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Abstract:

The dynamic response behavior of double uniform Rayleigh beams system resting on a constant elastic foundation and with
axial force traversed by masses travelling at a uniform velocity is investigated. As alluded to in [3, 4] a clamped-clamped
boundary conditions for moving force was considered. The dynamical problem is solved using Mindlin Goodman,
Generalized Finite Integral Fourier, and Laplace Integral transformations then convolutiontheory. Using numerical
example, various plots of the deflections for the beams are presented and discussed for different values of axial force N,
foundation modulli K and at fixed rotatory Inertial (r) and also for fixed axial force N and foundation moduli K but at
various rotatory inertial (r) for moving force.
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1. Introduction

This research work is concerned with the calculation of the dynamic response of structural members carrying one or more
traveling loads which is very important in Engineering and Applied Mathematics as applications relate, for example, to the
analysis and design of highway and railway bridges, cable- railways and the like. Generally, emphasis is placed on the dynamics
of the structural members rather than on that of the moving loads: moving mass and moving force models. Common examples of
structural members include beams, plates, and shells while traveling loads include moving trains, trucks, cars, bicycles, cranes etc.
A structural member may be elastic, inelastic or viscoelastic. As such we have elastic structural members, inelastic structural
members and viscoelastic structural configurations on which one or more loads may travel. Simple examples of these structural
members are bridges, railroads, rails, decking slab, elevated roadways to moving vehicles, girders, belt-drive (carrying machine
chains) and even floppy disks/cassette players’ heads carrying tape. Pertinent to investigation in the field is the response of an
elastic structure under the cases of moving concentrated loads with time dependent boundary conditions.

Several other researchers have made tremendous feat in the study of dynamics of structures under moving loads. In all of these,
considerations have been limited to cases involving homogeneous boundary conditions and no considerations have been given to
the class of dynamical problems in which the boundaries are constrained to undergo displacements or tractions which vary with
time. In such cases boundary conditions are no longer homogeneous and boundary conditions become non-classical.

In many practical problems that concern the structural response to moving loads of elastic systems, the supports at the boundaries
are not stationary but undergo different motions. Often the motions are in the form of lateral displacement, oscillations or
tractions. As such, the boundary conditions are not homogeneous but are time dependent. These classes of non-classical boundary
value problems are, in general, resistant to the classical methods of solving dynamical problems. In fact, it becomes more
cumbersome, when the dynamical problems involve moving loads with or without consideration of the inertial effect of the
moving loads is taken into consideration.

One of the earliest problems of this type was considered by Mindlin and Goodman [14] who described a procedure for extending
the method of separation of variables to the solution of Bernoulli — Euler beam vibration problems with time-dependent boundary
conditions

Thus, this study concerns the response of Rayleigh beams when it is under the actions of moving concentrated masses. Typical
examples of time-dependent boundary conditions are used to illustrate the dynamical configurations. The solution technique
employed is based on Mindlin and Goodman, Generalized Finite Integral Fourier, and Laplace Integral transformations then
convolution theory. Finally, the analysis is illustrated by numerical examples.
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2. Governing Equation
The structural model of an elastically connected double Rayleigh beam system under the action of a moving concentrated load

P(X,t) is considered. The transverse displacement U i (X,t), J =12, of double uniform Rayleigh beam of Length L traversed by

mass M traveling at a uniform velocity U , is governed by the fourth order partial differential equations.
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where

X is the spatial co-ordinate, { is the time, Uj(X,t) is the transverse displacement, E is the Young Modulus, | is the moment

of inertial, g is the mass per unit length of the beam, r is the radius of gyration, N is the axial force, K is the elastic

foundation as EIl is the flexural rigidity of the beam. For the problem under consideration, the moving load has mass that is
commensurable with the mass of the beam. Consequently, the load inertia is not negligible but significantly affects the behavior of

the dynamical system. In this case, load function P(X,t) takes the form.

1d2U(xt)
P(x,t)=P (x,t)1-———="> 1.01
)=, 12 ) aon
Where the continuous moving force P; (X,t) acting on the beam model is given by
P, (x,t)=Mgs(x - f(t)) (1.02)

2

And F is a convective acceleration operator defined as becomes
t
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In this work, the moving load is assumed to move with constant speed, consequently, equation (1.03) becomes.
d> 8% 2ue* u?o’
w2 a2t t—3
dt® ot° oxot  ox
Now, on substituting equations (1.01), (1.02) and (1.04) into (1.00) and assuming that the flexural rigidity EI , and mass per unit
length £t , do not vary with position X along the span L, equation (1.00) becomes.

£l U, (x,t) NE}ZUl(x,t)er@z;Jtlz(x,t)Jr KU, (x,t)- g U, (x,t)

(1.04)

ox* ox* ox*ot?
2 2 2172
_ Mgs(x—ut i Ul(zx,t)+ 2uo Ul(x,t)+ u?o Ulz(x,t) (L05)
g ot oxot OX
and
4 2) 2) 4
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(1.06)

Equation(1.05) is for the upper beam while (1.06) is for the lower beam and the boundary conditions of these problems are taken
to be time dependent. Thus, at each of the boundary points, there are two boundary conditions written as;
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D U(Ot)]=F(t) i=12adD,U(Lt)]=F(t) =34 (L.07)
Where D; s are linear homogeneous differential operators of order less than or equal to three.
The initial conditions of the motion at time t = 0 may in general be specified by two arbitrary functions thus:

U(x0)=U,(x) d%txo) _U, (x) 1.8

2.1. Operational Simplification of Equation

In this work, the analytical solution to the non-homogeneous initial boundary value problems (1.00) with non-homogeneous
boundary conditions (1.07) and non-homogenous initial conditions (1.08) is sought. To this end, an approach due to Mindlin and
Goodman [19] is extended to obtain a robust technique which is capable of solving this class of problems for all variants of
support conditions.

First, an auxiliary variable Z(X, t) in the form

U, (xt)=Z, (6t 2 1o, () ] =12 (1.09)

is introduced. Now, substituting equation (1.09) into (1.05)and (1.06) transforms the boundary-value-problem in terms of
Uj(X,t) into the boundary value problem in terms onj(X,t). The functions gi(X) are called the displacement influence

functions while f; (t) are the pertinent displacements at the respective boundaries. The functions g, (X) are to be chosen so as to

render the boundary conditions for the boundary value problems in Zj (X, t) homogeneous.
Thus, substituting (1.09) into equation (1.05) the upper beam, one obtains
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and substituting (1.09) into equation (1.07) the lower beam, one obtains
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Where dot () represents the derivative with respect to time, while slash (') represents the derivative with respect to space

coordinate.
Now the expression in equation (1.09) must satisfy the boundary conditions in equation (1.07); consequently, we have

D [z(o,t)]+il f.(0D,[g,(0)]= f, (0), i—12. (w11)

D,[2(L.O}+ Y 1,0B,[g,(L)] - () i—34. (112)

Substituting equation (1.09) into the initial equation (1.07) and (1.08) one obtains.

Z(x,o)=U(x,o)—iZ41: f.(0)g,(x) L13)
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9 2(x,0)=Uy(x)- 3 ,(0)g:(x) (114)

ot =

2.2. Solution Procedure
For slip damping to take place, both the upper and the lower beams must retain physical contact along the interface so as to remain

as one structure. Thus, Z ( ): Z (x t) = Z(x t)on adding the upper and the lower beams together, we have

o B St N 2 ) ozl S 2 2o
+%6<x—ut{§{z<xt> 20 (0,1)+ £ 2(x, )}
[if. %zf S et )j

+%6<x—ut{i(fxx)gi(x)uufi<x)g;<x)+u2fi<t>gr<x))}

i=1 1.10c

It is observed that the initial — boundary — value problem in equation (1.10c) is a fourth order partial differential equation having
some coefficients which are not only variable but are also singular. These coefficients are the Dirac delta functions which
multiply each term of the convective acceleration operator associated with the inertia of the mass of the moving load. It is
remarked at this juncture that this transformed equation is now amenable to the method of generalized finite integral transform
used extensively in S.T. Oni [1,2,5,6,11,14].

2.3. The Generalized Finite Integral Transform Method
The generalized finite integral transform method is one of the best methods used in handling problems involving mechanical
vibrations. This integral transform method is given by

2(m,t)= [ 2(x,t)V,(x)dx (1.15)

With the inverse

z(x,t)ziviz(m,t)/m(x) (L.16)

m=1lVYm

Where
J' 1V 2(x)dx L.17)

V (X,t), is any function such that the pertinent boundary conditions are satisfied. An appropriate selection of functions for beam

problems are beam mode shape. Thus the m™ normal mode of vibrations of a uniform beam given by

v()s.’l A X JuX |, ¢ ognZnX

——+B_Sin

(1.18)

is chosen as a suitable kernel of the integral (1.15) where A, is the mode frequency, A, B, and C,, are constant. An important
feature of the use of this kernel is that it makes the transformation suitable for all variants of the boundary conditions of the
dynamical problems. The parameter A_, A, ,B,and C_ are obtained when the equation (1.18) is substituted into the

appropriate boundary conditions.
By applying the generalized finite integral transform (1.15), equation (1.10c) takes the form

Z“ (m,t) = BlQA(t) + BzQB (t) + Baz (m,t) + Blz(O’ L, t) - erc (t) + QD (t) + QE (t) + QF (t)

PV, (Ut) =[G, (1) - G, (t) + G, (t) + G, (t) + G, (1) + G, (t) + G, (t) + G, (1) | (1.19)
where
B-2El g 2N g _ 2K p M g,-M (1.20)

H H H H J7
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(1.22) ’
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i=1
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G (t)——Zf (t)_[c?(x ut)g; (x)V,, (x)dx G, (t) =

Zf (t) j S(x—ut)g"(x)V, (x)dx

(1.23)
It is well know that the natural mode in Equation (1.18) satisfies the homogeneous differential equation

d*
El d—Av (X) — uo2V, (x)=0 (1.24)
for the Euler beam. The parameter () is the natural circular frequency defined by

At EI

a); = |_4 (1.25)
Equation (1. 24) implies

L d 4 L
El j [d?v m(x)JZ(x,t)dx = pw? j V_(X)Z(x,t)dx (1.26)

(o] 0
Thus, by (1.15)
Qut)= Lo Z(m) (1.27)
Since
Z(m,t)is just the coefficient of the generalized finite integral transform, equation (1.16) yields
Z(xt)= > EZ(k 1, (x) (1.28)

koo Vi
62 ) ,U
Thus —Z X (1.29)
o2 kz V, d Vi (%)
And the integral (1.21) can be written as
d
Z HZ.(xt )| {d (x)}/m (x)dx (1.30)
i Vi
Now using the property of Dirac-Delta function as an even function, which can be expressed in Fourier cosine series namely
1 2 Nzt  Nnzax
S(x—ut)==+23 cos—E cos = (1.31)
L Lo L L

When use is made of equations (1.28) to (1.31), one obtains
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Q, )= Z/IL ZV—Zn (k, t)D‘V (X)V,, (x)dx + 22 Cos MM i it ICos %Vk (X)V,, (x)dx} (1.32)

k=L
Using similar argument in equations (1.21). It is stralght forward to show that
Q, (t):z'v'—UZzt(k t){“ [V 00w, (x)dx+2ZCOs nut i j COS—V YOOV (x)dx} and
(1.33)
M naut p
Q, (t) _—ZZ(k t){ jv (X)V, (x)dx+2ZCOs : j COSTVk(X)Vm(X)dX}(l.M)

Substituting equations (1.27) to (134), into (1.19), after simplifications and arrangements yields
Zu(m,t) +a2Z(m,t) - EZZ(k, 1S (k,m) —r>> Zu(k,1)S] (k,m) + {zZn (k,t)S, (k, m)
H iz k=1 k=L

+23"3 Cos ”T”“tin (K, 0S5, (k,m,m)+2u> Z (K, 1S (k,m)

k=1 n=1 k=1

+4u>"Y Cos ”t“tzt(k 0S2 (k,m,n)+u?S Z (k,)S. (k, m)

k=1 n=1 k=1

+2u?3"Y Cos ”T_“tzt(k £)S.. (k,m,n)

k=1 n=1

. Anut Anut . Agut Anut
=P noln nCO0S

L L L L
~|G. 1) -G, (1) + G, (t) + G4 (t) - G, (t) + G, (1) + G, (1) + G, (t) (1.35)
where  G,,G,,G, ..ol G, are as defined in equations (1.23)
al = {a)é + EJ (1.36)
U

First, we shall obtain the particular functions gi(x), where i=1,2,3,4.which ensure zeros of the right hand sides of the
boundary conditions for a clamped-clamped beam. Going through the same process discussed in [1,3,6], one obtains

gl(X)=1—3(fj2+2( js 9,(x)= X—X—:,gs(X)=3&jz—Z[ js g, (x )=—X—L2+ X (wan

It is only necessary to compute those of the g, (X) for which the corresponding f, ( ) do not vanish. Thus, we need only gl(x)

and gs(x) for our boundary displacement functions fl(t) and fs(t)as defined in [1,2,3,4].
Thus we can write

f, = BSinQtand f, = Ae " SinQt (1.42)
Where A, B are amplitudes, €2 is frequency and [ is parameter.

The initial conditions are, again

Z(x,0)=0and Z,(x,0)= - (1.42)
which when transformed yield
Z(m,0)=0and Z,(m,0)=17, (1.43)
where
n, =1, [@-cosA, )+ B, (cosh A, —1)+ A sinA, +C,sinh A, ] (1.44)
and
LO
77or - )b (1-45)

m
In view of equations (1.37),(1.42 ) and (1.43); the transformed equation of our problem, reduces to

zn(m,t){w;ij mt) __i Z(5; (K. m) =17 3,2, (.05 (<,m)
H K=1
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Where

&=— (147
#L( )

H, =N, =N, +A (N, -N,) 5 H,=N;—N,+A, (N, —Ny)

H3=N9_N11+Am(N10_N12) i Hy=Ni—Ni+A,; (N Ne)
H5=Nl7_N19+Am(NlB_N20) ; H6=N21_N23+Am(N22 N24)
H7=N25_N27+Am(N st) i Hg=Ny—-Ng+A, (N _st)

ggnolintn] s g S )
,Hll=%H3—%H4 : H12=§H7 ng, Hl3=2u(§H2—%H3j
;Hl4—2U(1L2H —1L—§H7j

H15=u2(%Hl—ll_—fH2j . Hy, =U (1|_2 HS—%HGJ (1.48)

Equation (1.46) is the transformed equation governing the model of double uniform Rayleigh beams resting on a constant elastic
foundation. Two special cases of equation (1.46) can be considered namely moving force and moving mass modelsbut in this
report only the moving force model is considered.

3. The Clamped-Clamped Moving Forcesmodel

In equation (1.46), ¢ is set to zero, using Strubles asymptotic techniques as alluded to in [1,2,3,4,5,6]. On this consideration,
hence, the entire equation (1.46) takes the form.

Z,(m,t)+y,Z(m.t)=

« l A ut
(L+&.5; (m,m)| P| Si _CoshZm
L L
—H,,sinh Qt—H ¢ " sinQt+H, ¢ " coth]. (1.49)
Where
L _a);f {g*[Sf(m,m)Jr E*W%Sf(m,m)ﬂ (1.50)

represents the modified frequency due to the effect of rotatory inertia.
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2

;
T Ay (1.51)

In order to obtain the solution to equation (1.49), it is subjected to a Laplace transformation in conjunction with the initial
condition. The equation, after simplifications and rearrangements then we obtain

Z(m,t) = FZOR — [(yri +28 )((ym sin zyt — z, sin y,t)+ A, (cos zt —cosy,t))
m\m ™~ %o
+(y2 = 22)(B, (¥, sinh z,t — , sin y,.t)+ C,, (cosh z,t —cos y.t))]
HBRQ

* 2}/ }/2 — 0?2 [(}/m _Q)Sin }/thOS(Q—i- }/m)_ (}/m —Q)COS}/mtSin(Q—i— }/m)
- (Q + ¥ )sin 7l COS(Q — ¥ )— (Q +7m )COS ymtsin(Q — ¥ )+ 2Qsiny, t ]
He ™™

gty vy Aot 2k foosrut={r, + @)fsinytoosly, + X

+(y,, +Qkin ymt — Bcosy, tcos(y, + Q)+ (y, +Q)cosy, tsin(y, +Q)t]
OR ~A—
He " ~[Bcosy teos(y, —Qk - (r, —Q)cosy,tsin(y, — Q)
2ym[ +(r, - Q)|
+ Bsiny, tsin(y, —Q)t+(y, —Q)siny, tcos(y,, —Qk — (v, —Q)siny, t— Bcosy,t]
HRe A
19
Zym[ +(rn +Q
+ Beosy tsin(y, + Q) +(y, +Q)cosy, tcos(y, + Qk —(y, +Q)cosy,t ]
HOoRe 2
19
Zym[ + (7 -
(Q -7, )cosy, t— Bcosy,tsin(Q—y, t—(Q-y,)cosy tcos(@ -y, )t ]+ 2siny, t (152)
4

m

P J[— Bsiny tcos(y, +QJt+ Bsiny, t+(y, +Q)siny, tsin(y,, + Q)

oF J[— Bsiny tcos(y, —Q+ Bsiny, t+(y, —Q)siny, tsin(y, — Q)

on inversion yields

Z(x.t mZ;Z o t){ AnX AEx_Gm( : AEX : /ltxﬂ
U(x,t)=Z(xt)+ [1—3(%)2 + 2(%}3}% Ot +[3(%j2 - 2(%}3]?'& sin Ot (L53)

Equation (1.53) is the transverse response of double uniformRayleigh beam under the action of a moving force whose two
clamped edges are constrained to undergo displacements which vary with time.

4. Numerical Calculation and Discussion of the Results
The analytical results of double uniform Rayleigh beamswith these parameters are considered Length L=12.192m, the load

velocity u = 8.123m/s and E = 2.109x10°kg/m .The values of the foundation moduli K varied between 0 and 400000 and

for fixed values of rotatory inertia r=1.The traverse deflections of the uniform Rayleigh beam are calculated and plotted against
time for values of rotatory inertia and foundation stiffness K.

Fig. 1. Reveals deflection profile when all the beams parameters are fixed and the displacement was plot against time.Fig.2.
Displayed the dynamic response of clamped-clamped moving forcesystem for various values of axial force N and fixed value of
foundation moduli K =40000. The graph shows that the response amplitude decreases as the values of the axial force N increases
while in fig.3. One observed that deflection profile of the clamped-clamped moving force of a uniform Rayleigh beams moving
with variable velocities for various values of foundation moduli K and for fixed value of axial force N=20000. The graph shows
that the response amplitude decreases as the values of the foundation moduli K increases,fig.4. shows the deflection profile for
clamped-clamped uniform Rayleigh beams under the action of moving force for various values of rotatory inertia and for fixed
value of axial force N=200000 and for fixed value of foundation modulus K=200000. It was found out that as the values of
rotatory inertia increases the deflection profile reduces.
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Fig 1: Moving force against Time (t) of the clamped-clamped uniform Rayleigh

Beam for fixed values of axial force N and foundation moduli K

Ll

Time ¢t

Fig 2: Dynamic response of clamped-clamped uniform beam for various
values of axial force N and fixed value of foundation moduli K=40000
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Time i

Fig 3: Deflection profile of clamped-clamped uniform beams for various values of foundation
moduli K and for fixed value of axial force N=20000

Tima it} ead.

WL tjm

Fig 4:Deflection profile of clamped-clamped uniform Rayleigh beams under the action of moving force for
various values of rotatory inertia and fixed value of foundation modulus k=20000 and fixed value of axial
force N=40000
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