma: Let {f,}be any sequence of non-negative functions in L, then Inf{f 1eL,. Further limt[f,] e L, if
limt{f,1 <o and | (limtf," = LimtI(f,).

Proof: Let Inf{f,1= g , Define g,= min {f % &, - ---.fz} then g, is a monotone decreasing sequence of non-negative
functionsin Lyand {g,} 4 g then{—g,} T—g. Then I (g,} =0

=-l1(g) =0=2(—g) =0=Ilimtl(—g,) =0=limtiI(—g,) ey = —gel; =2 g L1=Inf{flel,

To prove the second part assume that [imtI{f, ) < oo Define h = imt (] ,

by =inf {fy fosr frsz oo} thenh=limt(h,) and (k) isan increasing sequence of members of L; then h, = f, where
vzEn=Ith,)=I(f,) forall v where v =n = Ith,) = limtI(f)

= limtl{h,) = Limtl(f) < =>limti(h,)=<w =hecl, and I(h) = limti{h,)) = 1limt(f)) = limtlI(f,) which
completes the proof.

Theorem :(Lebesgue’s Dominated Convergence Theorem): Let {f.}be any sequence of non—-negative functions in L; and
g ELy, st |fz|= g foralln, let f=limtif;3 then f € Ly and F{F} = limtf(f,) .

Proof: Consider the functions f, and g s.t. |f,|= gforallnthus -g = f, =g , we cansee that {f, + glisa sequence of
non-negative functions in Lythus I1(f + g3 = 1(j, 0 + 1{y) = I{yd + 1y} = ot (f + ) =2 Ig) = o
[ Because g €L,thus gl <o ]

= limt(f, +g)els = (f+gle Li= fel [Because g €L4]

= I{f +g) = {limt (f, + g2} = [mtI(f, + g) DR L2

= I(f) = LimtI(£,).

Now consider g-f, . Since f, = g foralln

Note that {g-f,} is a sequence of non-negative membersin Ly =1{g-f,) =g} I{f)= 21(g)

[Because -f, =g 1]

Shows that limt 1{g-fn) = 2I{g) < e =limt I(g-fi) EL. =g-feELL = fFeLy

and I(g - f) =1 {limi(g-f,)} < limtI(g-

£)= Ig) —IF) < I{g) — Emt I(£) = Timt |(

ful) = Jr':f:] P )

From (**) and (***) limt I(£.) = I(f) = limeI(f,) = lLimel(f)= limtl(£,) = T(F)
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= [I(f) = lamt I[f,), proves the theorem.
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