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1. Introduction 

The natural gas industry in Nigeria is of great interest due to the country’s vast increasing natural gas reserves 
coupled with natural gas being the most dominant natural resource in the country. The current natural gas reserves of 
over 202 trillion cubic feet places Nigeria as the largest natural gas reserves holder in Africa. Ironically, little effort has 
been made in terms of gas development in Nigeria; most of the gases produced are produced incidentally in the course of 
oil production and are not profitably sold but simply flared due to gas infrastructural challenges. There are great 
opportunities in the gas sector that could bring about economic development and sustainable development of the sector 
thus, making the gas sector a focal point as regards the state of the national economy. It is therefore, pertinent to study the 
state of the gas sector in Nigeria with respect to its technical efficiency. This is because; there is need for every nation to 
know how a given industry can increase output by increasing its efficiency with limited or given resources for the purpose 
of economic planning.  

Due to the limitation of resources at our disposal, and the necessity for resource management efficiency which in 
simple terms means lack of waste has always been a guiding part of all human activities (Kulik (2017)). This has brought 
about our inability to fulfill all needs concurrently and imposes making optimal decisions and economic choices to reduce 
waste to the barest minimum. Efficiency measures input versus output and is a very important principle in any business 
entity because every organization seeks to maximize her output with minimal input. As stated by Porcelli (2009), 
efficiency is an essential part of overall performance. Farrell (1957) was the first to present the measurement of efficiency; 
where he categorized efficiency measures into technical efficiency, allocative efficiency and economic efficiency. Page J.M. 
Jr. (1980) points out that low level of technical efficiency translates to poor economic performance. This implies that 
resources being well utilized without much waste (being efficient), will in turn, improve economic performance. 

Data Envelopment Analysis (DEA) technique is a mathematical method where linear programming methods are 
applied to evaluate the efficiencies of sets of similar systems by looking at levels of input and output. The sets of 
comparable systems for efficiency evaluation are the Decision Making Units (DMUs). Charnes et al (1978) did an 
improvement on efficiency measurement, by developing the Data Envelopment Analysis (DEA) process where he 
presented the constant returns to scale model (CCR model). The variable return to scale model (VRS model) which 
introduces variability and an extension of the CCR model was developed by Banker et al (1984).  Two orientations exist in 
calculating efficiencies as follows: 
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 Input Orientation: This has to do with minimizing inputs and keeping outputs fixed so as to have an efficient DMU. 
That is, avoiding wastes by producing as much output as possible as the input allows. 

 Output Orientation: The output orientation approach maximizes outputs while keeping inputs fixed to have an 
efficient DMU. It has to do with avoiding wastes by using as little input as the output allows. 
Several studies have been carried out with the use of DEA technique, but its use in the oil and gas sector is still at 

an infant stage. According to Paulo et al (2017), the use of DEA in the petroleum sector is rare with only forty three (43) 
publications where DEA was applied in the oil industry in twenty five (25) years. The study on the performance of four 
major oil and gas companies using Energy ratio analysis and DEA was done by Sanzhar et al (2015), while Stacy et al 
(2007) observed that the relative technical efficiencies of various National oil companies (NOCs) from a commercial point 
of view, are largely the result of government exercising control over the distribution of rents. Peter et al (2011) found that 
NOCs generally are less efficient than   Shareholder-owned oil companies (SOCs). From the assessment of relative technical 
efficiency (RTE) of thirty two (32) active operators in Nigerian E&P using variable DEA model, Idowu et al (2018), 
discovered that there is declining trend in the operators’ relative technical efficiencies (RTEs) from 2010 to 2016 in 
Nigeria. Ojaraida et al (2019) applied DEA technique to gas utilization in Nigeria and revealed that natural gas is not fully 
utilized in Nigeria; hence, economic growth in the country is negatively influenced.  

The uncertainties which are intrinsic part of data used for performance evaluation cannot be ruled out. DEA 
technique is deterministic in nature because it does not incorporate data uncertainty and gives a single value efficiency 
score. This infers that the results obtained are sensitive to measurement errors and all deviations from the frontier are 
assumed to be attributed to inefficiency as stated by Huang et al, (2002). From the work of Lotfi et al (2009) it was proven 
that efficiency scores calculated from inaccurate data will also be inexact. Hence, the need for performance evaluation of 
the gas sector in Nigeria, using a framework or model which incorporates data uncertainty. 

Different authors have established several ways of modeling data uncertainty in DEA, among which is the 
uncertain DEA model proposed by Meilin et al (2014) where uncertainty theory that deals with human uncertainty is 
applied to DEA in which input and output variables were considered uncertain. Uncertainty theory which is now a branch 
of axiomatic mathematics was first introduced by Liu (2007) and later refined by Liu (2010). The uncertain DEA model 
does not assign efficiency scores to DMUs, but rather tells if a particular DMU is efficient or not. This paper develops a 
framework known as the uncertain DEA plus that builds on the uncertain DEA model, incorporating a relationship 
between the summation of slacks and efficiency scores, to assign efficiency scores to each confidence level per DMU, and 
hence, gives a range of values of efficiency scores for each DMU. The framework is built on the components of python (a 
high-level programming language) libraries. 
 
1.1. DEA Methodology 

The DEA approach has both the constant return to scale model and the variable return to scale models as follows: 
Constant Returns to Scale model: The constant return to scale model also known as the CCR model maximizes output, and 
Charnes et al (1978) was the foremost presenter. It is given as:  
Max         

∑

∑                                                                                                                                  Equation 1 

Subject to:     
∑

∑   ≤ 1   (for all i)                                                                                             Equation 2 
Vy, Ux ≥ 0 (for all y, x)                                                                                                                            Equation 3 
Where 
y = 1 to s, s = number of output 
x = 1 to m, m = number of input 
yyi = amount of output y produced by DMU i, 
xxi = amount of input x utilized by DMU i, 
vy = weight to be assigned to output y, 
ux = weight to be assigned to input x. 
 
1.1.1. Linear Model 

The model can be transformed to a linear model by maximizing the numerator and setting the denominator as 
constant so that linear programming methods could be applied as follows: 
Max∑ 푉 푌                                                                                                                                        Equation 4 
Subject to: ∑ 푈 푋  = 1               
∑ 푉 푌   -  ∑ 푈 푋    ≤ 0      (for all i)                                                                                     Equation 5 
Vy, Ux ≥ 0 (for all y, x)                                                                                                                           Equation 6 
 
1.1.2. Dual Form 

The dual form of the linear programing problem is another linear program derived from the original linear 
program. This is given as: 
Min θ                                                                                                                                                       Equation 7 
∑ 푋 휆   ≤  Xio θo       for all i                                                                                                         Equation 8 
Subject to:  ∑ 푌 휆  ≥ Yro,  r=1, ……,s                                                                                            Equation 9 
휆  ≥ 0, x=1,.…n                                                                                                                                     Equation 10 
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The Variable Return to Scale model: The variable return to scale model which takes care of operational inconsistency is 
also known as the BCC model and was introduced by Banker et al, (1984). It is given as: 
Max    ∑ 푉 푌  + ho                                                                                                                          Equation 11 
Subject to: ∑ 푈 푋  = 1                                                                                                                 Equation 12 
∑ 푉 푌   -  ∑ 푈 푋    - ho ≤ 0                                                                                                     Equation 13 
Vy, Ux ≥ 0 (for all y, x) 
For ho = 0, it infers constant return to scale 
ho ≠ 0, it infers variable return to scale. ho < 0, infers increasing return to scale and ho > 0, infers decreasing return to scale. 
 
1.1.3. Uncertain DEA Methodology 

The uncertain DEA model maximizes the total slacks in inputs and outputs subject to the constraints as proposed 
by Meilin et al (2014) and is given as follows: 
     
 푀푎푥     ∑ 푠  +  ∑ 푠                                                                                                                     Equation 14  
 
푠. 푡:     ∑ 휆 Ø (∝), +  휆 Ø (1−∝) ≤  Ø (1−∝)− 푠  , 푖 = 1,2, ….                            Equation 15  
 
             ∑ 휆 훹 (1−∝), + 휆 훹 (∝) ≥  훹 (∝) + 푠  , 푗 = 1,2, … , 푞                            Equation 16  
 
            ∑ 휆 = 1,                                                                                                                                    Equation 17 
 
휆 ≥ 0,      푘 = 1,2, … . , 푛                                                                                                                          Equation 18 
 
푠  ≥ 0,      푖 = 1,2, … . , 푝                                                                                                                          Equation 19 
 
푠  ≥ 0,      푗 = 1,2, … . ,푞                                                                                                                          Equation 20 
 
Where for a zigzag input variable Ƹ(a, b, c), 
  Ø (∝)  = inverse uncertainty distribution. 
 
   Ø (∝)  = (1− 2 ∝)푎 + 2 ∝ 푏,                푓표푟  ∝ ≤ 0.5,      
                  = (2− 2 ∝)푏 + (2 ∝ −1)푐,       푓표푟  ∝ > 0.5,        
For a zigzag output variable Ƹ(a, b, c), 
훹 (∝) = inverse uncertainty distribution. 
 훹 (∝)  = (1 − 2 ∝)푎 + 2 ∝ 푏,                 푓표푟  ∝ ≤ 0.5,      
                = (2− 2 ∝)푏 + (2 ∝ −1)푐,       푓표푟  ∝ > 0.5,       
∝   = confidence level. 
푠   = Input variable slacks 
푠   = Output variable slacks 

The above crisp deterministic model is a linear programming model and, can be easily solved by any traditional 
methods. This uncertain DEA model has feasible solution and the optimal value 푠 ∗ = 푠 ∗  = 0 for all 푖, 푗. 
DMU0 is efficient at any confidence level when 푠 ∗  and 푠 ∗  are zero for 푖 = 1,2, … . ,푝 and 푗 = 1,2, … . , 푞 where 푠 ∗  and 푠 ∗  
are optimal solutions of crisp uncertain DEA model. This definition is different from the normal efficiency definition since a 
degree of uncertainty is involved. 

Input and output variables were transformed to zigzag variables denoted by Ƹ(a, b, c).where a, b and c are the low 
case, base case, high case variable respectively with expert’s assumed uncertainty range.  
 
1.2. Uncertain DEA plus 

The equivalent crisp uncertainty DEA model above was programmed using the Python.3.7 programming language 
(called the Uncertain DEA Plus) for the evaluation of DMUs with different  ∝  value (Expert’s belief degree or confidence 
level) ranging from ∝ of 0.1 to 0.9 in order to determine the efficient DMU at various confidence levels. DMUs with total 
input and output variable slacks equal to Zero (0) were termed efficient. DMUs whose total input and output variable 
slacks were closer to zero (0), are more efficient than DMUs whose total slack were farther away from zero.  
Also included in the developed Uncertain DEA Plus is a correlation between the total slacks and efficiency scores which is 
based on the fact that at 0.5 confidence level, the efficiency derived from the uncertain DEA model is equivalent to 
efficiency scores from DEA model since it is the base case. The derived correlation is as follows: 
Efficiency = - (1 * 10-5)∑(slack) + 1.001                                                                                                     Equation 21 
This correlation is used to generate efficiency scores for other ∝ values. 
 
 
2. Data Source for Analysis 
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The data source for this study is Nigerian National Petroleum Corporation (NNPC) annual statistical bulletin. The 
data includes annual natural gas reserves, annual gas production and annual gas utilized from 2010 to 2018. 
 
3. Results and Discussion 
 
3.1. DEA Results 

The gas sector in Nigeria was evaluated in terms of technical efficiency with the annual gas reserves set as input 
variable, while the annual gas produced and annual gas utilized were set as the output variables. Output orientation with 
constant return to scale was utilized such that years with high gas production, high gas utilized and low gas reserves were 
termed efficient. Figure 1 with constant return to scale shows that only year 2015 is efficient. When output orientation 
with variable return to scale was utilized, it is seen that 2010, 2012, 2013 and 2015 were efficient, as shown in Figure 2; 
which proves that despite the huge natural gas resource in Nigeria, producing and utilizing the gas is still an issue. 

 

 
Figure 1: DEA Technical Efficiency with Constant Return to Scale 

 

 
Figure 2: DEA Technical Efficiency with Variable Return to Scale 

 
3.2. Uncertain DEA plus Results 

Using the uncertain DEA plus program developed the efficiency results for nine (9) different confidence levels are 
shown in Table 1. With the incorporation of uncertainty, the technical efficiency for year 2010, could go as low as 70.8% 
and could go as high as 100%; while that of 2018 could go as low as 90.5% and as high as 93.2%.  Having a range of values 
for efficiency scores from the uncertainty DEA plus instead of a deterministic single value from the DEA model, will help 
policy makers give better policies and implementation strategies. Table 2 shows the minimum, maximum, mean and 
standard deviation for each of the DMUs; while Figure 3 is a graph that displays a comparison of the DEA result and the 
Uncertain DEA plus result for each DMU.  
 

DMU α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9 
2010 0.708 0.781 0.854 0.927 1.000 1.000 1.000 1.000 1.000 
2011 0.973 0.973 0.972 0.972 0.970 0.896 0.823 0.749 0.676 
2012 1.000 1.000 1.000 1.000 1.000 0.955 0.887 0.802 0.717 
2013 1.000 1.000 1.000 1.000 1.000 0.939 0.863 0.782 0.709 
2014 0.958 0.957 0.956 0.955 0.954 0.918 0.874 0.824 0.768 
2015 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
2016 0.934 0.933 0.931 0.930 0.929 0.916 0.901 0.884 0.865 
2017 0.987 0.987 0.987 0.987 0.986 0.982 0.977 0.971 0.964 
2018 0.932 0.931 0.929 0.928 0.926 0.922 0.917 0.911 0.905 

Table 1: Uncertain DEA plus Result 
 
 
 

DMU Minimum Mean Maximum Std Dev 
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2010 0.708 0.898 1.000 0.112 
2011 0.676 0.868 0.973 0.114 
2012 0.717 0.908 1.000 0.107 
2013 0.709 0.900 1.000 0.111 
2014 0.768 0.893 0.958 0.071 
2015 1.000 1.000 1.000 0.000 
2016 0.865 0.909 0.934 0.025 
2017 0.964 0.979 0.987 0.009 
2018 0.905 0.920 0.932 0.010 

Table 2: Uncertain DEA plus Result Continued 
 

 
Figure 3: Comparison of DEA and Uncertain DEA plus Result 

 
4. Conclusion and Recommendations 

This paper develops a framework for evaluating the performance of the gas sector in Nigeria with the 
incorporation of data uncertainty, hence, addresses the limitation of the DEA model for performance evaluation. The 
framework is built on the uncertain DEA model but assigns efficiency scores to different confidence levels which give an 
improvement on the uncertain DEA model.  

It is seen that despite the huge natural gas reserves in Nigeria, the country is still faced with challenges of gas 
production and gas utilization. Therefore, policies which will attract investors into the gas sector to boost gas production 
and eradicate gas flaring should be in place. Also, since efficiency is a significant part of overall performance, this 
framework for efficiency evaluation should be applied before policies which will bring about promotion of gas utilization 
and sustainable development of the gas industry are enacted. 
 
5. Nomenclature 
BCC     Banker, Charnes and Cooper 
CCR     Charnes Cooper and Rhodes  
CRS     Constant return to scale 
DEA     Data Envelopment Analysis 
DMU    Decision Making Unit 
NNPC   Nigerian National Petroleum Corporation 
NOC     National Oil Company 
RTE      Relative Technical Efficiency 
VRS      Variable returns to scale 
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